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Abstract

Variation in the time interval between consecutive R wave peaks of the QRS complex has long been recognised.

Measurement of this RR interval is used to derive heart rate variability. Heart rate variability is thought to reflect

modulation of automaticity of the sinus node by the sympathetic and parasympathetic components of the autonomic

nervous system. The clinical application of heart rate variability in determining prognosis post myocardial infarction and

the risk of sudden cardiac death is well recognised. More recently, analysis of heart rate variability has found utility in

predicting foetal deterioration, deterioration due to sepsis and impending multiorgan dysfunction syndrome in critically

unwell adults. Moreover, reductions in heart rate variability have been associated with increased mortality in patients

admitted to the intensive care unit. It is hypothesised that heart rate variability reflects and quantifies the neural

regulation of organ systems such as the cardiovascular and respiratory systems. In disease states, it is thought that

there is an ‘uncoupling’ of organ systems, leading to alterations in ‘inter-organ communication’ and a clinically detectable

reduction in heart rate variability. Despite the increasing evidence of the utility of measuring heart rate variability, there

remains debate as to the methodology that best represents clinically relevant outcomes. With continuing advances in

technology, our understanding of the physiology responsible for heart rate variability evolves. In this article, we review

the current understanding of the physiological basis of heart rate variability and the methods available for its measure-

ment. Finally, we review the emerging use of heart rate variability analysis in intensive care medicine and conditions in

which heart rate variability has shown promise as a potential physiomarker of disease.
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Introduction

Stephen Hales in 1733 was the first to report that the
time interval between individual arterial pulsations
varied in horses.1 Since then, the introduction of
ambulatory ECG has led to the recognition that the
time period between successive R waves on the ECG
varies in mammals.1,2 This variability between heart-
beats or R-R interval (RRi) (Figure 1) is a feature of
the healthy cardiovascular system and is more com-
monly known as the heart rate variability (HRV).2,3

Hon and Lee first recognised the clinical potential
of HRV when they noted that acute alterations in the
HRV were a marker of foetal distress and predicted
foetal hypoxia.4 Today, monitoring the variability of
foetal heart rate has become a standard of care and
has been responsible for significant reductions in
foetal morbidity and mortality.4,5 Similar alterations
in HRV have been recognised post myocardial

infarction and are associated with a five-fold increase
in mortality.6,7 More recently, reduced HRV param-
eters have been reported as an independent predictor
of 30-day mortality and provided additional predict-
ive value over APACHE II scores in critically unwell
patients.8

The increased appreciation of the clinical potential
of HRV analysis has led to its use in various clinical
situations common to intensive care medicine includ-
ing multiorgan dysfunction syndrome (MODS), sepsis
and trauma.9–11 With this in mind, the following review
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aims to discuss the physiological basis of HRV, the
measurement of HRV and the emerging clinical role
of HRV analysis in intensive care medicine.

Physiological basis of HRV

Automaticity is common to cardiac pacemaker tissue;
however, heart rate and rhythm are continuously
altered and regulated by the autonomic nervous
system (ANS).2,12

The parasympathetic nervous system (PNS)
innervates the sinoatrial node, the atrioventricular
node and the atrial myocardium via the vagus
nerve.1,13 Parasympathetic activation leads to release
of acetylcholine (ACh), which slows the heart rate and
lengthens the R-R interval.1,13 Parasympathetic acti-
vation leads to an almost immediate reduction in
heart rate due to the very short latency of effect of
ACh, and the rate at which ACh is rapidly metabo-
lised and cleared.1,2 Therefore, the PNS regulates
heart rate on a near beat by beat basis.1 In contrast,
sympathetic nervous system (SNS) activation initiates
the synaptic release of catecholamines that increase
cardiac contractility and heart rate.1,2 The action of
catecholamines is slow compared to that of ACh and
results in a delay between the onset of sympathetic
stimulation and changes in heart rate of approxi-
mately 5 s.1,14 Despite the slower onset, sympathetic
stimulation has a longer duration of action, affecting
heart rate for 5–10 s following the cessation of a sym-
pathetic stimulus.1,14 The differences in neurotrans-
mitters between the PNS and SNS has led to the
recognition that the effects of each arm of the ANS
are not opposite and symmetrical but confer overlap-
ping and different time frequencies of action.1

