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The chemotherapeutic and immunosuppressive agent cyclophosphamide has previously been shown to induce complications
within the setting of bone marrow transplantation. More recently, cardiotoxicity has been shown to be a dose-limiting factor
during cyclophosphamide therapy, and cardiooncology is getting wider attention. Though mechanism of cyclophosphamide-
induced cardiotoxicity is not completely understood, it is thought to encompass oxidative and nitrative stress. As such, this
review focuses on antioxidants and their role in preventing or ameliorating cyclophosphamide-induced cardiotoxicity. It will
give special emphasis to the cardioprotective effects of natural, plant-derived antioxidants that have garnered significant interest

in recent times.

1. Introduction

1.1. Drug-Induced Cardiotoxicity. Drug-induced cardiotoxi-
city poses a serious risk to human health, and cardiooncology
is currently becoming an important concern [1]. Antineo-
plastic treatments led to increased overall and progression-
free survival in the management of an increasing number of
malignancies [2]. However, as cancer survival has improved
with advancing therapies, late cardiovascular adverse effects
have become an important management issue, mainly in
childhood cancers, leukaemia, lymphoma, and breast cancer.
In patients diagnosed with early stage breast cancer, cardio-
vascular disease is the major cause of mortality [3]. Even
though anticancer drugs are targeted against malignant cells,
they are also toxic to normal cells [4].

Patients who survived cancer, when compared to their
healthy counterparts, are at an increased risk of
cardiovascular-related mortality, which might be due to
myocardial infarction with coronary artery disease, cardio-
myopathy with congestive heart failure, and cerebrovascular
events [5, 6]. Patients on cancer chemotherapy can be con-
sidered as a stage A heart failure group, patients with

increased risk of heart failure and do not have structural
heart disease [7, 8]. Total dose of the anticancer agent patient
received, rate of drug administration, extent of radiation of
the mediastinum, age, being female, previous history of heart
disease, and increased blood pressure are risk factors to
develop cardiotoxicity [9, 10].

Antineoplastic agents are well known to cause a wide
array of toxicities including cardiac dysfunction leading to
heart failure, arrhythmias, myocardial ischemia, hyperten-
sion, thromboembolism, myocarditis, and pericarditis [11].
Anthracyclines are the best known of the chemotherapeutic
agents that cause cardiotoxicity. In addition, alkylating drugs,
including cisplatin, cyclophosphamide, ifosfamide, carmus-
tine, chlormethine, busulfan, and mitomycin, are also linked
with cardiac toxicity [9].

1.2. Cyclophosphamide. Cyclophosphamide is an alkylating,
anticancer agent which was first characterized in experi-
ments on rat tumors. It is an oxazaphosphorine-
substituted nitrogen mustard, with strong cytotoxic and
immunosuppressive activity [12]. It is the mainstay of
most preparative regimens for organ transplant and a
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FIGURE 1: Major metabolic pathway of cyclophosphamide.

broadly active anticancer, immunosuppressive agent used
in combination chemotherapy for Hodgkin’s disease,
non-Hodgkin’s lymphoma, leukaemia, rheumatoid arthri-
tis, Burkitt’s lymphoma, lupus erythematosus, multiple
sclerosis, neuroblastoma, multiple myeloma, endometrial
cancer, breast cancer, and lung cancer. At high dosages,
cyclophosphamide can be used alone or in combination
with bone marrow transplant in the management of solid
tumors and lymphomas [9, 13].

The electrophilic nature of the alkyl group enables the
drug to react with nucleophilic moieties of DNA or pro-
teins, and this leads to the covalent transfer of an alkyl
group. Cyclophosphamide is a prodrug that requires an
activation step by cytochromes (P450) in the liver [14].
As shown in Figure 1, the introduction of the hydroxyl
group to the oxazaphosphorine ring generates 4-hydroxy-
cyclophosphamide, which cooccurs in equilibrium with
its isomer, aldophosphamide. Then, aldophosphamide is
converted into two compounds, phosphoramide mustard
and acrolein (Figure 1) [15].

