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ABSTRACT 

Purpose: This article identifies how to assess multiple sources of measurement error and identify optimal measurement strategies for obtaining clinical out­
comes. Method: Obtaining, interpreting, and using information gained from measurements is instrumental in physiotherapy. To be useful, measurements 
must have a sufficiently small measurement error. Traditional expressions of reliability include relative reliability in the form of an intra-class correlation 
coefficient and absolute reliability in the form of the standard error of measurement. Traditional metrics are limited to assessing one source of error; how­
ever, real-world measurements consist of many sources of error. The measurement framework generalizability theory (GT) allows researchers to partition 
measurement errors into multiple sources. GT further allows them to calculate the relative and absolute reliability of any measurement strategy, thereby 
allowing them to identify the optimal strategy. We provide a brief comparison of classical test theory and GT, followed by an overview of the terminology 
and methodology used in GT, and then an example showing how GT can be used to minimize error associated with measuring knee extension power. 
Conclusion: The methodology described provides tools for researchers and clinicians that enable detailed interpretation and understanding of the error as­
sociated with their measurements. 
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RÉSUMÉ 

Objectif : décrire comment évaluer de multiples sources d’erreur de mesure et les stratégies de mesures optimales pour obtenir des résultats cliniques. 
Méthodologie : il est important d’obtenir, d’interpréter et d’utiliser l’information tirée des mesures en physiothérapie. Pour que ces mesures soient utiles, 
leur écart-type doit être suffisamment petit. Les expressions habituelles de fiabilité incluent la fiabilité relative sous forme de coefficient de corrélation intra­
classe et la fiabilité absolue sous forme d’écart-type des mesures. Les mesures habituelles sont limitées à l’évaluation d’une source d’erreur. Cependant, 
les mesures réelles s’associent à plusieurs sources d’erreur. La théorie de généralisabilité (TG) du cadre de mesure permet aux chercheurs de diviser les 
erreurs de mesure selon de multiples sources. Elle leur permet également de calculer la fiabilité relative et absolue de toute stratégie de mesure, pour par­
venir à une stratégie optimale. Le présent article fournit une brève comparaison entre la théorie du test classique et la TG, puis un aperçu de la terminologie 
et de la méthodologie utilisées en TG. Enfin, les auteurs présentent un exemple démontrant comment utiliser la TG pour limiter l’erreur associée à la me-
sure de la puissance d’extension du genou. Conclusion : la méthodologie décrite fournit des outils pour les chercheurs et les cliniciens afin de parvenir à 
une interprétation et une compréhension détaillées des erreurs de mesure. 

Performing measurements, interpreting their results, value. Reliability is the measurement property that quan­
and applying the information gained to shape clinical de- tifies the confidence in a measured value. Like validity, 
cisions are the cornerstones of physiotherapy practice. reliability is context specific. It is not binary. Stated 
Having confidence in a measurement is essential in mak- another way, tests and measures are not reliable; rather, 
ing decisions about a patient’s status and determining a test’s performance in a defined context exhibits a relia­
whether a change has occurred. The smaller the mea- bility that is expressed on a continuum. In this article, we 
surement error, the greater the confidence in a measured briefly review classical test theory (CTT), introduce a 
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more flexible and clinically useful theory and analytic 
approach known as generalizability theory (GT), and 
highlight the latter’s advantage using a clinical example. 

RELIABILITY 
CTT states that a measured value is equal to the 

(unknown) true value plus a single source of random 
error. Applied in a reliability context, the true score is the 
conceptual value that would be obtained if a theoretically 
infinite number of measurements were performed and 
averaged within a truly unchanged object of measure­
ment (e.g., a patient in the clinical setting): measured 
score = true score + error. 

The error score is assumed to be random, uncorre­
lated with the true score and uncorrelated with the errors 
of other objects of measurement. When sampled over an 
infinite population of examinees, the average error would 
be zero. There are two types of reliability, relative and 
absolute. Relative reliability is quantified in terms of a 
ratio of variances and often expressed as an intra-class 
correlation coefficient (ICC). Specifically, reliability is 
quantified as the true score variance divided by the total 
variance: 

�2 
Reliability coefficient ðICCÞ ¼  T ; ð1Þ 

�2 þ �2 
T E 

where �2T is the true score variance and �2E is the error 
variance. 