In healthy individuals’ cyclical changes in HRV
occur with respiration and fluctuations in blood pres-
sure.15,16 Frequency domain and power spectral dens-
ity (PSD) analysis utilises fast Fourier transform
(FFT) analysis to describe oscillations in the RRi
and transform them into discrete frequencies that
help to conceptualise our understanding of the
physiological mechanisms responsible for HRV.17,18

Since cyclical changes in HRV are associated with
respiration and occur at a high frequency (HF) of
0.25Hz, they are thought to dominate a number of
cardiorespiratory and neural interactions.2,16 These
interactions are responsible for the observation of
respiratory sinus arrhythmia, characterised by
shortening of the RRi with inspiration and lengthen-
ing with expiration.1 Abolition of these HF oscilla-
tions can be achieved by parasympathetic blockade
with atropine, suggesting that they are parasympathe-
tically mediated.15

Cyclical changes associated with fluctuations in
arterial blood pressure (ABP) occur at a low fre-
quency (LF) of 0.10Hz and are thought to be
mediated by the SNS.2 These oscillations occur in syn-
chrony with arterial Mayer waves.1 Mayer waves are

spontaneous oscillations in ABP whose amplitude is
thought to measure sympathetic vasomotor tone.16

Mayer wave oscillations are thought to parallel oscil-
lations in HRV and in particular the LF oscillations
recognised in HRV.1 These are attenuated and com-
pletely abolished by alpha adrenergic antagonist
drugs, suggesting that sympathetic activity is import-
ant in the generation of these oscillations.1 There
remains debate as to the precise physiological origin
of Mayer waves in the generation of heart rate fre-
quencies at 0.10Hz and controversy exists in
attributing all LF HRV oscillations to sympathetic
modulation.19 Research has demonstrated that para-
sympathetic blockade also produces modulation of
LF oscillations in HRV.1 Despite this, measurement
of HF and LF oscillations calculated as a ratio of LF/
HF has been suggested as a measure of sympathova-
gal balance with relative changes in the magnitude of
each frequency reflecting the dominance of a particu-
lar arm of the ANS.2,15

HF and LF components of HRV account for only
5% of the total power of HRV recordings measured
by PSD analysis. The remaining 95% is accounted for
by two other frequencies called the very low frequency
(VLF) band and ultra-low frequency (ULF) band.13

Historically, these frequency components have not
been well characterised. However, recent research sug-
gests that the VLF band is associated with thermo-
regulatory mechanisms, changes in peripheral
chemoreceptor activity and fluctuations in the renin-
angiotensin system (RAAS), whilst the ULF band is
thought to reflect oscillations due to circadian
rhythm.17,20 Despite relatively less being known
about the VLF and ULF frequencies, they appear
to be clinically important as reduced variability in
the VLF band is associated with arrhythmias, high
inflammation levels and increased mortality.21

Measuring HRV

In 1996, The European Society of Cardiology and the
North American Society of Pacing and
Electrophysiology published guidelines aimed at stan-
dardising the terminology and methodology used in the
measurement of HRV.12 These guidelines describe a
number of methods for measuring HRV including
linear measures such as time domain and frequency
domain measures and non-linear measures such as
the Poincare plot.12 Recent advances in biological sys-
tems theory, HRV analysis and complexity analysis
have resulted in updated guidance for non-linear tech-
niques such as entropy and fractal analysis that focus
on similarities in the RRi over a given time period.20,22

Time domain measures

Time domain measures derive HRV using either stat-
istical or geometric analysis.12 Statistical analyses
(e.g. standard deviation) are applied to the RRi to
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measure variation over a specified period of time from
<1min to 24 h.12,20 Geometric derivation of HRV
requires that a series of RRi are converted into a geo-
metric pattern, such as a sample density distribution
of RRi and analysed using statistical methods (Table
1).12,23

