
1 

Rapid detection of SARS-CoV-2 by low volume real-time 

single tube reverse transcription recombinase polymerase 

amplification using an exo probe with an internally linked 

quencher (exo-IQ) 

Running head: Rapid detection of SARS-CoV-2 by RPA 

 

Ole Behrmann1 *, Iris Bachmann1, Martin Spiegel1,3, Marina Schramm1, 

Ahmed Abd El Wahed4,5, Gerhard Dobler6, Gregory Dame1,2 and Frank T. Hufert1,2 

 

1Institute of Microbiology and Virology, Brandenburg Medical School Fontane, 

Neuruppin, Germany 
2Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology 

Cottbus – Senftenberg, the Brandenburg Medical School Theodor Fontane and the 

University of Potsdam, Potsdam, Germany 
3Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 

Göttingen, Germany 
4Division of Microbiology and Animal Hygiene, University of Göttingen, Germany 
5Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, 

Germany 
6Bundeswehr Institute of Microbiology (IMB), Munich, Germany 
*Corresponding author: Name: Ole Behrmann; Address: Medizinische Hochschule 

Brandenburg Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; 

Tel: +49 3573 85905; Fax: +49 3573 85890; E-Mail: ole.behrmann@mhb-fontane.de 

Keywords: SARS-CoV-2, COVID-19, RPA, POCT, Amplification, Point-of-care 

© American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please e-mail: 

journals.permissions@oup.com 



2 

Previous presentation of the manuscript: None 

 

List of abbreviations: 

SARS-CoV-2 – Severe Acute Respiratory Syndrome Coronavirus 2 

RT-RPA – Reverse Transcription Recombinase Polymerase Amplification 

Exo-IQ – Exonuclease probe, Internally Quenched 

RT-qPCR – Reverse transcription quantitative Polymerase Chain Reaction 

CI – Confidence Interval 

WHO – World Health Organization 

LAMP – Loop Mediated Isothermal Amplification 

MERS-CoV – Middle East Respiratory Syndrome Coronavirus 

  



3 

Abstract 

Background: The current outbreak of SARS-CoV-2 has spread to almost every country 

with more than three million confirmed cases and over two hundred thousand deaths as 

of April 28, 2020. Rapid first-line testing protocols are needed for outbreak control and 

surveillance. Methods: We used computational and manual design to generate a 

suitable set of RT-RPA primer and exo-IQ probe sequences targeting the SARS-CoV-2 

N gene. RT-RPA sensitivity was determined by amplification of in vitro transcribed RNA 

standards. Assay selectivity was demonstrated by means of a selectivity panel of 32 

nucleic acid samples derived from common respiratory viruses. To validate the assay 

against full-length SARS-CoV-2 RNA, total viral RNA derived from cell culture 

supernatant and 19 nasopharyngeal swab samples (8 positive and 11 negative for 

SARS-CoV-2) were screened. All results were compared to established RT-qPCR 

assays. Results: The 95 % detection probability of the RT-RPA assay was determined 

to be 7.74 (95% CI: 2.87 - 27.39) RNA copies per reaction. The assay showed no cross-

reactivity to any other screened coronaviruses as well as respiratory viruses of clinical 

significance. The developed RT-RPA assay produced 100% diagnostic sensitivity and 

specificity when compared to RT-qPCR (n=20). Conclusions: With a run time of 15 to 

20 minutes and first results being available in under 7 minutes for high RNA 

concentrations, the reported assay constitutes one of the fastest nucleic acid based 

detection methods for SARS-CoV-2 to date and may provide a simple to use alternative 

to RT-qPCR for first-line screening at the point of need. 
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1 Introduction 

In December 2019, several cases of a new form of respiratory disease were first 

described in the central Chinese city of Wuhan (Hubei Province, People's Republic of 

China) (1). The initial outbreak soon spread to other regions and has now led to a global 

pandemic. The causative agent was identified as a novel coronavirus of possible bat 

origin closely related to SARS-CoV (2) and designated as SARS-CoV-2 by the WHO.  

Current protocols for the diagnosis of SARS-CoV-2 infection rely on reverse 

transcription quantitative PCR (RT-qPCR) for the detection of viral RNA (3,4). However, 

due to the need for energy intensive thermocycling, PCR-based methods are 

cumbersome to implement for rapid and decentralized screening at the point of need. 

