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Abstract

Lack of responsiveness to checkpoint inhibitors is a central problem in the modern era of cancer 

immunotherapy. Tumor neoantigens are critical targets of the host antitumor immune response and 

their presence correlates with the efficacy of immunotherapy treatment. Many studies involving 

assessment of tumor neoantigens principally focus on total neoantigen load, which simplistically 

treats all neoantigens equally. Neoantigen load has been linked with treatment response and 

prognosis in some studies, but not others. We developed a Cauchy-Schwarz index of Neoantigens 

(CSiN) score to better account for the degree of concentration of immunogenic neoantigens in 

truncal mutations. Unlike total neoantigen load determinations, CSiN incorporates the effect of 

both clonality and MHC-binding affinity of neoantigens when characterizing tumor neoantigen 

profiles. By analyzing the clinical responses in 501 treated cancer patients (with most receiving 

checkpoint inhibitors) and the overall survival of 1,978 cancer patients at baseline, we showed that 

CSiN scores predict treatment response to checkpoint inhibitors and prognosis in melanoma, lung 

cancer, and kidney cancer patients. CSiN substantially outperformed prior genetics-based 

prediction methods of responsiveness and fills an important gap in research involving assessment 

of tumor neoantigen burden.

One Sentence Summary:

CSiN score is an improved tool to assess the overall quality of tumor neoantigens that predicts 

response to immunotherapy.

Introduction

Most immunotherapies, including checkpoint inhibitors, benefit only a small subset of 

patients. For example, anti-PD-1 and anti-PD-L1 agents, which have demonstrated marked 

clinical benefit in various diseases, have overall response rates ranging from 10%−50% in 

melanoma and non-small lung cancer (1–5) and higher response rates in some other select 

tumor types, such as classic Hodgkin lymphoma (65–80%) (6, 7). Similarly, the efficacy of 

anti-CTLA-4 agents ranges from 10–15% for objective response rates and <3% for complete 

response (8). Unfortunately, the field is still far from clearly understanding how to 

distinguish responders and non-responders to immunotherapy. All forms of immunotherapy, 

such as checkpoint inhibitors and neoantigen vaccines, seek to activate the host immune 

system to attack the tumor cells. These forms of immunotherapy have different modes of 

actions, but most are intended to mobilize the cytotoxicity of T cells in the patient. 

Neoantigens are the primary targets of T cell responses (9–13) and the profiles of tumor 

neoantigens in each patient are central to determining the responsiveness to immunotherapy 

treatment.

A major impediment of current research that seeks to correlate neoantigens with 

immunotherapy treatment response is that most studies have only considered whether a 

higher neoantigen/mutation load (namely, the total number of neoantigens or mutations) is 

correlated with better immunotherapy response. This overly simplistic approach fails to take 

full advantage of the wealth of information contained in the entire repertoire of neoantigens 

and has been successful in only some studies (2, 4, 14–18), but not others (19–24). 
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Neoantigens are associated with mutations that can be either truncal or subclonal (25). Some 

neoantigens are also more immunogenic than others. These details are not fully captured by 

a basic neoantigen/mutation load approach, but could be critical for understanding the 

responsiveness of cancer patients to immunotherapy treatment. For example, Miao et al 
showed that cancer patients with a high proportion of clonal mutations have better rates of 

checkpoint inhibitor treatment response (26). The only other study that we are currently 

aware of that defined a more sophisticated neoantigen-based predictive metric is the 

neoantigen fitness model developed based on evolutionary modeling of patient neoantigen 

profiles (16, 27). This work considered the neoantigen-class I MHC binding affinity and 

only retained the top neoantigens resulting from missense mutations with the highest 

binding affinity within each tumor clone. This metric demonstrated excellent predictive 

power for survival of patients after immunotherapy treatment in a few cohorts; however, its 

predictive values and prognostic values have not been widely evaluated.

In this study, we developed the Cauchy-Schwarz index of neoantigens (CSiN) to enable a 

quantitative characterization of the delicate internal structure of patient tumor neoantigen 

profiles. We assembled 10 immunotherapy-treated patient cohorts and 6 patient cohorts with 

baseline survival information, both from public sources and our own cohorts. In our 

unbiased analyses, CSiN achieved almost uniformly significant results on the checkpoint 

inhibitor cohorts and the baseline cohorts of immunogenic cancers, which is significantly 

better than the performance of previously described neoantigen-based biomarkers. Taken 

together, our work fills an important “void” in immuno-oncology research that resulted from 

prior methods that have not sufficiently integrated data on neoantigen clonal structures.