Absolute reliability is often quantified using the stan­
dard error of measurement (SEM), which is determined 
by taking the square root of the error variance: 

qffiffiffiffiffiffi 
SEM ¼ �2

E: ð2Þ 

Although this conceptualization is simple, a conse­
quence of its single source of measurement error neces­
sitates multiple study designs and analyses resulting in 
multiple estimates of reliability for a given measure. For 
example, an investigator would have to design different 
studies to estimate the inter-trial, inter-day, and inter-
rater reliabilities of a measure in a specific context. Con­
ceivably, each of these studies could produce a different 
estimate of reliability owing to a different estimate of 
measurement error. An important consequence of these 
distinct estimates of error variance is that they limit 
one’s ability to directly implement the optimal measure­
ment strategy to obtain a clinically acceptable amount of 
measurement error. By clinically acceptable, we mean 
that the measurement error is sufficiently small as to not 
interfere with the interpretation of the measured value 
and any subsequent decisions and actions based on that 
value. 

We define a measurement strategy as the number and 
type of measurements that a clinician averages to obtain 

the reported value. For example, a clinician treating pa­
tients with Parkinson’s disease may be interested in ob­
taining a sufficiently reliable estimate of a patient’s timed 
up-and-go (TUG) test time. The clinician must debate 
whether it is better to average trials obtained on the same 
day or those obtained on different days. The results from 
separate inter-trial and inter-day reliability studies can­
not answer this question satisfactorily. 

GENERALIZABILITY 
Unlike CTT, GT allows for the simultaneous assess­

ment of multiple sources of measurement error. GT en­
ables researchers to estimate many sources of variance 
concurrently and thus directly identify the source or 
sources that contribute most to measurement error. With 
this information, clinicians and researchers can deter­
mine the best measurement strategy for minimizing mea­
surement error. 

Applying GT requires investigators to define a set of 
measurement conditions that define the universe of 
admissible observations. This universe should identify all 
sources of measurement error that an investigator deems 
relevant. Within the universe, each source of error is 
labelled a facet, and the participants (clinical population) 
investigated are labelled the objects of measurement. Re­
turning to the Parkinson’s disease example, the facets 
would be trials and days, and the objects of measurement 
would be persons with Parkinson’s disease. The universe 
score can be conceptualized as the mean score for an 
object of measurement over all conditions defined in the 
universe of generalization. The universe score is similar 
to CTT’s true score; however, unlike CTT, in which an 
object of measurement has a single true score regardless 
of the type of reliability being assessed, according to GT, 
an object of measurement’s universe score is facet 
dependent. Including different facets will produce differ­
ent universe scores for an object of measurement. 

GENERALIZABILITY COEFFICIENTS 
Two types of relative reliability coefficients can be 

calculated using GT: the dependability coefficient and 
the generalizability coefficient. Dependability is used 
to determine the reliability of absolute measurements 
(actual measured values), and generalizability is used to 
determine the reliability of the rank order of measured 
values (rank of a person’s score among others). These de­
finitions and terms are consistent with the two forms of 
ICC called absolute agreement and consistency of agree­
ment. In most clinical and research contexts relevant to 
physiotherapy, such as evaluating outcomes among pa­
tients with Parkinson’s disease, researchers are interested 
in making comparisons with some threshold value and 
are therefore interested in absolute measurements and 
the coinciding dependability coefficient. 
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Both dependability and generalizability are forms of 
ICC that are calculated as a ratio of variances. We obtain 
the general form of generalizability coefficients by repla­
cing true score variance from Equation 1 with the uni­
verse score variance (�2 Þ:U

�2 
Generalizability coefficients: ICC ¼ U : ð3Þ 

�2 þ �2 
U E 

The ICC ratio identifies the proportion of total variance 
accounted for by the objects of measurement (e.g., sub­
jects or participants). If the proportion of participant 
variance is high, this indicates that the measure is adept 
at discriminating among participants within the defined 
universe (i.e., context of interest). The difference between 
dependability and generalizability comes from the rules 
used to calculate the universe score and error var­
iances.1–3 

The SEM that coincides with a dependability, or gen­
eralizability, coefficient is the square root of the asso­
ciated error variance (i.e., the same as CTT). In this 
article, we focus on dependability. In calculating depend­
ability, we determine its associated error variance, called 
the absolute error variance, and calculate the coinciding 
SEM. 

METHODS 
There are two steps in any GT analysis. First, we per­

form a G-study (generalizability study), which is followed 
by a D-study (decision study). These names should not 
be confused with the GT coefficients (generalizability and 
dependability) or with the overall framework of GT itself. 
The G-study and D-study are outlined next. 

