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Abstract

In neuroimaging studies, regression models are frequently used to identify the association of the 

imaging features and clinical outcome, where the number of imaging features (e.g., hundreds of 

thousands of voxel-level predictors) much outweighs the number of subjects in the studies. 

Classical best subset selection or penalized variable selection methods that perform well for low- 

or moderate-dimensional data do not scale to ultrahigh-dimensional neuroimaging data. To reduce 

the dimensionality, variable screening has emerged as a powerful tool for feature selection in 

neuroimaging studies. We present a selective review of the recent developments in ultrahigh-

dimensional variable screening, with a focus on their practical performance on the analysis of 

neuroimaging data with complex spatial correlation structures and high-dimensionality. We 

conduct extensive simulation studies to compare the performance on selection accuracy and 

computational costs between the different methods. We present analyses of resting-state functional 

magnetic resonance imaging data in the Autism Brain Imaging Data Exchange study.
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1 | INTRODUCTION

Recent advances in neuroimaging technology have generated high-resolution brain imaging 

data that can measure brain functions and structures with increasing accuracy. This provides 

unprecedented opportunities for researchers to precisely identify the important brain regions 

Correspondence: Jian Kang, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109. jiankang@umich.edu. 

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

RELATED WIREs ARTICLE
Some recent statistical learning methods for longitudinal high-dimensional data

HHS Public Access
Author manuscript
Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2020 May 20.

Published in final edited form as:
Wiley Interdiscip Rev Comput Stat. 2019 ; 11(2): . doi:10.1002/wics.1454.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1002/wics.1282


that are strongly associated with certain clinical symptoms, which will have a great impact 

on public health and precision medicine. To this end, a class of regression models has been 

widely used, where the response variable is the clinical outcome of interest and the 

predictors include imaging features. We refer to this model as scalar-on-image regression. 

Performing variable selection in scalar-on-image regression directly identifies the brain 

regions of interest. However, in a typical neuroimaging study, the three-dimensional brain 

image may involve up to millions of voxels, while the number of subjects is usually in a 

range of hundreds to thousands. Thus, for voxel-level selection in the scalar-on-image 

regression, the number of predictors is often on the exponential order of the sample size. 

Due to the computational infeasibility, some classical variable selection methods, such as the 

best subset selection, are not directly applicable to this setting. Similarly, regularization-

based variable selection methods have been extensively studied during the past decades, and 

have many successful applications in neuroimaging studies for regression problems with a 

moderately high dimensionality. Once again, for a regression model with ultrahigh-

dimensional predictors, many of these methods still suffer limitations of numerical 

instability, poor reproducibility, and heavy computational costs.

To accommodate ultrahigh-dimensional data, variable screening methods have been 

proposed and widely used for many applications. The key difference between variable 

screening and variable selection lies in their slightly different objectives. The classical 

variable selection methods attempt to determine the subset of predictors that are strongly 

associated with the response variable. In contrast, variable screening seeks to exclude a large 

amount of predictors that are not associated with the response variable. In practice, we can 

use variable screening to reduce the dimensionality first; and then apply the classical 

variable selection on the reduced model. Thus, variable screening can be considered as a 

“preprocessing” step for variable selection. As the key advantages of variable screening, it is 

straightforward to implement parallel computation at much lower computational cost.

The pioneer work of variable screening is the sure independence screening (SIS) by (Fan & 

Lv, 2008). This approach ranks predictors according to their marginal utility; namely, each 

feature is used independently as a predictor to determine its usefulness for predicting the 

response. The success of SIS relies on a fundamental assumption that the true association 

between the individual predictors and the response can be inferred from their marginal 

associations. To account for the violation of this assumption, recent researches have 

expressed a growing interest in conducting multivariate screenings (Cho & Fryzlewicz, 

2012; Cui, Li, & Zhong, 2015; Hall & Miller, 2009; He et al., 2018; Jin, Zhang, & Zhang, 

2014; Kang, Hong, & Li, 2017; Li, Peng, Zhang, & Zhu, 2012; Wang & Leng, 2016; Zhu, 

Li, Li, & Zhu, 2011). In particular, according to the reports by the authors, the high-

dimensional ordinary-least squares projection (HOLP; Wang & Leng, 2016) substantially 

improves variable screening accuracy of SIS for many scenarios with theoretical supports. 