Phosphoramide mustard forms a highly reactive cyclic
aziridinium cation, which can react with the N(7) of the
guanine and with cytidine from the DNA. Due to the
two reactive moieties in the molecule, intrastrand and
interstrand cross-links can be formed [16]. This leads to
inhibition of DNA replication and apoptosis, with the
active metabolites also having cell-cycle-independent
activity. The specific mechanism of action of the com-
pound used in managing autoimmune diseases has been
postulated to include apoptosis, B-cell suppression, which
will lead to decreased immunoglobulin G production and
decreased production of adhesion molecules and cyto-
kines [12].

Acrolein is the cause of hemorrhagic cystitis, one of the
major toxicities of cyclophosphamide therapy. Other toxic-
ities include bone marrow suppression, cardiotoxicity,
gonadal toxicity, and carcinogenesis, with cumulative doses
being the principal risk factor [15]. Additionally, administra-
tion of a single, large dose of cyclophosphamide is capable of
causing hemorrhagic cell death, leading to heart failure or
even death [17].

2. Pathophysiology of Cyclophosphamide-
Induced Cardiotoxicity

Cyclophosphamide-induced cardiac damage is dose depen-
dent, and the total dose of an individual course is the best
indicator of toxicity, with patients who receive greater than
150 mg/kg or 1.55 g/m?/day, which are at a high risk for car-
diotoxicity [18]. The dose-limiting factor during cyclophos-
phamide therapy is cardiotoxicity [19], which is irreversible
[20]. Fatal cardiomyopathy has been reported among 2-
17% of patients taking cyclophosphamide. It is dependent
on the regimen and the particular patient population charac-
teristics [21]. Overall, cyclophosphamide-induced cardio-
toxicity affects between 7 and 28% of patients taking the
drug [13].

The pathophysiology of cyclophosphamide-induced car-
diac damage is poorly understood [10], although its metabo-
lites are thought to induce oxidative stress and direct
endothelial capillary damage with resultant extravasation of
proteins, erythrocytes, and toxic metabolites. In the presence
of toxic metabolites, breakdown of endothelial cells contrib-
utes to direct damage to the myocardium and capillary blood
vessels resulting in edema, interstitial hemorrhage, and for-
mation of microthrombosis [22, 23].

Endothelial ~ cells are more  susceptible to
cyclophosphamide-induced damage than other cells ([24]);
this might be associated with their high proliferation rate
[25]; cyclophosphamide-induced reactive oxygen species
generation can also lead to a reduction in nitric oxide bio-
availability, thus leading to compromised endothelial func-
tion [26].

Molecular mechanisms of cyclophosphamide-mediated
cardiac damage are currently being postulated, potentially
leading to better preventative strategies to treat cardiotoxi-
city. It has been shown that treatments with cyclophospha-
mide inhibited heart-type fatty acid-binding proteins and
carnitine palmitoyltransferase-I gene expression in cardiac
tissues [27]. Inhibition of these pathways leads to decreased
production of adenosine triphosphate and accumulation of
toxic metabolites from fatty acid oxidation, consequently
leading to cardiomyopathy [28]. Heart-type fatty acid-



Oxidative Medicine and Cellular Longevity

Cyclophosphamide J

V4 +
L H-FABP&
CPT-1

T0x1c FFA

metabohtes in
cardiac cytosoll

Calcineurin

NADP

NADPH

'
=3

Oxidative
stress

\ 4

GSK-,8 Alteration Nrf2-HO/

Cardiac gene
transcription

l ATP

! i ﬁ Nrf2-NQO-1 pathway

Cardiotoxicity

FIGURE 2: Molecular mechanisms involved in cyclophosphamide-induced cardiotoxicity.

binding protein can be used as an early diagnostic marker of
chemotherapy-induced cardiotoxicity [29]. In addition, car-
nitine deficiency can aggravate cardiotoxicity and it is impor-
tant to monitor serum and urinary carnitine levels [30].
Carnitine supplementation showed beneficial effects in vari-
ous cyclophosphamide-induced toxicities [31-34].