Time domain measures are easy to calculate and
simple to derive.12,24 However, they are sensitive to
artefact particularly supraventricular and ventricular
extrasystolic beats.24 Therefore, ECG recordings need
careful pre-processing to ensure removal of extrasys-
tolic beats and interference. Similarly, they require
stationarity in the time series (i.e. the mean heart
rate does not change significantly), which is a prop-
erty not often met in biological systems.24 For these
reasons, time domain measures cannot discriminate
between alterations in SNS or PNS output. Despite
this, they can be used to assess overall ANS activity
and provide useful clinical information.1,24

Frequency domain measures

Frequency domain measures describe variation in the
RRi following transformation into different fre-
quency components. Frequency domain measures
are derived using FFT analysis to provide informa-
tion on the frequency components of HRV over a
time series (Figure 2).2,12,24 In analysis of 2 to 5min
ECG recordings, three characteristic frequencies are
recognised, LF, HF and VLF (Table 1).24 In 24 h
recordings, the ULF band is recognised with the
VLF band.12 In general, to accurately determine the
power of a LF banding, a recording greater or equal
to approximately 5/f is required. Frequency domain,
like time domain analysis, is sensitive to artefact, ecto-
pic beats and require stationarity in the data series.24

Physiological mechanisms such as changes in posture,
levels of stress and movement are thought to alter LF
and HF readings; therefore, factors that are known to
modulate the ANS should be controlled during HRV
measurement.12,24,25

Non-linear measures of HRV

Non-linear measures overcome the requirement of
stationarity in data unlike the linear measures.20,26

They include techniques such as the Poincare plot,
detrended fluctuation analysis (DFA) and approxi-
mate and sample entropy analysis (ApEN and
SampEN).26 Non-linear measures model dynamic sys-
tems using variables that cannot be plotted on a
straight line.22 Physiological systems are dynamic
due to complex interactions between cardiovascular,
endocrine and autonomic systems and do not ordin-
arily display stationarity. Therefore, non-linear meas-
ures may offer a number of advantages over linear
HRV measures when stationarity cannot be guaran-
teed.26 The non-linear methods implicitly assume that
the factors that create HRV occur as oscillatory

inputs with associated random variation.27 Non-
linear methods borrow techniques from fractal
mathematics and produce variables that describe the
pattern of variability by analysing temporal similari-
ties in the signals.27 Typically, parameters are derived
that separately describe the scaling of short-term vari-
ability (e.g.< 10 beats) and longer term trends.
Whilst, as yet, these parameters do not offer a great
deal of mechanistic insight, they are robust and can
distinguish between patient groups.2

Poincare plot. Poincare plots are a graphical represen-
tation (scatter plot) of HRV generated by plotting
each RRi against the prior RRi (Figure 3).20

Poincare plots are analysed by fitting an ellipse to
the data series. Three non-linear measures are typic-
ally derived, SD, SD1 and SD2 (Table 1).20 Total
variability (S) in the sample is represented by the
entire area of the ellipse.20

DFA. DFA correlates the fluctuations between RRi
over different time scales and analyses temporal self-
similarities in the RRi.27 Short-term fluctuations are
represented by DFAa1, whilst long-term fluctuations
are represented by DFAa2.20 The calculation of DFA
involves several steps, and during the calculation,
non-stationarity in the signal is addressed by subtrac-
tion of extrinsic fluctuations; this has been extensively
reviewed elsewhere.28 The primary advantage of DFA
is removal of confounding due to non-stationarity
during DFA calculation.29 However, it requires
large data sets and whether it offers further informa-
tion compared to other techniques requires further
investigation.24,28

Entropy. Entropy analysis can be applied to a series of
RRi and provides a measure of the degree of irregu-
larity or ‘randomness’ within the series.24 The tech-
nique essentially calculates the probability that any
given sequence of intervals within the RRi series will
be repeated.27 The more likely to be repeated, the
lower the calculated entropy. Measures of such
entropy include the ApEN and SampEN, respectively.
Clinically, lower entropy values correlate to a state of
illness.24,30 SampEN was introduced to address the
sensitivity of ApEN to sample size and the inaccuracy
of ApEN when the number of data points are low in a
time series.24

Factors affecting HRV measurement

Despite the promising ability of HRV to provide
information on biological systems, there remains a
number of physiological and technical issues that
need to be considered when interpreting HRV clinic-
ally. The context of HRV recording is crucial, as
numerous factors including age (increased age leads
to reduced HRV), gender (higher HRV in females),
resting heart rate and recent physical activity, are
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Table 1. Most common linear and non-linear HRV measures.