Recently, isothermal nucleic acid amplification methods such as loop-mediated 

isothermal amplification (LAMP) (5) or recombinase polymerase amplification (RPA) (6) 

have become available. These methods do not require sophisticated thermocycling 

instrumentation and rely on enzymatic processes for all stages of DNA amplification. 

Due to its comparatively simple design approach and incubation requirements (39 - 

42 °C), speed (15 to 20 minutes), and reagent availability in long shelf life lyophilized 

form, RPA is considered one of the most promising isothermal DNA detection methods. 

RPA in its basic form uses two opposing DNA primers, like PCR, that are 

designed to be complementary to the target sequence of interest. By complexation of 

the primers with recombinase proteins, a D-loop is formed in the double stranded target 

sequence and the primers anneal to their respective complementary sequences. The 
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primers are then extended by a mesophilic DNA polymerase resulting in two copies of 

the target DNA region. The process is then initiated again on the copies leading to 

exponential amplification. With the addition of a fluorescently labeled probe, RPA can be 

monitored in real-time (7). 

RT-RPA assays for the detection of other coronaviruses such as MERS-CoV (8) 

and bovine coronavirus (BCoV) (9) have been reported. With a proven track record for 

first line screening using a suitcase lab for the detection of H7N9 avian influenza virus 

(10) and Ebola virus (11), RT-RPA technology has been demonstrated to be of great 

potential for early diagnostics in rapidly evolving and resource limited outbreak 

situations. 

In this study we demonstrate the design of a simple to use RT-RPA assay for the 

specific detection of SARS-CoV-2 and introduce a novel internal structure for RPA exo 

probe construction (exo-IQ) that removes a major assay design constraint. Inspired by 

the results reported in (12) that RPA performs very well in low reaction volumes, we 

demonstrate successful amplification of both in vitro transcribed RNA as well as total 

SARS-CoV-2 RNA derived from nasopharyngeal swab samples and cell culture 

supernatant in volumes of only 6.2 µl. Our results show that the proposed assay may be 

a viable alternative to RT-qPCR that is both faster and requires less complex and 

energy-intensive instrumentation. 
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2 Methods 

2.1 RNA standards 

The sequences of the SARS-CoV-2 N gene was downloaded from GenBank (RefSeq: 

NC_045512.2). A T7 RNA polymerase promoter sequence was then added in silico to 

the 5’ end and the construct was ordered as double stranded DNA from a commercial 

supplier (GeneArt, Germany). We then produced RNA transcripts by incubation with T7 

polymerase (HiScribe T7 High Yield RNA Synthesis Kit, NEB, USA) followed by DNAse I 

(NEB, USA) digestion and spin-column based purification (RNA Clean-Up and 

Concentration Kit, Norgen Biotek, Canada). Purified RNA was then quantified by 

RiboGreen (Invitrogen, USA) assay and standards ranging from 107 to 100 RNA copies 

per µl were prepared in TE buffer. The standards were confirmed to be free of residual 

DNA from the transcription reaction by qPCR. 

A coronavirus RNA specificity panel containing full virus RNA (from cell culture) of 

HCoV-Nl63, HCoV-229E, HCoV-OC43, MERS-CoV and SARS-CoV was obtained 

through the European Virus Archive global (EVAg). RT-qPCR threshold cycle (Ct) values 

for each RNA isolate were provided to the authors by personal communication (A. van 

der Linden, University Medical Center Rotterdam, February 2020). Due to its difficult 

availability, HCoV-HKU1 was not included in this study. However, BLAST alignment of 

SARS-CoV-2 (RefSeq: NC_045512.2) and HCoV-HKU1 (RefSeq: NC_006577.2) N 
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genes showed almost no sequence homology making off-target amplification highly 

unlikely. 

Twenty-seven nucleic acid samples for further specificity testing covering a broad 

range of other respiratory viruses that may cause a similar clinical picture as SARS-

CoV-2 were screened (Supplemental Table 1). The samples were provided by Quality 

Control for Molecular Diagnostics, Glasgow, Scotland, UK; Landesgesundheitsamt 

Niedersachsen, Hannover, Germany; Robert Koch Institute, Berlin, Germany, and the 

Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany. 