Results

Constructing the Cauchy-Schwarz index of Neoantigen (CSiN) to characterize the fine 
structure of patient neoantigen repertoire

Some somatic mutations are truncal and others are subclonal. Truncal mutations are shared 

among more tumor clones (i.e. founding and derivative clones) and, if targeted by T cells 

through neoantigens, will likely result in a stronger cytotoxic effect. Subclonal mutations are 

unique to different clones, and if a subclonal mutation is in a clone with a larger clonal 

fraction, the neoantigens associated with this mutation are likely to have a stronger effect on 

the survival of the tumor cells than subclonal mutations associated with minor clones. 

Besides, each somatic mutation could generate a different number of neoantigens of 

different peptide lengths (8 to 11 amino acids for class I MHC-binding peptides, 15 amino 

acids for class II-binding peptides), with different registers (a sliding window of protein 

segments around the mutated position) and presented by different HLA alleles (class I and 

class II). Insertions and deletions usually generate a higher number of neoantigens per 

mutation than missense mutations as they lead to the translation of completely new segments 

of protein sequences (shown in Supplementary Information). We hypothesize that a 

favorable distribution of neoantigens and tumor mutations occurs when immunogenic 

neoantigens are concentrated on truncal mutations (Fig. 1A), and we developed CSiN to test 

this prediction.
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The core of CSiN is based on the mean of the product of the variant allele frequency (VAF) 

of each somatic mutation and the number of neoantigens associated with that mutation. 

When the mutations with higher VAFs are also the mutations that generate more neoantigens 

(favorable distribution), the product value will be larger (a higher CSiN score). Therefore, a 

higher CSiN conforms to a favorable neoantigen clonal structure. CSiN is so named because 

it bears analogy to the Cauchy-Schwarz inequality, which states the inner product of two 

vectors is maximal when they are in parallel (in the same ranked order). We also considered 

the immunogenicity of neoantigens. As there are currently no well accepted tools for 

predicting the potential of both class I and class II neoantigens to induce T cell responses 

(28), we used the binding affinity of peptides to MHCs, which has been shown to be one of 

the most important predictors of neoantigen immunogenicity (29). We set a series of cutoffs 

on the peptide-MHC binding affinity strengths predicted by the IEDB tools (30, 31) to 

generate several subsets of neoantigens with increasing stringency. We then calculated the 

means of product of VAF and per-mutation neoantigen load (neoantigens of both class I and 

class II, all HLA alleles, and all registers from one mutation) for each subset of neoantigens. 

The final CSiN score is the arithmetic mean of these sub-indices, in which neoantigens with 

better MHC binding affinity have higher weights (for details, please refer to Supplementary 

Information). The distributions of the CSiN scores in renal cell carcinoma (RCC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and skin cutaneous 

melanoma (SKCM), which are all immunogenic tumors (32), are shown in Fig. 1B.

We assessed whether CSiN characterizes unique information that is not captured by the 

commonly used mutation load and neoantigen load approaches (both classes, all possible 

lengths and all possible registers) or by candidate transcriptomics-based predictive 

biomarkers. For transcriptomic features, we examined the expression of PDCD1 (encoding 

PD-1), CD274 (encoding PD-L1), CTLA4 (33), CD8A, and an IFN-γ gene signature (34). 

Fig. 1C shows a scatter plot of the CSiN scores with the activation (ssGSEA) of the IFN-γ 
signature in the RCC cohort, which yielded a Spearman correlation of 0.067. Fig. 1D 

visualizes these correlations in heatmaps for pairwise comparisons of these biomarkers in 

each cohort, which shows that CSiN is an independent biomarker (Spearman correlation<0.1 

for all comparisons). Further analyses, using the Pearson correlation, threshold comparisons, 

and mutual information, again demonstrated the independence of the CSiN score 

(Supplementary Information).

Better response to checkpoint inhibitors in immunogenic cancers is associated with 
higher CSiN scores

Next we investigated the implications of CSiN for checkpoint inhibitor treatment response. 

We analyzed the neoantigen profiles of melanoma patients on anti-CTLA-4 therapy from 

Van Allen et al (35). We observed patients with better responses were more likely to have 

high CSiN (i.e. higher than median) than patients with worse responses (P=0.009, Fig. 2A). 