Variability analysis Parameters Units Description

Time domain

Statistical

Geometric

SDNN

SDANN

RMSSD

SDNN index

SDSD

NN50

pNN50

HRV triangular index

TINN

Differential index

Logarithmic index

ms

ms

ms

ms

ms

%

ms

ms

ms�1

Standard deviation of the NN intervala

Standard deviation of average of NN intervals

in 5 min epochs of entire recording

Square of the root of the mean of the sum of

square differences between adjacent NN

intervals

Mean of the standard deviations of all NN

intervals for all 5 min segments

Standard deviation of differences between

adjacent NN intervals

Number of pairs of adjacent NN intervals

differing by more than 50 ms

NN50 count divided by the total number of all

NN intervals

Total NN intervals divided by height of histo-

gram of all NN intervals

Baseline width of the minimum square differ-

ence triangular interpolation of the highest

peak of the histogram of all NN intervals

Difference between widths of the histograms

of differences between adjacent NN inter-

vals measured at selected heights

Frequency domain

Short-term

recording (5 min)

Long-term recording

(24 h)

Total power

VLF

LF

LF norm

HF

HF norm

LF/HF

a

ms2

ms2

ms2

n.u

ms2

n.u

Variance of the NN intervals over the tem-

poral segment

Power of very low frequency range

(0.0033 Hz–0.04 Hz)

Power of the low frequency range

(0.04 Hz–0.15 Hz)

LF in normalised units

Ratio of the LF to HF

Power of the high frequency

HF in normalised units (0.15 Hz–0.40 Hz)

Slope of the linear interpolation of the

spectrum in a log-log scale

Non-linear measures

Poincare analysis

Entropy analysis

Detrended

fluctuation analysis

S

SD1

SD2

SD1/SD2

ApEn

SampEn

DFAa1

DFAa2

D2

ms

ms

ms

%

Area of the ellipse, representing total

variability

Standard deviation perpendicular to the line of

identity

Standard deviation along the line of identity

Ratio of SD1 to SD2

Approximate entropy, measures the regularity

and complexity associated with a time

series

Sample entropy, measures the regularity and

complexity associated with a time series

Detrended fluctuation analysis that describes

short term fluctuations (<10–11 beat)

Detrended fluctuation analysis that describes

long term fluctuations (>10 beat)

Correlation dimension (estimates the min-

imum number of variables required to

construct a model of system dynamics

Note: Adapted from: Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Standards of

measurement of HRV guidelines.12

aNN interval refers to RRi for normal R wave peaks, i.e. those that are not abnormal due to arrhythmia/interference/artefact. In practice, RRi and NN

interval are used synonymously.
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thought to alter HRV.20 Factors such as posture and
movement also need to be considered as it has been
shown that HRV is markedly altered between stand-
ing and supine positioning.12 HRV is also affected by
a number of technical factors such as ECG sampling
frequency, length of ECG recording and the presence
of artefact or interference.12,20 To detect the R wave
fiducial point on the ECG, a sampling frequency min-
imum of 500Hz is recommended.12 However, as HRV
decreases with illness, it may be necessary to sample at
a much higher frequency to ensure adequate reso-
lution and accuracy.20 A recent systematic review of

HRV use in critical care highlighted that a significant
number of studies used sampling frequencies as low as
250Hz and these results should be considered with
caution.11 Similarly, the length of recording is crucial
and can significantly affect time and frequency
domain HRV measures. Recommendations have
been made regarding acceptable ECG recording
lengths for each HRV measure; however, the existing
literature often fails to accurately report the duration
of ECG recordings used in studies, potentially intro-
ducing an element of uncertainty to their results.11,12

Artefacts can significantly distort time and frequency
domain HRV measures and the bias of a single arte-
fact can distort the entire HRV recording. Manual
inspection of ECG is recommended to ensure that
HRV analysis is conducted on ECG segments that
are free of artefact, ectopic beats, missed beats and
interference.12 Artefacts such as missed and ectopic
beats can be resolved by artefact removal and inter-
polation of an R wave based on previous QRS inter-
vals.20 However, with increasing interpolation of R
waves, a significant amount of noise to signal ratio
can be introduced in the data series and lead to errors
in HRV measures. Similarly, arrhythmias such as
atrial fibrillation (AF) can introduce significant dis-
tortion in HRV and therefore should not be con-
sidered accurate in patients with AF. These factors
need to be considered when interpreting HRV in the
clinical context.