SARS-CoV-2 viral RNA was provided as inactivated Vero E6 cell culture 

supernatant of the patient isolate MUC-IMB-1 by the Bundeswehr Institute of 

Microbiology (IMB), Munich, Germany. The complete sequence of this isolate is 

available through GISAID under the accession ID_EPI_ISL_406862 and name “hCoV-

19/Germany/BavPat1/2020”. 

Eight total RNA extracts (QIAamp Viral RNA Mini Kit, Qiagen, Germany) from 

nasopharyngeal swabs were provided by Labor Staber, Kassel, Germany as 

anonymized leftover material from routine clinical diagnostics. All samples were 

confirmed to be positive for SARS-CoV-2 by the providing laboratory using RT-qPCR 

based on the LightMix E and RdRp assays (TIB Molbiol, Germany). Upon arrival in our 

lab, all samples were analyzed with the N1 RT-qPCR assay. 

Eleven further nasopharyngeal swab samples were collected from healthy 

laboratory personnel and total RNA was extracted with the QIAamp Viral RNA Mini Kit 
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(Qiagen, Germany) according to the manufacturer’s instructions. All samples were 

confirmed to be free of SARS-CoV-2 RNA by the N1 and/or N3 RT-qPCR assays. 

2.2 Reverse transcription quantitative PCR 

The primers and probes targeting SARS-CoV-2 used in this work are listed in 

Supplemental Table 2. Primers were synthesized exactly as presented in the table, 

whereas an internal quenching group located between the 8th and 9th nucleotides from 

the 5´-end was integrated in the fluorescent probes. This modification, together with the 

second quencher located at the 3’ end of the probe, strongly decreases the background 

fluorescence of unbound probes leading to improved signal quality. All oligonucleotides 

were synthesized by biomers.net (Ulm, Germany). 

For the N1/N2/N3 assays (CDC, Atlanta, USA) (4), a 40X primer/probe mix (PPM) 

was prepared at concentrations of 20 µM for each primer and 10 µM for the probe. 

Reactions of 20 µl total volume were then assembled by combining 7.5 µl DEPC treated 

water, 10 µl 10X Luna OneStep probe PCR Mix (NEB, USA), 1µl 20X WarmStart RT 

enzyme mix (NEB, USA), 0.5 µl 40X PPM and 1 µl RNA template. Thermal cycling was 

then performed on a LightCycler 480 II instrument (Roche Diagnostics, Germany). 

Cycling conditions were 10 minutes at 50 °C for reverse transcription followed by one 

minute at 95 °C for initial denaturation and RT enzyme inactivation and PCR for 45 

cycles of 95 °C for 3 seconds and 55 °C for 30 seconds. Fluorescence was read at the 

end of the 55 °C step. All qPCR data was analyzed by the Cy0 method (13) 

implementation included in the R language qpcR package (14). 
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2.3 Low volume single tube RT-RPA 

2.3.1 Reaction setup and conditions 

All RT-RPA reactions were performed using the TwistAmp exo-RT kit (TwistDx, United 

Kingdom). Optically clear 8-tube strips with individually attached lids were placed on ice 

and 10 µl of PCR-grade mineral oil were pipetted into each lid. For each series of 8 

reactions with identical targets, a rehydration mix consisting of 31 µl rehydration buffer, 

2.21 µl (10 µM stocks) of each primer and 0.63 µl exo-IQ probe (10 µM stock), 2.63 µl 

RNAse inhibitor (20 U/µl, Bioron, Germany) and 8.4 µl RNA template were combined 

and 45 µl of this were used to rehydrate an exo-RT reagent pellet. The reaction mix was 

then placed on ice and 5 µl of a freshly prepared 140mM MgOAC solution were added. 

Finally, 6.2 µl of the activated reaction mix were distributed to each tube of the 

previously prepared 8-tube strip.  