The partition-based screening (PartS; Kang et al., 2017) can integrate prior grouping 

knowledge into the variable screening with solid theoretical foundation and it achieves a 

better performance in spatial variable screening with neuroimaging applications. Similarly, 

covariance-insured screening (CIS; He et al., 2018) can effectively take advantage of the 

sparse block diagonal covariance structure of the ultrahigh-dimensional predictors (if any) 

and produce more accurate variable screening.
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Many of these variable screening methods were originally proposed for general purposes, 

and thus can be applied to perform imaging feature screening for scalar-on-image regression 

in neuroimaging studies. However, it is unclear whether the important assumptions of those 

methods are appropriate for neuroimaging applications and whether different methods are 

computationally feasible for ultrahigh-dimensional imaging predictors. One of the important 

characteristics of brain imaging data is the complex spatial correlation structure between 

voxels and regions. Neighboring voxels are likely to be highly correlated and some 

functionally associated brain regions have long-run corrections. Therefore, it is of great 

interest to learn how the complex correlation structure of the imaging predictors affects 

variable screening accuracy for the different methods. To address these questions, we present 

a selective review of computationally efficient screening methods for ultrahigh-dimensional 

data with an emphasis on neuroimaging applications. We design simulation studies to 

generate complex spatially correlated imaging data for different scenarios and assess the 

screening accuracy and computational costs.

The remaining article is organized as follows: In Section 2, we first provide some requisite 

notations and then present an overview of the recent developments in marginal and 

multivariate variable screening, respectively, identifying strengthens and limitations to carry 

out such analysis in practice. In Section 3, we conduct extensive simulations to examine the 

performance of the discussed methods. In Section 4, we illustrate the methods using a 

neuroimaging data set. We conclude the article with a discussion, and make some 

recommendations for neuroimaging studies.

2 | METHODS

In this section, we illustrate the screening methods using a linear model for continuous 

outcome, though the methods can be extended to accommodate binary, count, and survival 

data. Consider a multiple linear regression model with n independent samples, y = Xβ + ϵ, 

where y = (Y1, …, Yn)T is the response vector, ϵ = (ϵ1, …, ϵn)T is a length-n vector of 

independently and identically distributed random errors, X is an n × p design matrix, and β = 

(β1, …, βp)T is the coefficient vector. Write X = (X1, …, Xn)T = (x1, …, xp), where Xi is a p-

dimension covariate vector for the ith subject and xj is the jth column of the design matrix, 1 

≤ i ≤ n, 1 ≤ j ≤ p. In the scalar-on-image regression, the index j refers to imaging feature. 

Without loss of generality, we assume that each covariate xj is standardized to have sample 

mean 0 and sample standard deviation 1. In addition, we assume that the response vector is 

centered with sample mean 0. For any set D ⊂ 1, …, p , we define subvectors, 

Xi, D = Xi, j: j ∈ D  and xD = xj: j ∈ D . Let Xi, −j = {Xi, 1, …, Xi, p}\{Xi, j} and denote 

by Σ = ℂov Xi . Note that we do not assume any multivariate distribution on Xi. In many 

existing screening methods, the largest eigenvalue of the population covariance matrix Σ is 

allowed to diverge as n grows with certain rate. Specifically, there exist some constant τ ≥ 0 

and c > 0 such that the largest eigenvalue λmax(Σ) ≤ cnτ.

When p ≫ n, β is difficult to estimate without the common sparsity condition that only a 

small number of variables contribute to the response. For improved model interpretability 

and accuracy of estimation, our overarching goal is to identify the active set
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S0 = j:βj ≠ 0, j = 1, …, p .