We analyzed another cohort of melanoma patients on anti-CTLA-4 therapy from Snyder et 
al (36). We observed that patients who received a Durable Clinical Benefit (abbreviated 

DCB and defined as complete response or partial response or stable disease >6 months) had 

higher CSiN scores than patients with No Durable Benefit (abbreviated NDB and defined as 

stable disease <6 months or progressive disease) (P=0.033, Fig. 2B). We analyzed a third 
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cohort of melanoma patients (Riaz cohort) on anti-PD-1 therapy (15). We examined whether 

patients with better treatment responses had higher CSiN scores. There was a significant 

positive association in this cohort (P=0.037, Fig. 2C). We analyzed one more cohort (Hugo) 

of melanoma patients from Hugo et al (14). Fig. 2D shows that there is an overall trend of 

patients with a better response associated with higher CSiN scores (P=0.043). In clear cell 

RCC (ccRCC), we examined anti-PD-1/anti-PD-L1-treated ccRCC patients from Miao et al 
(17). The same significantly positive association of higher CSiN scores with better response 

was observed (Fig. 2E) (P=0.036). We analyzed metastatic ccRCC patients treated with 

atezolizumab, an anti-PD-L1 agent (Immotion150 cohort) (37). We found that there was a 

significant association of higher CSiN with better treatment response for Teff-high patients 

treated with atezolizumab (Fig. 2F, P=0.028 and Supplementary Information). In contrast, 

we did not observe this association for Teff-high patients treated with sunitinib (P=0.890). 

For patients with lower Teff signature expression, there was no significant association for 

either atezolizumab or sunitinib. Non-small-cell lung cancer (NSCLC) patients (the 

Hellmann cohort) treated with PD-1 and CTLA-4 inhibitors were available from Hellmann 

et al (38). Our analyses showed that PD-L1+ patients with Durable Clinical Benefit had 

higher CSiN scores than patients with No Durable Benefit (Fig. 2G, P=0.007), while this 

association is insignificant for patients of low PD-L1 expression. We examined another 

NSCLC cohort (the Acquired cohort) from Anagnostou et al (2) and Gettinger et al (22). All 

of these patients achieved partial response, except for one patient who exhibited stable 

disease after initial checkpoint inhibitor treatment. All patients developed acquired 

resistance after 4 to 40 months. Interestingly, patients with sustained response were more 

likely to have higher CSiN scores than patients with short term progression (Fig. 2H) 

(P=0.015). Lastly, another cohort of NSCLC patients on anti-PD-1 therapies from Rizvi et al 
(4) was analyzed. In Fig. 2I, we showed that more DCB patients had higher CSiN scores 

than NDB patients (P=0.058). The False Discovery Rates for all the above mentioned 

cohorts fall under 10% (Table S3).

To compare the performance of CSiN score with other widely used metrics for 

neoantigenicity, we also examined the predictive power of neoantigen load (Fig. S1) and the 

neoantigen fitness model (Fig. S2) in the same cohorts and by the same statistical tests. For 

consistency we used the median scores to split the cohorts. For neoantigen load, we also 

adopted another cutoff (median + 2 x interquartile range), developed by Zehir et al (39) 

(results shown in Supplementary Information). For this analysis, the neoantigen fitness 

model was calculated for both class I and class II neoantigens, as was done for CSiN score 

and neoantigen load. We provided the results of the neoantigen fitness scores calculated 

using class I 9-mer neoantigens from missense mutations in Supplementary Information, as 

was done in its original report. Overall, the neoantigen load and neoantigen fitness models 

were not as strongly predictive of treatment response as CSiN. We used bootstrap analysis to 

evaluate the statistical significance of the improvement of CSiN compared to the other two 

approaches, which is an accepted methodology for model comparisons (40, 41). In Fig. 2J, 

we show that CSiN significantly outperformed neoantigen load in 7 out of the 9 cohorts 

evaluated, and also outperformed neoantigen fitness in 7 out of the 9 cohorts. Overall, our 

results show that CSiN is capable of predicting clinical response to checkpoint inhibitors in 

immunogenic cancers, and demonstrated a significant improvement over existing predictive 
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tools. We also compared the predictive power of CSiN, neoantigen load, and neoantigen 

fitness models using a survival analysis criterion and observed the same trends. Detailed 

results are shown in Supplementary Information (Fig. S13).

Finally, we also explored the predictive power of CSiN in other forms of immunotherapies. 

We generated genomics data for an in-house cohort (the IL-2 cohort) of ccRCC patients 

treated with concurrent IL-2 and Stereotactic Ablative Body Radiation (SAbR) treatment. 