Cyclophosphamide administration affects the ability of
the heart mitochondria to retain accumulated calcium [35].
Calcium leak from sarcoplasmic reticulum can lead to mito-
chondrial calcium overload, leading to reduced production of
adenosine triphosphate and increased release of ROS [36]. It
is reported that improving mitochondrial function through
supplementation of lupeol and its ester can protect heart
from cyclophosphamide-induced toxicity [37].

Cyclophosphamide is found to promote proinflamma-
tory cytokines [38, 39]. It enhanced nuclear factor-kappa B
(NF-xB) phosphorylation, both expression and serum levels
of cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha
(TNF-a), and interleukin-1 beta (IL-1f) [40, 41]. Nuclear
erythroid 2-related factor 2 (Nrf2) and NF-«B are considered
as an important molecular target for the anti-inflammatory
and antioxidant chemicals for cytoprotection during cyclo-
phosphamide therapy [42, 43]. It has been reported that inhi-
bition of the NF-«B/TNF-a pathway prevented
cyclophosphamide-induced multiple organ toxicity includ-
ing the heart, kidney, and liver [44, 45].

It has been reported that p53 expression plays an impor-
tant role in apoptosis [46, 47]. Reduction in apoptosis, infarct
size, and hemodynamic parameter improvement can be
achieved by inhibiting p53 [48]. Cyclophosphamide-
induced activation of p53 protein is considered as one of

the possible mechanisms for cardiomyopathy, and it is reported
that probucol supplementation restored cyclophosphamide-
induced upregulation of p53 and reversed apoptosis in cardio-
myocytes [49].

Cyclophosphamide activates the p38 mitogen-activated
protein kinase (p38-MAPK) pathway, and it can induce an
oxidative injury [50]. Cyclophosphamide-enhanced proin-
flammatory/proapoptotic activities are reported to result in
cardiomyopathy, myocardial infarction, and heart failure
[13]. Rutin attenuated cyclophosphamide-induced oxidative
stress and inflammation through downregulating TNF-a,
IL-6, and expressions of p38-MAPK, NF-«xB, and COX-2
(Figure 2) [45].

Cyclophosphamide induces the calcineurin-mediated
dephosphorylation of nuclear factor of activated T-cell
(NFAT); it belongs to the family of calcium-regulated
transcription factors. Unphosphorylated/active GSK-33
phosphorylates elF2, NFAT, and c-jun and thus contrib-
utes significantly to cardiac hypertrophy inhibition/protec-
tion [13]. Cyclosporine A prevented NFAT nuclear
translocation and reversed cyclophosphamide-induced car-
diac damage [35, 51].

In general, mechanisms of cyclophosphamide-induced
cardiotoxicity encompass oxidative and nitrative stress, pro-
tein adduct formation which leads to cardiomyocyte inflam-
mation, altered calcium homeostasis, programmed cell death,
swelling of the cardiomyocytes, nuclear splitting, vacuoliza-
tion, and alteration in signaling pathways. These events result
in diseases of the heart muscle including heart failure, if left
undiagnosed or untreated, and may result in death [13]. Fur-
ther supporting a role of cyclophosphamide-induced



oxidative stress in the evident cardiotoxicity of the com-
pound, exposure of rats to cyclophosphamide resulted in
reduced pulmonary glutathione (GSH) content, GSH
reductase (GRx), glucose-6-phosphate dehydrogenase,
GSH peroxidase (GPx), and superoxide dismutase (SOD)
activities [24].