2.1 | Sure independence screening

The SIS (Fan & Lv, 2008) is the simplest approach for ultrahigh-dimensional variable 

screening. For continuous outcomes, the SIS selects all variables having sufficiently large 

absolute values of marginal sample correlation with the response. For a threshold parameter 

γ > 0, the selection index set by SIS is

SSIS(γ) = j : |Corr y, xj | > γ .

The time complexity of SIS is only O(np). Under certain assumptions on the covariance Σ, 

SIS achieves the screening property (Fan & Lv, 2008):

Pr S0 ⊆ SSIS(γ) 1 as n ∞ .

SIS has inspired much subsequent research. Extensions have been proposed to accommodate 

generalized linear models (Fan, Samworth, & Wu, 2009; Fan & Song, 2010) and Cox 

proportional hazard models (Hong, Kang, & Li, 2017; Zhao & Li, 2012, 2014). 

Semiparametric marginal screening methods were proposed for single-index hazard models, 

linear transformation models and general single-index models (Fan, Feng, & Song, 2011; Li 

et al., 2012; Zhu et al., 2011). Nonparametric marginal screening methods were studied for 

linear additive model and quantile regression (Fan et al., 2011; He, Wang, & Hong, 2013). 

Recently, conditional SIS methods, as an alternative to marginal screening approaches, have 

been developed for generalized linear models (Barut, Fan, & Maathuis, 2016) and Cox 

proportional hazard models (Hong et al., 2017) by preincluding a set of a priori important 

predictors.

2.2 | High-dimensional ordinary-least squares projection

The HOLP (Wang & Leng, 2016) projects response to the row spaces of the design matrix, 

which may preserve the ranks of regression coefficients. Specifically, this approach utilizes 

the generalized inverse of the design matrix and computes the HOLP estimator 

β = β1, …, βp
T = XT XXT −1y. Then for threshold parameter γ > 0, the selection index set 

by HOLP is

SHOLP(γ) = j : βj > γ ,

Clearly, HOLP is straightforward to implement and the time complexity is O(n2p). The 

HOLP procedure (Wang & Leng, 2016) enjoys good theoretical properties as well.

2.3 | Partition-based screening

The PartS approaches (Kang et al., 2017) are proposed to leverage the prior grouping 

information on predictors to improve the variable screening accuracy. Suppose the predictors 
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can be partitioned into G disjoint groups in accordance with known information. Denote by 

gj the group membership of variable xj. Let Xg = xj, gj = g  be the collection of predictors 

in group g with the intercept, where g ∈{1, …, G}. For each g, the partition-based variable 

screening statistics are constructed through the linear regression fitting of y on Xg, which is 

βg
T = Xg

TXg
−1

 Xg
Ty. Then pooling βg together, we obtain ∪g = 1

G βg = β1, …, β p
T . For a 

threshold parameter γ > 0, the selection index set by PartS is

SPartS = j : β j > γ ,

When G = O(pn−1/2), the time complexity of PartS is O(n3/2p) which is faster than HOLP 

but slower than SIS. The performance of PartS depends on the group partition {gj}. In the 

scalar-on-image regression, the group information can be naturally determined by the spatial 

locations of voxels. When the prior knowledge is unavailable, random group partitions can 

be applied. When multiple partition information is available but it is unclear which 

information is better, a combining rule can be adopted (Kang et al., 2017) to integrate 

multiple PartS statistics. In particular, suppose we have K different partition based screening 

statistics, denoted β(k) = β1
(k), …, β p

(k) T
, for k = 1, …, K. The combined PartS selection 

index set is

SCombPartS  = j : max1 ≤ k ≤ K|β j
(k)| > γ .

2.4 | Covariance-insured screening

To incorporate the correlation information, He et al. (2018) proposed compartmentalizing 

covariates into blocks so that variables from distinct blocks are less correlated. The 

algorithm starts from the idea of thresholding. Consider Σ the sample estimate of Σ. For a 

threshold δ > 0, let Σδ
 be the regularization of Σ such that

Σjk
δ = Σjk1 |Σjk| ≥ δ .