G-study 
The purpose of a G-study is to determine the variances 

of as many sources of measurement error (facets) as are 
relevant and feasible. To obtain these variances, a study 
must be designed and data collected. For the trial and 
day facets in the Parkinson’s disease example, the most 
straightforward design is a fully crossed design, in which 
one collects a specified number of trials on every partici­
pant over a specified number of days. The number of 
trials and days collected must each be at least two. When 
deciding on the number of collections, it is important 
that the object of measurement remain unchanged: 
learning and fatigue should be avoided. Learning may be 
avoided by providing familiarization sessions before col­
lecting data. Fatigue will likely occur when an excessive 
number of trials are performed; therefore, researchers 
should pilot protocols to avoid the progressive decline in 
muscle performance attributable to fatigue. 

Once data have been collected, variance components 
are calculated. A variance component is the variance for 
a particular factor in a model; the sum of the variance 
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components is equivalent to a model’s total variance. 
Variance components are acquired by performing an 
analysis of variance (ANOVA). In the Parkinson’s disease 
example, the dependent variable is the outcome of inter­
est, and predictors are (1) the object of measurement, (2) 
the facets, and (3) all relevant interactions. The resulting 
statistical model is as follows: 

yijk ¼ u þ pi þ tj þ dk þ ptij þ pdik þ tdjk þ eijk; ð4Þ 

in which yijk is the dependent variable (time to complete 
the TUG test), u is the mean of all TUG measurements, 
pi is the participant factor, tj is the trial factor, dk is the day 
factor, ptij is the Participant × Trial interaction, pdik is 
the Participant × Day interaction, tdjk is the Trial × Day 
interaction, and eijk is the residual (error). 

Using the mean squares calculated in the table (see 
the Appendix) and the number of levels for each factor, 
we can calculate the variance components for each term 
in the model. Variance abbreviations are as follows: 
�2 
p = participant variance, �2 

t = trial variance, �2 
d = day vari­

ance, �2 = Participant × Trial interaction variance,pt 
�2 = Participant × Day interaction variance, �2 = Trial × pd td 
Day interaction variance, and �2 

e = error variance. 
To allow easy interpretation, these values are often 

presented as a percentage of the total variance (sum of 
variance components). At this stage, it is now possible to 
examine the variance components and identify the facets 
that have the greatest sources of error. With this informa­
tion, we move on to the D-study. 

D-study 
D-studies focus on identifying the optimal measure­

ment strategy for decision making within the universe 
that the researcher or clinician wishes to generalize. First, 
we define the conditions (universe) over which we want 
to generalize measurements. For the Parkinson’s disease 
example, these are trials and days. That is, we want to be 
able to determine how well a measurement represents 
other measurements taken on different days or in differ­
ent trials. However, it is possible to generalize over a sub­
set of the universe defined in the G-study; we touch on 
this later. 

Knowing the conditions over which we want to general­
ize, we determine the coefficient or coefficients of interest 
(dependability or generalizability). We focus on absolute 
agreement and the dependability coefficient. To calculate 
dependability, the appropriate universe score variance 
(�2 ) and error variance (�2 ) are calculated. U E

For this defined universe, the universe score variance 
is equivalent to the object of measurement (e.g., partici­
pant) variance: 

�2 ¼ �2: ð5ÞU p 

https://www.utpjournals.press/loi/ptc
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The dependability-specific error variance, the absolute 
error variance �2 ; for this defined universe is com­absE

puted as 

2 �t 
2 �d 

2 �pt 
2 �pd 

2 
�td 
2 �e 

2 
� ¼ þ þ þ þ þ : ð6ÞabsE nt nd nt nd ntnd ntnd 

In Equation 6, nt and nd are the number of trials (nt) and 
days (nd) over which the outcome measurement (TUG 
test) is averaged. The calculated �absE