In case each tube was to contain a different RNA template, the rehydration mix 

was prepared as described previously while omitting the RNA template. In this case, 37 

µl rehydration mix were then used to rehydrate an exo-RT pellet, and 4.6 µl of the 

reaction mix was distributed to each reaction tube and 1 µl of individual RNA template 

was pipetted into each tube. A total of 0.63 µl of 140 mM MgOAC solution were then 

carefully pipetted in a single drop onto the inside wall of each reaction tube so that the 

drop was not in contact with the reaction mix. 

After closing the lids, the 8-tube strips were centrifuged to overlay the reaction 

mix with the oil and, in the case of individual RNA targets, mix the MgOAC solution with 

the reaction mix. The tubes were then quickly placed into an ESEQuant isothermal 
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fluorescence reader (Qiagen Lake Constance GmbH, Stockach, Germany) preheated to 

42 °C and let to equilibrate for one minute. Fluorescence (Ex: 470 nm / Em: 550 nm) 

was then recorded every 20 seconds for a total of 20 minutes. To enhance reaction 

efficiency, tubes were removed from the instrument after 320 sec. (240 sec. for 

reactions containing 104 template copies and 160s for 105 template copies), mixed by 

vortexing, centrifuged and immediately placed back into the instrument. 

For unknown samples we suggest keeping the mixing time fixed at 320 sec., as 

this will guarantee highest assay sensitivity although some of the initial fluorescence 

signal may be lost. 

2.3.2 Fluorescence data processing 

RPA fluorescence data was first background corrected by subtracting the first 

measurement value taken after the mixing step from all other values. All measurement 

points taken before and during the mixing step were then set to zero.  

To establish a fluorescence threshold, twelve no template control (NTC) reactions 

were run and averaged. In addition, the standard deviation was calculated. Three 

standard deviations were then added to the average NTC and the threshold was then 

defined by the highest value rounded to the nearest integer. Thresholding of the RT-RPA 

fluorescence data was performed with the R language qpcR package (14). 

Probit analysis for assay sensitivity determination was performed according to 

(15) using the R language. 
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3 Results 

3.1 Design of the exo-IQ RPA probe 

RPA exo probes are oligonucleotides of a length of at least 46 nt with an internal 

structure consisting of both a fluorophore and a quencher that are separated by an 

apurinic/apyrimidinic (AP) site. Once the probe hybridizes with its target sequence, the 

AP endonuclease activity of Exonuclease III (ExoIII) (16) cleaves the AP site leading to 

spatial separation of the fluorophore and quenching groups. This mechanism causes an 

increase in fluorescence that is directly related to the amount of RPA product allowing 

for monitoring of the RPA reaction in real time. 

The commercial availability of internal fluorophore and quenching groups for DNA 

synthesis is largely limited to modified thymine phosphoramidites, which leads to the 

constraint that exo probes can only be designed for sequences that contain two 

thymines within 2 to 5 nt from each other. This hampers design of RPA exo assays, as 

suitable regions that also satisfy all further assay design rules (17) are often difficult to 

find. Furthermore, it has been shown that exo probe performance is strongly dependent 

on the distance between the fluorophore and quenching groups with the optimal 

distance being only 1-2 nt (18). To overcome this limitation, we introduce the concept of 

the exo-IQ (Internally Quenched) probe (Figure 1) where the quenching group is 

attached between two nucleotides by an internal linker (see Supplemental Figure 1). 

This strategy greatly simplifies exo probe design as the quencher can always be placed 
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at a constant distance downstream of the thymine linked fluorophore without the need 

for a second proximal thymine. We propose that an exo-IQ probe can thus be designed 

from any single conveniently located thymine as a starting point with the next 3’ 

nucleotide being replaced by an AP site followed by the internal quencher between the 

following two nucleotides. The active site is then simply extended for 30 nt in the 5’ 

direction and 14 nt in the 3’ direction. To prevent unwanted amplification, the free 3’-end 

is blocked by a C3 spacer. Since AP sites are susceptible to acid and heat mediated 

cleavage, exo-IQ probes should be stored cold and dark in a buffering solution such as 

Tris-EDTA (TE). 