The CIS procedure then partition the vector β into blocks, S1, …, SG, in a way such that all 

off-diagonal blocks of Σδ
 are zero; for example,

|Σjk
δ | = 0for all j ∈ Sg, k ∈ Sg′, g ≠ g′ .

Here S1, …, SG forms a partition of the p predictors:

Sg ∩ Sg′ = ∅ for g ≠ g′,  and  S1 ∪ S2… ∪ SG = 1, …, p .
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To determine the importance of predictors, the CIS proceed by computing the partial 

correlation, which is defined as follows:

Partial Correlation.—The partial correlation, ρ(Yi, Xi, j|Xi, −j), is defined as the 

correlation between the residuals resulting from the linear regression of Xi, j on Xi, −j and Yi 

on Xi, −j

ρ Yi, Xi, j |Xi, − j =
ℂov Yi − E Yi |Xi, − j , Xi, j − E Xi, j |Xi, − j

Var Yi − E Yi |Xi, − j Var Xi, j − E Xi, j |Xi, − j
1/2 .

The direct linkage between β and the partial correlations has been well established in the 

literature (see Peng, Wang, Zhou, & Zhu, 2009; Whittaker, 1990). The CIS approach can 

then be summarized as follows:

• Identify the disconnected blocks by thresholding the sample covariance matrix.

• Compute the block-wise sample partial correlations ρ Y i, Xi, j |Xi, Sg\ j .

• Compute SCIS = j ∈ Sg, 1 ≤ g ≤ G: ρ Y i, Xi, j |Xi, Sg\ j > ν , where ν is a 

predefined threshold.

3 | SIMULATION STUDY

We perform simulation studies to compare the performance of SIS, HOLP, CIS, and PartS 

for variable screening in scalar-onimage regression. The two-dimensional image predictors 

are simulated from Gaussian processes on equal space grid points in [−1, 1]2. We vary the 

number of patients from n = 500 to 1,000, and the number of predictors from p = 10,000 to 

40,000. The data and parameters are simulated under three scenarios:

1. Setting 1. There is only one region generated by one Gaussian process. We 

define S = sj j = 1
p  as a collection of equally spaced p × p grid points in [−1, 

1]2. The covariance structure of the covariates X is set to decay exponentially 

over space; that is, ℂov xj, xj′ = exp −0.1sj2 − 0.1sj′
2 − 0.5 sj − sj′

2  for any j≠j′. 

Figure 1a (Setting 1) shows the graphic representation of the covariance 

structure. The parameters with nonzero effects are in a circle of the graph, with a 

radius 0.1 for the true parameters (see Figure 1b, Setting 1). The values of the 

nonzero effects follow a [0.5,1] uniform distribution.

2. Setting 2. There are 16 different regions with the same numbers of predictors 

within each region (see Figure 1a, Setting 2). The covariance structure within 

each region is the same as in setting 1. Different regions are correlated with 

correlation 0.9. The parameters with nonzero effects are in two equal-sized 

circles in the graph, with a radius 0.1. The locations of the two circles are 

randomly placed (see Figure 1b, Setting 2). The values of the two circles follow 

[0.5,1] and [−1,−0.5] uniform distribution, respectively.
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3. Setting 3. In this scenario, each circle of nonzero parameters is at the center of a 

specific covariate region (see Figure 1b, Setting 3). All other set-ups are the same 

as Setting 2.

Given covariates and coefficients that are generated from each of the above settings, we 

generate the response y from linear regression. We set the variance of random errors such 

that the model-explained variance ratio R2 = 0.5 or 0.9. We replicate our simulation 50 times 

and compare the selection performance. All results based on CIS and PartS are obtained by 

an R package. Sure independent screening is obtained by the R package SIS, while HOLP is 

implemented by the R package screening, Two criteria are reported in Table 1: the false-

positive rates (FPR) when covering 80% of the truth, and the false-negative rates (FNR) 

while keeping false-positive rate = 0.1. Figure 2 shows the selection performances of each of 

the methods.