2 is specific to the nt 

and nd input and identifies the �2 for that measure­absE 
ment strategy. The calculated �2 is the sum of the mea­absE 
surement strategy-specific variances for all facets. These 
are the measurement strategy specific variances because 
each variance component is divided by the number of 
trials or days used in the specified strategy. The variance 
components are divided by the number of measurements 
(n) because variance is reduced by a factor of n when 
averaging is used to improve measurement consis­
tency.4,5 The rule of dividing variance components by the 
number of averaged measurements for that component 
is based on the central limit theorem.5 For this reason, 
we can change n to any theoretical number (even a num­
ber greater than the number we collected) knowing that 
the variance components will decrease predictably. An 
inherent benefit of the D-study is that we can calculate 
the �absE2 and therefore dependability for any specified 
measurement strategy (averaging over any specified nd 

and nt). 
With the calculated �2 and �absE2 ; dependability isU 

computed as 

�2 
dependability ¼ U : ð7Þ 

�2 þ �2 
U absE 

Equation 7 is consistent with the generic ICC calculation. 
The coinciding SEM is calculated by taking the square 
root of the �absE

2 : 
qffiffiffiffiffiffiffiffiffiffiffi 

SEM ¼ �2 : ð8ÞabsE 

Using individual variances computed from the G-study 
as well as dependability and the SEM for different mea­
surement strategies (e.g., averaging over different combi­
nations of trials and days), we begin to determine the 
optimal strategy. First, we critically assess the variance 
components from the G-study. The facets with the high­
est variance contribute the most error. Averaging more 
measurements over these facets will reduce their variabil­
ity, thus reducing the overall error variance. A lower error 
variance results in a lower SEM and higher dependability 
(see Equations 7 and 8). Reducing variability in facets 
with the highest variances will have the greatest impact. 
We can more explicitly test and view this result by choos­
ing a range of trials and days (e.g., one to five trials and 
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1–5 days) for which we are interested in determining the 
measurement properties. We can then calculate depend­
ability and the SEM for all combinations and interpret 
them graphically or in a table. Graphical and table results 
are demonstrated next. 

CLINICAL EXAMPLE – KNEE EXTENSION POWER 
In this section, we provide an example of a GT analysis 

on knee extension power using synthetic data. The data-
set is available as an online-only supplement that in­
cludes three trials collected on each of 2 days for 10 
participants. 

G-study 
We began by determining the relevant sources of mea­

surement error and designing a study. The facets of inter­
est were days and trials, and our design mandated three 
trials on each of 2 days. 

The acquired data were fit to the ANOVA model 
(Equation 4). The dependent variable in the model was 
knee extension power, and the factors were the same as 
in Equation 4. The ANOVA model fit using Stata, Version 
13.1 (StataCorp LP, College Station, TX) is provided 
in Table 1. Using the ANOVA mean squares and levels of 
each factor, the variance components for each factor were 
calculated using equations from the Appendix and are 
presented in Table 2. 

The interpretation of the variance components is as 
follows. Each of the variances �t 2; �d

2; and �dt 
2 accounts for 

0% of the variance, indicating that there is no systematic 
difference among the trials or among the days. Zero vari­
ance for the interaction (�dt

2 ) indicates that the ordered 
trial means between days are similar. In contrast, �p 

2 ac­
counts for almost 94% of the variance. The high relative 
variance attributed to the object of measurement indi­
cates that there is relatively small variability remaining 
for the sources of error. In Equation 7, the dependability 
coefficient is calculated as the �U2 divided by the total 
variance (�2 þ �2 ). In Equation 8, the universe score U absE

variance is equal to participant variance. From these, our 
dependability is as follows: 

�2 

dependability ¼ p 
: ð9Þ 

�2 þ �2 
p absE 

Without calculating the absolute error (�2 ), we know absE

that all other variances are small compared with �2 
p; indi­

cating that we will have high dependability. 
When viewing the other components, �pd 

2 accounts for 
approximately 4% of the variance, which is two to three 
times the variance for �2 (1.3%) and �2 (1.5%). The �2 

pt e pd 
variance is indicative of variability from one day to the 
other, for a particular participant (i.e., some participants 
performed better on the first versus second day; some 
better on the second versus first day; others had no 
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Table 1 Analysis of Varian

Factor 

ce Results from Fitting Collected Data to the Described Model 

Mean square F  df  p-value > F 

Whole model 30,745.76 86.86 41 < 0.001 
Participant 135,001.46 381.39 9 < 0.001 
Trial 274.40 0.78 2 0.478 
Day 260.42 0.74 1 0.400 
Participant × Trial 955.68 2.70 18 0.020 
Participant × Day 3,053.05 8.63 9 < 0.001 
Day × Trial 37.07 0.10 2 0.901 
Error 

Notes: The model included 60 

353.97 

observations from 10 participants. Dash in

– 

dicates no data. 