 

3.2 SARS-CoV-2 RPA assay design 

Upon release of the first SARS-CoV-2 genome (GenBank MN908947), we designed an 

exo-IQ RT-RPA assay targeting the nucleocapsid (N) gene both by computational and 

manual methods. PrimedRPA (19) was used to generate a list of possible primer/probe 

combinations. Of the 18 generated combinations, two contained probe sequences 

suitable for exo-IQ construction with a thymine at position 30 and were investigated 

further for SARS-CoV-2 specificity by BLAST alignment. The first probe showed almost 

complete sequence homology with SARS-CoV and was discarded. Alignment of the 

second probe with SARS-CoV (Figure 2) shows numerous mismatches resulting in a 

design that is highly specific for SARS-CoV-2. Two primer pairs that are selective for 

SARS-CoV-2 and compatible with the selected probe sequence were chosen for 

evaluation. All oligonucleotides were synthesized by biomers.net (Ulm, Germany) and 
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primer and probe combinations were screened for amplification efficiency (data not 

shown). The best performing primers are listed in Table 1 and are shown in their relation 

to SARS-CoV in Figure 2. While the reverse primer has complete sequence homology 

with SARS-CoV and could be used as part of a possible assay that detects both SARS-

CoV and SARS-CoV-2, the forward primer was designed to be highly selective for 

SARS-CoV-2 as the first three 3’ nucleotides are mismatched to SARS-CoV rendering 

extension by DNA polymerase highly inefficient (20). 

 

3.3 RT-RPA assay sensitivity and specificity 

Assay sensitivity was determined by amplification of in vitro transcribed (IVT) SARS-

CoV-2 N gene templates. Eight low-volume RT-RPA reactions were run in parallel for 

target copy numbers of 105 down to 100 molecules/reaction (Figure 3). Strong 

amplification of each replicate reaction was observed for target copy numbers from 105 

down to 102 (Figure 3 top and bottom left) while the results for 101 and 100 (Figure 3, 

bottom center and right) were, not surprisingly, more variable. Final fluorescence values 

were found to be different for each replicate with the highest values being observed for 

a target copy number of 103 copies (Figure 3, top right). 

Except for 100 copies with a detection rate of 25%, all other tested template copy 

numbers yielded positive results for each replicate. Figure 4C shows the probit 

regression of these results which was used to compute the 95% detection probability of 

the assay to be 7.74 (95% CI: 2.87 - 27.39) RNA copies/reaction. 
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The threshold times (TT) for each experiment presented in Figure 3 were plotted 

against the initial RNA target copy number to evaluate assay linearity. For copy 

numbers from 105 to 102, the assay was found to be linear and a simple linear model for 

the calculation of initial target copy numbers from measured TT values of unknown 

samples was constructed by linear regression. 

Assay selectivity was determined using the European Virus Archive global (EVAg) 

coronavirus selectivity panel. No cross-reactivity was observed for any of the tested 

RNAs while the positive control of IVT SARS-CoV-2 RNA showed strong amplification 

(Figure 4A). In addition, assay selectivity was further confirmed by testing of 27 nucleic 

acid samples (listed in Supplemental Table 1) derived from common respiratory viruses. 

No amplification was observed (data not shown).  

 

3.4 RT-RPA detection of SARS-CoV-2 

Total RNA extracted from nasopharyngeal swabs (Pat. 1-19) and cell culture 

supernatant (BavPat1) was subjected to both RT-RPA and RT-qPCR (Figure 5) in an 

open-label study. Nine out of 20 screened samples showed strong amplification in the 

RT-RPA and RT-qPCR assays, whereas 11 samples did not amplify in either assay. The 

linear model for the N1 RT-qPCR assay (Supplemental Figure 2) was used to estimate 

the initial SARS-CoV-2 RNA copy numbers which are presented in the inset table in 

Figure 5. The mixing time for RT-RPA was kept at 320 sec. demonstrating that this value 

is suitable for the detection of a sample with an unknown concentration of target RNA. 
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4 Discussion 

In the present study we describe the design and characterization of a low volume real-

time RT-RPA assay for the detection of SARS-CoV-2 RNA and a simplified approach for 

RPA exo probe design we termed exo-IQ. This approach allows a much more flexible 

RPA exo probe design since it removes the constraint that exo probes can only be 

designed for sequences that contain two thymines within 2 to 5 nt from each other. 