Figure 3. Poincare plot of healthy individual taken from 5-min

ECG recording and analysed in Kubios V3.1. A Poincare plot is

a non-linear heart rate variability technique that plots each

RR interval as a function of the previous RR interval. The

plot provides summary information such as total variability

represented as a central ellipse. The plot is analysed by

calculating the standard deviations SD1 relating to fast beat-

to-beat variability and SD2 describing longer term variability.

Figure 2. Power spectral density analysis showing frequency

domain measures of heart rate variability. Three characteristic

peaks are seen corresponding to the low frequency (LF)

domain 0.03–0.15 Hz, high frequency domain (HF)

0.15–0.40 Hz and very low frequency (VLF) 0.003–0.04 Hz

domain of heart rate variability recordings. Five-minute

recording taken from healthy male and analysed using

Kubios V3.1 software.

Figure 1. Electrocardiogram demonstrating the interval

between R waves. Heart rate variability is derived by measuring

the variability in consecutive time intervals between each

R wave.

152 Journal of the Intensive Care Society 21(2)



HRV in intensive care medicine

HRV is frequently used to describe the activity of the
SNS and PNS. However, this relies on the assumption
that the ANS is in balance, with low PNS activity
associated with a correspondingly high SNS activity
and vice versa.31 Many authors have refuted this, and
it is generally accepted that the relative balance of the
ANS is more complex.

Similarly, mechanisms responsible for RRi and
HRV are complex and reflect inputs from multiple
physiological systems, including the SNS, PNS,
RAAS, thermoregulatory systems, as well as mechan-
ical inputs from respiration and alterations in ABP.32

Despite debate regarding the association between
HRV and the ANS, the previous two decades have
witnessed a significant expansion in the use of HRV
analysis and increasing evidence supporting its use in
intensive care.11

Autonomic dysfunction is common to a number of
disorders seen in critical care patients, such as MODS,
sepsis, myocardial infarction, decompensated heart
failure and severe brain injury (SBI).11,33,34 The ability
to assess autonomic function may provide valuable
information regarding the pathophysiology, severity
and prognosis of these disorders.33 However, the
reader is reminded that whilst an association between
HRV and the ANS certainly exists, HRV does not
directly measure autonomic activity and any associ-
ation is likely a combination of complex physiological
inputs.31 With this in mind, the remainder of this
review will focus on areas in which HRV has found
utility in intensive care medicine.

Multiorgan dysfunction syndrome and
Sepsis

As early as 1995, it was recognised that SDNN, LF,
LF/HF are reduced in sepsis.11,35–37 Godin and
Buchman suggested that organ systems are connected
to each other via neural, hormonal and cytokine net-
works and that they each behave as biological oscil-
lators.38 They hypothesised that sepsis resulted in an
uncoupling of organ systems and leads to a reduction
in HRV parameters.30,38 They proposed that HRV
was a method for the quantification of ‘inter-organ
communication’ and yielded valuable information in
the pathophysiology of sepsis and prognosis of
patients admitted to the intensive care unit (ICU).38

Recently, Bishop et al. reported that reduction in the
VLF domain was predictive of 30 day all-cause mor-
tality in patients admitted to ICU.39 Similar findings
have been reported by Schmidt et al. who found that a
reduced VLF was predictive of 28-day mortality in
patients with MODS.40 HRV analysis may be able
to predict mortality early in a patient’s presentation,
with Chen et al. reporting that a reduced SDNN was
predictive of in-hospital mortality in septic patients
admitted to the accident and emergency department.9

Interestingly, Chen et al. also reported that an
increased HF was predictive of hospital survival, sug-
gesting that health is associated with a high degree of
variability.9 This was confirmed by Papaioannou
et al. in a novel study that tracked changing HRV
in response to a patient’s pathophysiological state.41