18 – 

Table 2 Non-Negative Vari
Variance 

Symbol 

�2 
p 

�2 
t 

�2 
d 

�2 
pt 

�2 
pd 

�2 
dt 

�2 
e 

of the �2 
pt is that in

over days will reduce 

difference between th

trends between trials
(Equation 6), the prac
to reduce these varia

ance for Each Predictor of Peak Knee Ext

Facet 

Participant 

Trial 

Day 

Participant × Trial 

Participant × Day 

Day × Trial 

Error 

dividual participants had different 

variability for the two big

e days). Similarly, the interpretation 

. In the absolute error calculation 

nces. From Equation 6, averaging 

Variance 

21,891.1 

0.0 

0.0 

300.9 

899.7 

0.0 

354.0 

tice of averaging data can be used 

gest 

determine that, acc
from Table 2, the universe 
21; 891:1: Next, we i
ate variances (from 
the absolute error va

ension Power and Its Normalized Vari

ording to Eq
score 

Table 2) into 
riance: 

ance, Presented a

nput nt ¼ 1, n

Normalized variance (%) 

93.37 

0.00 

0.00 

1.28 

3.84 

0.00 

1.51 

uation 5 and variances 
variance is �2 

U ¼ �2 
p ¼ 

Equation 6 to calculate 

s a Percentage of the Total 

d ¼ 1, and the appropri­

sources of variance (�2 ; �2) and will thus likely yield the pd e 
greatest improvement in reliability. 

D-study 
Next, we determine over which universe to generalize 

and how to calculate coefficients. The primary purpose is 
to find out how to obtain the most reliable knee exten­
sion power measurements from all relevant protocols. 
For this reason, we generalize over trials and days, as de­
scribed for the Parkinson’s disease example. We are inter­
ested in the reliability of absolute measurements; 
therefore, we use dependability and its associated SEM. 
Finally, we cover calculating coefficients when we are in­
terested only in generalizing over either trials or days (not 
both) – these coefficients are analogous to CTTs’ inter-
trial and inter-day reliability. 

To calculate the dependability coefficient and the SEM 
for a single trial (nt ¼ 1) on a single day (nd ¼ 1), we first 

0:0 0:0 300:9 899:7 0:0 354:0 
�2 ¼ þ þ þ þ þ :absE 1 1 1 1 1 � 1 1 � 1 

�2 ¼ 1; 555:6:absE 

Finally, dependability and the SEM are calculated by in­
putting �U

2 and �absE
2 into Equations 7 and 8: 

21; 891:1 
dependability ¼ : 

21; 891:1 þ 1; 555:6 

dependability ¼ 0:934: 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
SEM ¼ 1; 557:3: 

SEM ¼ 39:44N � m=s: 

https://www.utpjournals.press/loi/ptc
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This dependability coefficient indicates how well we can 
generalize a single trial from one day to any trial from 
any day. 

�2 

�2 pdþ
inter � trial dependability ¼ p nd : ð10Þ 

�2 
�2 �2 �2 

�2 
�2 þ pd þ t þ pt þ td þ e 
p nd nt nt ntnd ntnd 

The calculated dependability for a single trial on a single 
day provides valuable information about the reproduci­
bility of measurements. Beyond that, we can determine 
the actual reliability of various measurement strategies 
by changing nt and nd in the error variance calculation 
(Equation 6). Table 3 includes calculated dependability 
and SEM values for measurement strategies that include 
averaging over all combinations of one to five trials and 
1–5 days. Both nt and nd can be greater than the number 
of collected trials (3) and days (2) from the G-study 
because we are using the central limit theorem to identify 
what the variance components will be when we use aver­
aging to improve measurement consistency. 

The resulting dependability and SEM values for all cal­
culated measurement strategies are presented visually in 
Figures 1 and 2. The stacked nature of the individual lines 
clearly demonstrates that higher reliability can be ob­
tained by averaging over days versus averaging over trials. 
This highlights the fact that when attempting to identify 
change, variability among days should be accounted for 
if a true change is to be detected. 

DISCUSSION 

Classical test theory equivalents 
Thus far, the presented dependability coefficients have 

commented on the reliability over all measurement con­
ditions within the defined universe. However, it is useful 
to identify a specific measure of inter-day and inter-trial 

reliability. The GT equivalent of traditional inter-trial or 
inter-day reliability can be calculated using additional 
rules for calculating universe score variance and absolute 
error variance.2 Following these rules, the inter-trial relia­
bility equivalent is calculated using Equation 10, and the 
inter-day equivalent using Equation 11. 