In Setting 1, for which all the predictors belong to one region, the SIS has the best 

performance among all the methods. The performances of HOLP and CIS are similar. In 

Settings 2 and 3, CIS is competitive and performs better than SIS when R2 = 0.9, and 

provides comparable performance as HOLP for R2 = 0.5. Interestingly, PartS, which utilizes 

the spatial information and partitions predictors into small groups, produces better results 

than CIS and HOLP for most of the scenarios with R2 = 0.5.

4 | APPLICATION

We applied the aforementioned four methods: SIS, HOLP, PartS, and CIS to analyze the 

resting state fMRI data in the Autism Brain Imaging Data Exchange (ABIDE) study (Di 

Martino et al., 2014). The fMRI measures the blood oxygen level signal that is linked to the 

neural activities, whereas the resting-state fMRI only measures the brain activity at resting 

state without performing any task. The ABIDE study aggregated 20 R-fMRI datasets from 

17 experiment sites involving a total of 1,112 subjects. For each subject, the R-fMRI signal 

was recorded for each voxel in the brain over multiple time points, and demographic 

information such as age, gender, and Intelligence quotient (IQ) were also collected. Several 

standard imaging preprocessing steps (Di Martino et al., 2014) including motion corrections, 

slice-timing correction, and spatial smoothing were performed. All the brains were 

registered into the 3 mm standard Montreal Neurological Institute (MNI) space consisting of 

38,547 voxels in the 90 brain regions that are defined by the Automated Anatomical 

Labeling (Tzourio-Mazoyer et al., 2002) system. After removing the missing values, the 

complete datasets include 414 health subjects. Our analysis focused on identifying the 

important brain regions that are strongly associated with IQ among the health subjects. The 

IQ ranges from 73.0 to 146.0 with a mean of 111.3 and a standard deviation of 12.5. To 

select the imaging biomarkers for IQ prediction, we compare four types of the imaging 

statistics derived from the R-fMRI data: Fractional amplitude of low-frequency fluctuations 

(fALFF), Regional Homogeneity (ReHo), the weighted degree centrality (WDC), and local 

functional connectivity density (LFCD), where fALFF measures the spontaneous 

fluctuations in the fMRI signal intensity and reflects the local brain activity; ReHo evaluates 

the similarity or synchronization between the fMRI time series of a given voxel and its 

nearest neighbors; WDC is a measure of local brain network connectivity and identifies the 
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most connected voxels by counting the number of direct connections (edges) to all other 

voxels; and LFCD mapping finds the given seed’s neighbors and neighbor’s neighbors until 

edges become weaker than the given threshold value.

To compare the performance of the different methods on IQ prediction using fALFF, WDC, 

ReHo, and LFCD, we adopted a 10-fold cross-validation approach. Specifically, we 

randomly split the data into 10 subsets with the approximately equal size. Each time we pick 

one subset as the testing dataset and consider the rest as the training dataset. We applied the 

four different variable screening methods to fit the training dataset and obtain a set of 

selected voxels, where for PartS we used AAL 90 regions as a group partition. Then we 

made a prediction on the IQ value in the testing dataset using linear models with the elastic 

net penalty (implemented by R package glmnet) and random forest models with 500 trees. 

We consider two measures to evaluate the prediction performance: predicted mean square 

error (PMSE) and predicted R2 (PR2). Figure 2 shows box plots of the PMSE and PR2 over 

10-fold cross-validations for four different screening methods on four different imaging 

statistics using linear models and random forest models. Table 2 summaries the average 

values of those measures. For all the imaging statistics, there are no significant difference in 

PMSE among different measures. For ReHo and WDC, PartS and CIS achieve a better PR2 

compared to other screening methods using both linear models and random forest models.