SOFA scores were longitudinally tracked with a
number of HRV measures over time and revealed
that entropy was reduced in non-survivors, and the
long term non-linear HRV parameter DFAa2 corre-
lated with length of ICU stay.41 Moreover, patients
who were more clinically unstable had a reduced LF/
HF ratio, and a reduction in overall variance.41 This
recovered as patients improved and were finally dis-
charged from ICU, suggesting that HRV analysis may
be valuable as a method of monitoring physiological
deterioration and offer real-time prognostication in
critically unwell patients.41

HRV may also serve to predict those patients at
risk of deterioration and those who may benefit
from early ICU admission. In a recent observational
study in septic emergency department patients,
Samsudin et al. report a scoring system utilising two
vital signs (respiratory rate and systolic blood pres-
sure), age and two HRV measures (mean RRi and
DFAa2).42 They revealed that the use of HRV not
only outperformed SOFA, NEWS and MEWS scor-
ing at prediction of 30-day mortality but was also able
to accurately predict those patients requiring ICU
admission and intubation.42 Similar scoring systems
utilising HRV have already shown promise in neo-
natal patients. In the landmark HeRO Trial,
Moorman et al. revealed that monitoring heart rate
characteristics including reduced variability and tran-
sient heart rate decelerations, led to a 22% relative
reduction in mortality in very low birthweight neo-
nates.43 The HeRO trial provided clinicians with a
score based on a composite measure utilising SD
RRi, sample asymmetry (a measure of transient accel-
erations and deceleration of the heart rate) and
SampEN.44 Using multivariable logistic regression
and mathematical algorithms, the HeRO score pro-
vides continuous non-invasive monitoring that esti-
mates the fold-increase in the probability of
sepsis.43,44 The HeRO trial and scoring systems devel-
oped by Samsudin et al. hint at the possibility of a
new generation of physiomarkers for the earlier detec-
tion of deterioration and sepsis.42,44

HRV and inflammation

Inflammation is associated with a number of condi-
tions that present to ICU such as myocardial infarc-
tion, sepsis, systemic inflammatory response
syndrome, MODS and severe trauma.45 Factors that
trigger inflammation also enhance anti-inflammatory
pathways that counterbalance the initial pro-inflam-
matory signal.21,45 An inflammatory reflex has been
described, in which cytokines induce neuroendocrine
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modulatory mechanisms that signal via the ANS.21,45

In response to inflammation, vagal outflow increases
systemically and more specifically to organs such as
the spleen that are thought to be responsible for
the upregulation of anti-inflammatory cytokine
levels.45,46 It is thought that this counter-regulatory
mechanism confers protection against unregulated
tissue damage in inflammatory conditions and poly-
microbial infection and is known as the ‘cholinergic
anti-inflammatory pathway’.45 HRV analysis has
helped elucidate the role the ANS plays in the inflam-
matory reflex, and a depressed parasympathetic activ-
ity has been implicated in the pathogenesis of diseases
associated with an exaggerated inflammatory
response.45 A number of authors have correlated
HRV with inflammatory markers.21,47,48 Tateishi
et al. investigated the relationship between IL-6 and
HRV in patients admitted to critical care with sepsis
and found that IL-6 was negatively correlated with
the LF component of HRV analysis.47 Papaioannou
et al. tracked patients from admission to critical care
and reported an inverse correlation between LF and
LF/HF and C-reactive protein (CRP) levels.21 HF
HRV was correlated with IL-10 levels, suggesting
that LF/HF ratio and reduced LF HRV are related
to both pro-inflammatory and anti-inflammatory
responses.21 Furthermore, those patients who devel-
oped shock had increased biomarkers (CRP, IL-6,
IL-10) and decreased HRV, reaching statistical sig-
nificance in patients with a SOFA score >10.21 This
suggests that HRV is related to both anti-inflamma-
tory and pro-inflammatory signals with a stronger
association being present in patients who are more
unwell.21

There is strong evidence that the ANS influences
the physiological response to inflammation and recent
research suggests that the anticholinergic anti-inflam-
matory pathway may hold promise as a therapeutic
target.21,49 HRV measurement may therefore prove to
be a novel physiomarker that characterises the cardio-
respiratory responses to inflammation and may have
prognostic value in any future anti-inflammatory
treatments.50