�2 

�2 ptþ
inter � day dependability ¼ p nt : ð11Þ 

�2 �2 �2 
�2 

�2 
�2 þ pt þ d þ pd þ td þ e 
p nt nt nd ntnd ntnd 

These coefficients refer to the ability to generalize across 
a single facet. The inter-trial dependability coefficient is 
interpreted as “the extent to which I can generalize from 
one trial to another,”2 and the inter-day coefficient is 
“the extent to which I can generalize from one day to 
another.” For the current example, if we assume nt ¼ 1 
and nd ¼ 1; we find 

inter � trial dependability 
21; 891:1 þ 899:7 

¼ 1 : 
21; 891:1 þ 899:7 þ 0 þ 300:9 þ 0 þ 354:0 

1 1 1 1�1 1�1 

inter � trial dependability ¼ 0:972: 

inter � day dependability 
21; 891:1 þ 300:9 

¼ 1 : 
21; 891:1 þ 300:9 þ 0 þ 899:7 þ 0 þ 354:0 

1 1 1 1�1 1�1 

inter � day dependability ¼ 0:947: 

This exercise further highlights the fact that there is 
greater measurement error across days than across trials. 

In the following, we compare overall coefficients as well 
as trial- and day-specific coefficients for dependability and 
the SEM with their traditional ICC and SEM counterparts. 
Table 4 includes Shrout and Fleiss Type 1,1 and Type 2,1 

Table 3 Dependability Coefficient and SEM for Measurement Strategies That Include Averaging Overall Combinations of One to Five Trials and 1–5 Days 

Trials 

Days 1 2 3 4 5 

Dependability 
1 0.934 0.947 0.951 0.954 0.955 
2 0.960 0.970 0.973 0.975 0.976 
3 0.968 0.977 0.980 0.982 0.983 
4 0.973 0.981 0.984 0.985 0.986 
5 0.975 0.984 0.986 0.988 0.989 

SEM, N-m/s 
1 39.43 35.03 33.44 32.61 32.10 
2 30.46 26.24 24.68 23.86 23.35 
3 26.81 22.57 20.96 20.11 19.59 
4 24.78 20.48 18.83 17.95 17.40 
5 23.49 19.12 17.43 16.52 15.95 

SEM = standard error of measurement. 
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Figure 1 Dependability of knee extension power measurements presented for measurement strategies that include averaging over one to five trials and 1–5 days. 
Notes: The x-axis identifies the number of trials averaged. Individual lines represent averaging over different numbers of days. 
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Figure 2 SEM of knee extension power measurements presented for measurement strategies that include averaging over one to five trials and 1–5 days. 
Notes: The x-axis identifies the number of trials averaged. Individual lines represent averaging over different numbers of days. 
SEM = standard error of measurement; N-m/s = newton metres per second. 
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ICCs and the corresponding SEM for inter-trial and inter-
day reliability. Type 1,1 ICCs follow CTT, and Type 2,1 
ICCs are equivalent to a dependability coefficient for a sin­
gle facet and a single measurement (n = 1).  

Table 4 also includes a summary of the coefficients pre­
sented  in the GT example. Using  GT, we obtained three  
sets of coefficients: overall reliability, reliability across trials, 
and reliability across days. From the same data, using ICCs, 
we obtained two separate estimates of inter-trial reliability, 
three estimates for inter-day reliability, and no representa­
tion of overall reliability. Multiple estimates for inter-trial 
and inter-day reliability were obtained because CTT studies 
cannot partition the variances between days and trials si­
multaneously. On closer inspection, the GT equivalents to 
inter-trial and inter-day reliability are approximately the 
average of the ICC estimates obtained using Type 1,1 and 
Type 2,1 ICCs. GT accounts for all included data from all 
days and trials, and it appropriately partitions the var­
iances, providing a more robust estimate of reliability. 

Using either Type 1,1 or Type 2,1 ICCs, it is likely that a 
study would obtain and report from only a single assess­
ment and thus likely under- or overestimate reliability. 
Moreover, when assessing SEMs, it can be seen that CTT 
underestimates measurement error, leaving clinicians 
more confident in their measurement than they should 
be. GT also comes with the added insight into how a sin­
gle measurement generalizes over trials and days, a metric 
that is useful in real-world applications. 