5 | DISCUSSION

Fast predictor screening methods for dimension reduction are crucial to the analysis of big 

neuroimaging data. A particularly attractive feature of SIS is that it is computationally fast. 

However, the validity of the the SIS hinges upon assumptions such as partial faithfulness, 

which is defined as follows:

Partial Faithfulness.

The distribution of (Xi, Yi) is said to be (Xi, Yi)-partially faithful if for every j ∈{1, …, p}:

ρ Yi, Xi, j Xi, C = 0for someC ⊆ 1, …, p \ j ρ Y i, Xi, j Xi, − j = 0.

For instance, when C is empty, ρ Y i, Xij |Xi, C = Corr Y i, Xi, j = 0 βj = 0.

While successful in many applications, this assumption can be violated. To illustrate, we 

examine a sample version of partial correlation

ρ Yi, Xi, j Xi, C =
xjT In − ΠC y

xjT In − ΠC xj yT In − ΠC y
,

where In is the identity matrix and ΠC = xC xC
T xC

−1xC
T  is the projection matrix onto the 

space spanned by xC. The numerator ρ Y i, Xi, j |Xi, c  can be decomposed as
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xjT In − ΠC y = βjxjT In − ΠC xj + ∑
k ∈ S0\(C ∪ j )

βkxjT In − ΠC xk

+ xjT In − ΠC ϵ . (1)

Equation (1) indicates that only when the last two terms in (1) are negligible compared with 

the first one, the partial faithfulness is valid. In practice, however, this assumption may be 

violated and the marginal effects can be quite different from the joint effects. As discussed 

by Fan and Lv (2008)) and Fan and Song (2010), the marginal screening methods do not 

consider the correlation between the predictors. Thus, they may select irrelevant variables 

that are highly correlated with important variables (false-positive) and fail to select relevant 

variables that are marginally unimportant but jointly informative (false-negative).

In contrast, the CIS leverages the group information including correlation by 

compartmentalizing covariates into correlated blocks. This approach may bypass the 

difficulty encountered in traditional multivariate screening procedures and render improved 

computational feasibility, better screening efficiency and weaker theoretical conditions. 

However, the computation burden of CIS increases when the maximal number of variables 

in the disconnected blocks is large. Moreover, the issue of collinearity among the predictors 

adds difficulty to the estimation of partial correlation, which may impact the performance of 

variable screening. Evidenced by our simulations as well as the analysis of the functional 

magnetic resonance imaging data, the partition based screening method provides a useful 

toolkit for variable screening. In particular, when the spatial information is available, we 

show that screening accuracy can be improved by using partition based screening compared 

with other screening methods such as SIS, high-dimensional ordinary least-squares 

projection and covariance-guided screening. Finally, as pointed out by one of the reviewers, 

the implementation of the CIS approach requires an estimate of the sample covariance 

matrix, which can be computationally challenging for brain image studies with ultrahigh-

dimensional predictors. Alternatively, prior knowledge for brain regions can be incorporated 

to improve the estimation and computational efficiency. For example, suppose the predictors 

can be partitioned into disjoint groups in accordance with known information such as the 

spatial location. The sample covariance matrix can then be estimated for each group 

separately to further refine the identification of block structure.
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FIGURE 1. 
Typical simulated images (200 × 200) and the true spatially varying coefficient function 

(SVCF) for different settings
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FIGURE 2. 
Box plots of PMSE (light blue) and PR2 (red) over 10 cross-validations for four different 

imaging measures (fALFF, WDC, ReHo, and LFCD) and four different feature screening 

methods (SIS, HOLP, CIS, and PartS) using linear models and random forest models. CIS, 

covariance-insured screening; fALFF, fractional amplitude of low-frequency fluctuations; 

HOLP, high-dimensional ordinary-least squares projection; LFCD, local functional 

connectivity density; PartS, partition-based screening; PMSE, predicted mean square error; 