Cardiovascular disorders, arrhythmias
and cardiac arrest

It is generally accepted that HRV is a powerful pre-
dictor of cardiac mortality, arrhythmia and sudden
cardiac death, and is independent of other risk factors
(left ventricular ejection fraction, ventricular extra-
systoles and episodes of non-sustained ventricular
tachycardia) after myocardial infarction.5,7,12,51

A substudy of the large ATRAMI trial found that
decreased SDNN and impaired heart rate response
to an increase in blood pressure (baroreceptor sensi-
tivity) were predictors of cardiac mortality.52 In
patients with a reduced ejection fraction, the presence
of a reduced SDNN or low baroreceptor sensitivity

carried a relative risk of mortality of 6.7 and 8.7,
respectively.52 Reduced HRV may also provide an
early warning of deterioration as Passariello et al.
have shown that patients who suffer sudden cardiac
death secondary to fatal arrhythmia have a marked
decrease in SDNN in the 5min preceding its onset.53

Similar findings are reported in patients who suffer
from paroxysmal AF, where ApEN was decreased
up to 100min prior to the onset of arrhythmia.22

That HRV analysis appears to be able to predict
patients at risk of cardiac mortality and arrhythmias
may prove useful for risk stratification, particularly in
patients at increased cardiovascular risk such as in the
peri-operative period.33

HRV has also been used to monitor the responses
to drug treatment in patients with cardiovascular dis-
ease and hypertension. Beta-antagonists such as meto-
prolol and atenolol tend to augment HF whilst
reducing LF in patients with hypertension.54 Similar
findings have been reported post myocardial infarc-
tion, where the addition of metoprolol leads to a
reduction in LF output.54 However, cardiovascular
drugs such as, statins and calcium channel antagonists
have been found to have a variable effect on HRV.11

Interestingly, drugs that would be expected to have
profound effects on the ANS such as catecholamines
have also been shown to have variable effects on HRV.
A recent systematic review reported three studies that
did not show any association between HRV param-
eters and vasopressor requirement or administration
of exogenous catecholamines.11 Despite no finding of
an association, the authors highlighted that the major-
ity of studies failed to report the administration of car-
diovascular drugs, vasopressors or catecholamines and
had limited ability to draw any conclusions regarding
the potential effects on HRV.11,54

HRV may also offer important information
regarding neurological recovery post cardiac
arrest.33,55 Tiainen et al. in a randomised trial
reported significantly higher HRV measures in those
patients who underwent therapeutic hypothermia
(TH) compared to normothermia post cardiac
arrest.55 Higher SDNN, SDANN, HF and LF meas-
ures were recorded in the first 48 h of TH.55 The
authors suggest that higher HRV measures may rep-
resent a beneficial effect on myocardial function and
preservation of ANS function or the neuroprotective
effects of cooling.55 However, they acknowledge that
this finding may be due to confounding and second-
ary to the relative bradycardia that TH induces in
patients.55 The exact mechanism underlying altered
HRV with TH remains uncertain, despite this the
potential of HRV to predict outcome post cardiac
arrest should be confirmed with larger trials.33,55

Neurological disorders

Lowensohn et al. were amongst the first authors to
investigate the links between HRV and neurological
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disorders.56 In brain-damaged adults, Lowensohn
et al. revealed that HRV decreased and rapidly dimin-
ished in line with increases in intracranial pressure
(ICP).56 A more recent study in 145 trauma patients
confirmed that an increase in ICP, as measured by
invasive ICP monitoring, is preceded by a reduction
in HRV.57 Reduction in HRV has been shown to be
proportional to the increase in ICP, with more
marked alterations in HRV occurring when ICP was
>30mmHg or cerebral perfusion pressure
<40mmHg.33 Moreover, reductions in HRV pre-
ceded changes in ICP by approximately 24 h.57

These findings suggest that HRV may function as a
non-invasive method of monitoring early changes in
ICP and may identify those patients who would bene-
fit from invasive monitoring.57