The newly developed SARS-CoV-2 assay using an exo-IQ probe provided 

performance comparable to that reported for the detection of MERS-CoV by RT-RPA (8). 

In agreement with the findings presented in (12), we found that RPA reactions of low 

volume (6.2 µl) worked well, most likely due to the higher template to reagent ratio. It 

was beneficial to cover the reaction mix with mineral oil to prevent reagent evaporation 

in order to achieve consistent results. 

By demonstrating the detection of genuine full-length viral RNA derived from real 

patient samples, we confirmed that the assay can successfully detect SARS-CoV-2 

RNA from complex clinical specimens. 

In comparison to the (non-RT)RAMP assay published by El-Tholoth et al. (21) 

(non peer-reviewed preprint) who report a lower detection limit of 7 copies of a synthetic 

SARS-CoV-2 DNA analog within about 50 minutes, our assay is both faster, of a much 

simpler design and does not require incubation at the elevated temperatures needed for 

LAMP while having the ability to directly detect viral RNA without a separate reverse 

transcription step. When compared to the second detection scheme for SARS-CoV-2 
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using RPA chemistry published by Zhang et al. (22) (non peer-reviewed online protocol) 

who report the detection of 120 RNA copies in one hour by a simple colorimetric, non-

quantitative endpoint readout, our assay is more sensitive, faster and has much more 

simple handling requirements. 

With a total run time between 15 and 20 minutes, our newly developed assay is 

one of the fastest nucleic acid based method that has been reported for the detection of 

SARS-CoV-2. Assuming an assay setup time of 5 minutes, the total assay time is only 

20 to 25 minutes and thus much shorter than RT-qPCR. Due to the small reaction 

volume (6.2 µl) and the fixed reaction temperature (42 °C), our assay is also an ideal 

candidate for use in microfluidic devices which will further simplify and improve point of 

need diagnostics. 
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Table 1 Sequences of the RPA primers and exo-IQ probe used in this work. Due to the 
proprietary nature of the internally linked quencher, exo-IQ probes can be supplied 
commercially by biomers.net. However, exo-IQ construction with internally linked 
quenching groups offered by other manufacturers may also be possible. 

Name Sequence 5'-3' 

RPA-SARS-2-FW CCTCTTCTCGTTCCTCATCACGTAGTCGCAAC 

RPA-SARS-2-RV AGTGACAGTTTGGCCTTGTTGTTGTTGGCCTT 

RPA-SARS-2-P CCTGCTAGAATGGCTGGCAATGGCGGTGA(dT-FAM)(AP site)C(BMN-

Q535)TGCTCTTGCTTTGC-C3 
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Figure 1: Design principle of the exo-IQ probe. The need for two closely spaced 
thymine bases is removed using an internal quenching group. 

Figure 2: Alignment of the SARS-CoV-2 RPA amplicon with SARS-CoV. Gray highlight: 
Matching bases; White background: Mismatching bases. The primers and exo-IQ probe 
are denoted by arrows above the aligned sequences. 

Figure 3: RT-RPA amplification of IVT SARS-CoV-2 N gene RNA. The number of RNA 
target copies in each reaction is indicated in the top left corner of each panel. Red: 
Reactions containing target RNA; Blue: NTC; Black: Threshold. Only reactions yielding 
fluorescence values above the threshold are considered to be positive. 

Figure 4A: Specificity analysis using the EVA coronavirus selectivity panel. Indicated Ct 
values were determined by specific RT-qPCR assays. Black:Threshold. 

Figure 4B: Linear model (calibration curve) of the RT-RPA assay. 

Figure 4C: Black, solid: Probit regression. Black, dashed: 95 % confidence interval of 
the probit regression. Red, dashed: 95% detection probability of the RT-RPA assay. 

Figure 5: RT-RPA amplification of total RNA extracted from nasopharyngeal swabs 
(Patients 1-19) and cell culture supernatant (BavPat1). Red: SARS-CoV-2 positive 
samples; Blue: SARS-CoV-2 negative samples; Black: Threshold. The inset table shows 
the RT-RPA threshold time (TT) as well as the Cy0-values and RNA copies/µl derived 
from the N1 RT-qPCR assay. 