Standard error of measurement insights 
Missing from this analysis is how to apply these find­

ings to clinical practice. Two important clinical questions 
when assessing a patient are (1) how confident can I be in 
a measured value and (2) on reassessment, has this patient 
changed? In the context of a generalizability approach, the 
term measured value is replaced with the average value 
obtained from the specific measurement strategy. To pro­
vide clinicians with an estimate of confidence in their 
measurements, the SEMs can be used to calculate a CI for 
any measurement strategy. CIs are obtained by multiply­
ing the SEM by the z-score of desired confidence. From 
the presented example, a 90% CI for the average of four 
trials from 1 day is calculated as 

CI ¼ measurement�1:645 � SEMð4 trials; 1 occasionÞ 

CI ¼ measurement�1:645 � 32:61N �m=s 

CI ¼ measurement�53:64N �m=s 

where 1.645 is the z-score associated with a 90% confi­
dence level. For example, suppose this measurement 
strategy yielded a power of 300 N-m/s for a patient. The 
clinician could be 90% confident that this patient’s true 
power was 300 ± 53.64 N-m/s. 

To answer the second question, a multiple of the SEM 
could be used to calculate the minimum detectable 
change (MDC) at a given confidence level. The MDC is 
calculated by multiplying the SEM, the square root of 2 
(this acknowledges that there is error associated with the 
two measured values being compared), and the z-score 
for the desired confidence level. Therefore, again, for the 
average of four trials from 1 day, the MDC at a 90% confi­
dence level can be calculated as 

pffiffiffi 
MDC90 ¼ SEMð4 trials; 1 occasionÞ �  2� 1:645 

pffiffiffi 
MDC90 ¼ 32:61N �m=s � 2� 1:645 

MDC90 ¼ 75:86N �m=s 

The interpretation of MDC90 is that 90% of truly un­
changed patients would display random fluctuations 
within the bounds defined by MDC90. 

The CI and MDC are valuable tools clinicians can use 
to assess changes in outcome measures. To reiterate, the 
CI can be used to identify the confidence in the average 
value obtained from the measurement strategy. However, 
the MDC can be applied when assessing a change between 
two separate measurements of the same outcome. The 
MDC should be used in such instances because it ac­
counts for error associated with both measurements. 

Calculating the CI and MDC90 highlights something 
that is not identifiable from the coinciding ICC (0.934) and 
not obvious from the SEM (32.61 N-m/s): the error in 
measuring knee extension power is large. As shown in the 
MDC example calculation, if a therapist were to average 
over four collected trials on a single day, the SEM of 32.61 
N-m/s would yield an MDC90 of 75.86 N-m/s. This means 
that the patient would have to change by more than 75.86 
N-m/s between days for the therapist to be reasonably 
certain that the change was real. When compared with the 
average knee extension power of the knee osteoarthritis 
sample dataset included in the online-only supplement 
(297.7 watts), that equates to a 25.4% change. 

In comparison, if we use the SEM of the average mea­
surement from two trials taken over 2 days (26.24 N-m/s; 
see Table 3), the calculated MDC90 is 61.04 N-m/s (20.5 % 
of the mean). Averaging the same number of total mea­
surements (four) over 2 days reduces the SEM and, as a 
result, reduces the MDC90, improving the ability to detect 
change. In this example, averaging over 2 days improves 
the ability to detect change because more variance is at­
tributed to facets that include days (mainly �2 ) than fa­pd

cets that include trials (mainly �2 ). This highlights the pt

fact that averaging over facets with greater variances has 
the greatest overall impact on improving reliability. In 
general, these findings highlight that even after averaging 
over 2 days, measurement error and the MDC90 is large 
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Table 4 Summary of Variances, SEM, and ICCs for Inter-Trial and Inter-Day Reliability, Calculated Using CTT and for Inter-Trial, Inter-Day, and Overall 
Reliability Using GT 

Typically reported 
reliability (single-facet 

Classical reliability generalizability) 

Measure being summarized Variance source Model number Inter-trial Inter-day Inter-trial Inter-day Generalizability 

Variances 
Participants 

1 22,539.16 23,437.64 22,525.73 23,392.00 21,891.12 
2 23,075.73 21,456.03 23,052.89 21,393.58 – 
3 – 21,853.56 – 21,787.33 – 

Trials 
1 – – 0 – 0 
2 – – 0 – – 

Days 
1 – – – 0 0 
2 – – – 0 – 
3 – – – 0 – 

PT – – – – 300.85 
PV – – – – 899.69 
TV – – – – 0 
Error 

1 484.90 951.65 516.19 1,042.94 353.97 
2 724.93 1,268.65 793.47 1,387.56 – 
3 – 1,198.05 – 1,330.49 – 