3. Current Management for Cyclophosphamide-
Induced Cardiotoxicity

Clinical management of cardiovascular diseases (CVDs)
involves multiple drugs (angiotensin-converting enzyme
inhibitors, blockers of angiotensin-II receptor, calcium
channel blockers, f3-blockers, aldosterone inhibitors, aspi-
rin, statins, and warfarin), and others include diuretics,
digoxin, and nitrates [52-54]. It is a common practice to
use those medications in combination for the management
of CVDs, and these lead to increased side effect and drug
interactions [55].

These same preventive strategies can be considered for
ischemia, heart failure, arrhythmia, hypertension, and arte-
rial thromboembolism associated with cyclophosphamide-
induced cardiotoxicity. Primary prevention may include
widespread treatment of all patients who are potentially on
cardiotoxic cancer treatments or early diagnosis of subclini-
cal cardiac injury with targeted treatment.

According to the Canadian Cardiovascular Society rec-
ommendation, even though the recommendation is weak,
patients believed to be at a high risk for cancer treatment-
related left ventricular dysfunction, an angiotensin-
converting enzyme inhibitor, angiotensin receptor blocker,
and/or -blocker, and/or statin can be considered to decrease
the risk of cardiac damage [56]. Valsartan, an angiotensin
receptor blocker, showed a strong effect in preventing acute
cyclophosphamide-,  doxorubicin-,  vincristine-, and
prednisolone-induced cardiotoxicity [57]. A nonselective 3
blocker, carvedilol, with antioxidant activity and nebivolol,
a selective f3-blocker with a nitric oxide donor capacity, were
reported to have an advantageous effect on antineoplastic-
associated cardiac damage [58].

Mild to moderate heart failure and small pericardial
effusions generally resolve within a few days to weeks after
stoppage of cyclophosphamide. In the presence of sus-
pected hemorrhagic myocarditis, cardiac tamponade, and
cardiogenic shock, timely recognition and involvement of
the intensive care unit or coronary care unit are vital.
These patients need aggressive monitoring and circulatory
support [22].

4. Natural Antioxidants for the Management of
Cyclophosphamide-Induced Cardiotoxicity

The use of plants and plant-based products in the treatment
of ailments has been known to mankind from ancient times
[59]. Various natural antioxidants have originated from
medicinal plants, which are used for the treatment of differ-
ent ailments throughout the world, and there has been a sig-
nificant interest in finding natural antioxidants from plant
sources [60]. Diseases and drug-induced toxicities with the
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underlying cause of oxidative stress can be effectively man-
aged with plants having antioxidant activity. Apart from
being rich sources of antioxidants, phytochemicals are also
known to impede the progression of cardiac tissue damage
[59]. These compounds could serve as one of the valuable
sources in industrial pharmaceutical research and can be
treated as a complementary and alternative medicine.

Various medicinal plants showed cardioprotective activ-
ity against cyclophosphamide-induced cardiotoxicity in dif-
ferent preclinical studies (Table 1). In addition, xanthine-
oxidase inhibitors (allopurinol and febuxostat) and nicoran-
dil (vasodilatory drug used to treat angina) were also found
to reverse cardiac damages induced by cyclophosphamide
in male Wistar rats (Table 2).