PR2, predicted R2; ReHo, Regional Homogeneity; SIS, sure independence screening; WDC, 

weighted degree centrality
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TABLE 1

Screening accuracy of different methods

Setting n P P0 R2

SIS HOLP CIS PartS

FPR FNR FPR FNR FPR FNR FPR FNR

1 500 10,000 77 0.5 0.009 0.000 0.051 0.043 0.041 0.029 0.078 0.160

0.9 0.001 0.000 0.043 0.009 0.006 0.000 0.072 0.145

500 40,000 311 0.5 0.007 0.000 0.048 0.028 0.104 0.128 0.107 0.250

0.9 0.001 0.000 0.043 0.003 0.004 0.002 0.089 0.184

1,000 40,000 311 0.5 0.004 0.000 0.047 0.027 0.045 0.057 0.133 0.333

0.9 0.000 0.000 0.043 0.001 0.003 0.000 0.103 0.247

2 500 10,000 154 0.5 0.161 0.190 0.695 0.856 0.274 0.232 0.164 0.243

0.9 0.134 0.180 0.098 0.173 0.024 0.034 0.130 0.190

500 40,000 622 0.5 0.156 0.187 0.722 0.888 0.551 0.491 0.148 0.248

0.9 0.121 0.151 0.373 0.558 0.034 0.051 0.113 0.196

1,000 40,000 622 0.5 0.094 0.129 0.729 0.874 0.379 0.338 0.110 0.203

0.9 0.081 0.132 0.456 0.645 0.040 0.042 0.098 0.195

3 500 10,000 135 0.5 0.073 0.000 0.745 0.968 0.356 0.378 0.097 0.187

0.9 0.071 0.000 0.120 0.207 0.008 0.000 0.090 0.081

500 40,000 620 0.5 0.071 0.000 0.823 0.990 0.557 0.611 0.094 0.146

0.9 0.069 0.000 0.488 0.829 0.003 0.000 0.090 0.118

1,000 40,000 620 0.5 0.068 0.000 0.863 0.996 0.379 0.404 0.090 0.141

0.9 0.066 0.000 0.534 0.933 0.002 0.000 0.087 0.103

Notes. n is the number of patients; p is the number of predictors; p0 is the average number of true signals; R2 is the model-explained variance ratio; 

FPR is the false-positive rates when covering 80% of the truth; FNR is the false-negative rates while keeping false-positive rate = 0.1.
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TABLE 2

Average of PMSE and PR2 over 10 cross-validations for four different imaging measures (fALFF, WDC, 

ReHo, and LFCD) and four different feature screening methods (SIS, HOLP, CIS, and PartS) using linear 

models and random forest model

Method Data Measure SIS HOLP CIS PartS

Elastic-net fALFF PMSE 137.428 144.179 135.743 134.912

PR2 0.079 0.141 0.144 0.141

WDC PMSE 139.892 139.328 141.585 141.105

PR2 0.128 0.153 0.161 0.120

ReHo PMSE 139.627 140.790 133.741 133.169

PR2 0.112 0.109 0.188 0.171

LFCD PMSE 140.206 207.365 181.210 164.875

PR2 0.076 0.113 0.103 0.165

Random-forest fALFF PMSE 162.259 138.460 135.681 147.705

PR2 0.085 0.154 0.109 0.094

WDC PMSE 137.816 150.593 140.195 134.822

PR2 0.109 0.023 0.136 0.144

ReHo PMSE 144.759 144.312 137.984 159.988

PR2 0.098 0.106 0.168 0.189

LFCD PMSE 144.484 154.812 158.927 148.611

PR2 0.065 0.195 0.133 0.087

CIS, covariance-insured screening; fALFF, fractional amplitude of low-frequency fluctuations; HOLP, high-dimensional ordinary-least squares 
projection; LFCD, local functional connectivity density; PartS, partition-based screening; PMSE, predicted mean square error; PR2, predicted R2; 
ReHo, Regional Homogeneity; SIS, sure independence screening; WDC, weighted degree centrality.
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