SEM 
1 22.02 30.85 22.72 32.29 Overall 39.43 
2 26.92 35.61 28.17 37.25 Inter-trial 25.59 
3 – 34.61 – 36.48 Inter-day 35.41 

ICC1,1 

1 0.98 0.96 – – – 
2 0.97 0.94 – – – 
3 – 0.95 – – – 

ICC2,1 

1 – – 0.98 0.96 – 
2 – – 0.97 0.94 – 
3 – – – 0.95 – 

ICC 
– – – – Overall 0.93 
– – – – Inter-trial 0.97 
– – – – Inter-day 0.95 

Note: Dash indicates no data. 
SEM = standard error of measurement; ICCs = intra-class correlation coefficients; CTT = classical test theory; GT = generalizability theory; PT = Participant × Trial 
interaction; PV = Participant × Visit interaction; TV = Trial × Visit interaction. 

(> 20%), making it difficult to identify individual changes sources of measurement error be identified so that an opti­
in knee extension power. This information is critical to mal strategy can be implemented. GT enables researchers 
allow clinicians to make appropriate decisions based on to systematically analyze and compare the relevant sources 
their measurements. of measurement error through their variances. Beyond al­

lowing for general comparisons, GT enables researchers to 
CONCLUSION determine the relative reliability in the form of a depend-

When devising a measurement strategy for clinical ability coefficient, as well as the absolute reliability in the 
practice or research, it is important that all potential form of the SEM, for any measurement strategy that they 

https://www.utpjournals.press/loi/ptc
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choose to use. Using GT enables researchers to develop a 
well-rounded interpretation of measurement error for clin­
ical outcomes, thereby enabling them to identify optimal 
measurement strategies and provide information about 
measurement errors that can be conveyed to clinicians to 
aid in shaping their clinical decisions. For those seeking to 
use GT, a number of other resources may be of interest.1–4 

KEY MESSAGES 

What is already known on this topic 
The frameworks of reliability and generalizability 

theory (GT) have been reported for decades. The benefits 
of GT have been thoroughly outlined and described, par­
ticularly by Robert L. Brennan.3 Its major benefits have 
been to identify various sources of measurement error 
and to use this information to maximize the reliability or 
generalizability of measurement. 

What this study adds 
This study adds an explanation of GT and an example 

of its application that is useful to clinical researchers. We 
explain the background and terminology of GT in a way 
that is relevant to physiotherapy and include an explicit 
example of the theory using relevant data (knee extension 
power). The dataset used for this example is provided to 
allow readers to follow along and to serve as a resource 
for teaching measurement and generalizability theories 
to rehabilitation scientists. 
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APPENDIX 

In this appendix, we provide the formulas for calculat­
ing the variance components from an analysis of variance 
model (ANOVA). We provide formulas for a three-way 
fully crossed ANOVA model – that is, a model that in­
cludes three factors – participant (p), trial (t), and day (d), 
all two-way interactions, and a residual error (e) term. 
The factors do not necessarily have to be p, t, and d; 
these equations apply to any fully crossed three-way 
ANOVA. The calculations are derived from the mean 
squares and the levels of each factor. 

We should note that when calculating variances from 
an ANOVA table, it is possible to encounter negative var­
iances. However, variances are not negative.6 In the event 
of a negative variance component, a common way to pro­
ceed is to assign it a variance of 0. We have used this 
methodology in the current example. A more rigorous 
approach would be to use other methods of fitting the 
model and obtaining variance components, such as 
using a mixed effects model that uses maximum likeli­
hood (ML) or restricted maximum likelihood (REML) to 
estimate the variances. Explanations of random effects 
models, ML, and REML can be found in common statis­
tics textbooks.7 

Equations for calculating variance components from a three-
way fully crossed ANOVA model 

ANOVA factor Variance component calculation 

p MSp � MSpt � MSpd þ MSe 

ntnd 

t MSt � MSpt � MStd þ MSe 

npnd 

d MSd � MSpd � MStd þ MSe 

npnt 

pt MSpt � MSe 

nd 

pd MSpd � MSe 

nt 

td MStd � MSe 

np 

MSee 

ANOVA = analysis of variance; MSx = mean square for factor x; 
nx = number of levels for factor x. 
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