5. Future Hopes and Hurdles Associated with
Cardioprotective Antioxidants

Antioxidants such as flavonoids, flavones, isoflavones, antho-
cyanin, catechins, and isocatechins are the responsible ones
for the antioxidant activity of spices and herb [90]. These
led supplementation of antioxidants to be a popular practice
to maintain optimal body function [91]. Polyphenols may
reduce cholesterol absorption and upregulate hepatic nRNA
abundance for the LDL receptor, reductions in plasma TG,
yielding a reduced amount of LDL in circulation, and poly-
phenols were found to exert anti-inflammatory effects,
thereby reducing the formation of cytokines involved in cel-
lular adhesion [92]. The production of vasodilating factors
like nitric oxide, endothelium-derived hyperpolarizing fac-
tor, and prostacyclin was enhanced by plant polyphenols.
These plant phenols were also found to inhibit the produc-
tion of vasoconstrictor endothelin-1 in endothelial cells and
inhibit the expression of two main proangiogenic factors,
matrix metalloproteinase-2, and vascular endothelial growth
factor in smooth muscle cells [93]. Flavonoids can also
improve endothelial function, and the primary mechanism
for this is that the effect is nitric oxide production [94].
Even though the results were not posted, currently, there
are different agents under clinical trial, including enalapril for
prevention of chemotherapy-induced cardiotoxicity in high-
risk patients (NCT00292526), nutritional supplement sulfo-
raphane on doxorubicin-associated cardiac dysfunction
(NCT03934905), estimation of the effects of ACE inhibitors
and f3 blockers in the management of cardiotoxicity in onco-
logic patients (NCT02818517), cardiotoxicity prevention in
breast cancer patients treated with anthracyclines and/or
trastuzumab using bisoprolol and ramipril (NCT02236806),
carvedilol effect in preventing chemotherapy-induced cardi-
otoxicity (NCT01724450), prevention of chemotherapy-
induced cardiotoxicity in children with bone tumors and
acute myeloid leukaemia using capoten (captopril)
(NCT03389724), and statins to prevent the cardiotoxicity
from anthracyclines (NCT02943590), and others are under
investigation. These agents might be the future hopes for
the management of chemotherapy-induced cardiotoxicity.
Even though antioxidants like flavonoids have a great
hope in the future clinical scenario of cardioprotection [95],
the importance of antioxidants is currently in question due
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to their less effectiveness in an in vivo study. These failures of
antioxidants in preventing/treating diseases have become the
main obstacle in the clinical scenario [96].

As concluded by Guallar et al., known antioxidants like
vitamin E, -carotene, vitamin A and B supplements, and
folic acid are ineffective for the prevention of mortality and
morbidity due to chronic diseases [97].

This failure might be due to different reasons including
antioxidant-related reasons including testing incorrect anti-
oxidant or combination of antioxidants; there might be dif-
ferences between synthetic and dietary source antioxidants,
reductive stress (i.e., too much antioxidant capacity), and it
may also be related to patient or clinical trials [98].

Unconjugated flavonoid plasma level rarely exceeds
1 uM, and metabolites of flavonoids have lower antioxi-
dant activity. Since plasma total antioxidant capacities
(TAC) are often in the range of 1 mM or more, it is diffi-
cult to picture how an additional 1M polyphenol could
exert an in vivo antioxidant effect. Antioxidants like flavo-
noids and other phenols are complex molecules and have
multiple potential targets/actions in addition to antioxi-
dant activity. These may include inhibition of different
enzymes including cyclooxygenase, lipoxygenase, xanthine
oxidase, matrix metalloproteinases, angiotensin-converting
enzyme, proteasome, and cytochrome P450, affecting sig-
nal transduction pathways. Flavonoids may also interact
with cellular drug transport systems [99]. These issues
need to be addressed in the future.

6. Conclusion

Cyclophosphamide is a known anticancer and immunosup-
pressive agent that becomes effective after metabolic activa-
tion in the liver. Its wider clinical application is currently
limited by its toxicity. Cardiotoxicity, which is associated
with oxidative and nitrative stress, is one of the toxicities lim-
iting the clinical use of cyclophosphamide. Different natural,
plant-derived antioxidants (summarized in this review)
showed significant cardioprotective effects in in vivo preclin-
ical studies. However, further investigations aimed at
improving their efficacy are required. Facilitating transla-
tional clinical research on those shown to be safe and effective
in the preclinical studies should also be considered, lest the
evidences from the preclinical studies would only be left to
be discoursed in scientific meetings and publications.

Abbreviations
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CP:  Cyclophosphamide
CVDs: Cardiovascular diseases
GPx:  Glutathione peroxidase
GRx:  Glutathione reductase
GSH: Glutathione.
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