Complications following subarachnoid haemor-
rhage (SAH) can include severe vasospasm, neuro-
genic stress cardiomyopathy and cardiac
arrhythmias.58 Reduction in RMSSD has been
shown to be associated with neurogenic stress cardio-
myopathy following SAH.58 Similar alterations in
HRV have been recognised in extradural, subdural
and intracerebral haematomas.33 Schmidt et al. have
investigated VLF reductions and delayed cerebral
ischaemia secondary to cerebral vasospasm in SAH
patients.59 It is thought that VLF may partly repre-
sent parasympathetic outflow and reductions in VLF
are associated with states of high inflammation.20

Both RMSSD and VLF have been shown to predict
complications following SAH, and it has been sug-
gested that this may be related to the pro-inflamma-
tory response contributing to the development of
cerebral ischaemia after SAH.59

Changes in HRV have also been shown to be an
early indication of the occurrence of brain death.60

Conci et al. reported a reduction in the total power
of frequency domain analysis and suggested that these
changes likely mirror a cessation of the activity of
cardiorespiratory brainstem centres.60 These findings
have been confirmed by others who measured con-
tinuous HRV and found that the loss of spectral
power occurred during the transition to brain
death.61 Taken together, these findings may be
useful as a complementary method in the diagnosis
of brain stem death and help inform when more
formal brain stem death testing should occur.60,61

Conclusion

HRV analysis offers a unique monitoring modality
that provides information regarding variability in
complex biological signals. Unlike existing monitor-
ing, HRV can potentially detect and track the state of
the whole physiological system over time and during
the development of illness, potentially even before it is
clinically apparent. Goldberger et al. described illness
as the de-complexification of complex biological sys-
tems and suggested that health is characterised by

‘organised variability’ whilst reduced variability is
associated with disease states, such as MODS and
sepsis.62 The inclusion of HRV measures into current
early warning scoring systems such as NEWS could
potentially lead to a new generation of physiomarkers
that can predict deterioration earlier and help target
those patients at greatest risk of mortality.42 The
HeRO trial and HeRO monitoring system have
shown that incorporation of HRV measures can
potentially lead to earlier investigation and treatment
and significantly improved clinical outcomes.44

Despite the potential of HRV measurement, it is
still largely a research technique and has not become
part of routine monitoring in critical care.63 There are
a number of potential reasons for this. First, despite
the large number of experimental studies, the majority
are cohort or case-control studies of low methodo-
logical quality.11 Many studies also failed to fully
account for confounding factors such as commonly
used drugs in ICU, including anti-arrhythmic medica-
tions and the impact that interventions in ICU such as
mechanical ventilation have on HRV parameters.11

Second, there is a lack of standardised methodology
for the recording, processing and derivation of HRV
from ECG. Despite guidelines from The European
Society of Cardiology and the North American
Society of Pacing and Electrophysiology, obtaining
clinically useful HRV parameters still requires clin-
icians to pre-process ECG and RRi data using stand-
ard ECG monitoring equipment before using
standalone software to derive HRV parameters.12

A number of open source software packages written
in Matlab mathematical language are available as well
as a number of paid software packages such as
Kubios and ARTiiFACT.64–66 To date, the authors
are not aware of any monitoring systems that derive
HRV in real time at the bedside and this likely limits
its widespread use in ICU. Third, despite evidence to
suggest that HRV can predict deterioration, arrhyth-
mias and MODS, the exact pathophysiological mech-
anisms underlying these associations remain unclear.
Throughout this review, we have discussed HRV as a
measure of autonomic function. In reality, individual
HRV parameters are more complex and multiple
physiological factors impact upon them.31 Until the
exact mechanisms responsible for measured HRV
parameters are uncovered, it is difficult to fully
define a mechanistic basis for HRV.31

Measurement of HRV, along with advances in bio-
medical engineering and computational methods, has
increased our understanding of the role the ANS plays
in the pathophysiology of disease and illness. But for
HRV analysis to become a standard of monitoring in
critical care, prospective studies are needed to address
the technical considerations, determine what factors
confound HRV analysis and develop consensus stand-
ards for HRV monitoring in ICU. In conclusion, if
these challenges are addressed, HRV analysis has the
potential to revolutionise critical care monitoring and
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introduce an era of monitoring based on individua-
lised variability analysis.
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