IL-2 has pleiotropic activating effects on cytotoxic T cells, Treg cells and NK cells (42). It 

has been shown that SAbR has multiple immunogenic properties and could enhance the 

response to IL-2 (43). The neoantigen-mediated cytotoxicity probably partially explains the 

effects of this regimen. In this cohort, CSiN scores of patients with DCB are higher than 

CSiN scores of patients with NCB with marginal significance (Fig. S3A, P=0.053), and out-

perform the neoantigen load and the neoantigen fitness models (Fig. S3B–C).

Higher CSiN predicts more favorable prognosis in immunogenic cancers

To understand the implications of neoantigen heterogeneity for long term survival of 

patients, we examined the association between CSiN and prognosis in the RCC, LUAD, 

LUSC and SKCM cohorts. We first focused on patients with high levels of T cell infiltration, 

profiled by our recently published empirically defined tumor microenvironment (eTME) 

gene expression signatures (32). We speculated that the neoantigen-T cell axis is more likely 

to be functionally active when T cell infiltration is present in the tumor. Interestingly, in 

these patients, we indeed observed that higher CSiN scores had a significantly positive 

association with better survival for RCC (P=0.01, Fig. 3A), LUAD (P=0.036, Fig. 3B), 

LUSC (P=0.024, Fig. 3C), and SKCM (P=0.038, Fig. 3D). The False Discovery Rates for 

the 4 cohorts fall under 10% (Table S3). However, the overall survival of patients with lower 

T cell infiltration was indifferent to the levels of CSiN scores, which fits our speculation. We 

extracted and combined the high T cell infiltration patients from all four cohorts, and carried 

out survival analyses, which again showed that patients with higher CSiN scores had a 

significantly better overall prognosis (P=3.8×10−5, Fig. 3E). To further exclude the effect of 

clinical confounders, we performed multivariate survival analysis adjusted by disease type, 

stage, gender and age in this combined cohort. The significant association between survival 

and CSiN was retained (P<0.001, Fig. 3F).

In contrast, the same analysis for the neoantigen load and the neoantigen fitness models 

yielded insignificant associations (Fig. S4 and Fig. S5). We also employed bootstrap analysis 

to evaluate the statistical significance of this comparison. In Fig. 3G, we showed that CSiN 

significantly outperformed both methods in all 4 cohorts evaluated. Overall, in concordance 

with several previous studies that reported a lack of association of higher neoantigen load 

with better prognosis in several cancer types (19–21), our results suggest that the clonal 

distribution of neoantigens could be more prognostically important.

We also assessed non-immunogenic cancer types. Pediatric acute lymphocytic leukemia 

(ALL) is an aggressive childhood tumor type with low neoantigen load. We evaluated a 

cohort of pediatric ALL patients (pALL cohort) and observed that CSiN was not predictive 

of prognosis (Fig. S6A, P=0.584), with the results for neoantigen load shown in Fig. S6B 

and neoantigen fitness shown in Fig. S6C. We also studied liver hepatocellular carcinoma 
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patients from The Cancer Genome Atlas (TCGA) (LIHC cohort), although whether liver 

cancer is an immunogenic cancer type is still under debate (44, 45). We observed patients 

with higher CSiN scores had a non-significant trend of better survival than patients with low 

CSiN scores in the high T cell infiltration subset of patients (Fig. S6D, P=0.165), with the 

results for neoantigen load shown in Fig. S6E and neoantigen fitness shown in Fig. S6F. 

These observations further confirmed that the predictive value of CSiN score is more 

apparent in tumor types with higher immunogenicity.

Discussion

The major biological insight from this study is that the neoantigen clonal structure in each 

tumor specimen and the immunogenicity of the neoantigens (represented by the MHC-

binding strength in our study) are predictive of response to checkpoint inhibitors and 

prognosis. These factors may significantly outweigh the impact of the raw neoantigen count. 

Our comprehensive analyses show that the CSiN score, which describes these properties of 

the neoantigen profile quantitatively, possesses substantially better predictive and prognostic 

performance than other neoantigen-based biomarkers in the majority of evaluated cohorts. 

Our implementations of the CSiN, neoantigen load, and neoantigen fitness indices have 

considered both MHC class I and class II neoantigens, and also neoantigens generated from 

insertions/deletions and stop-loss mutations. This is different from the original publication of 

the neoantigen fitness model (16, 27) that only considered 9-mer class I neoantigens 

generated from missense mutations. We believe inclusion of all these potential sources of 

neoantigens is important for a complete characterization of the neoantigen profiles in each 

patient (analyses for each class of neoantigens only are shown in Supplementary 

Information). In alignment with our findings, McGranahan et al. made a qualitative 

observation that CTLA-4-resistant tumors could be enriched for subclonal mutations, which 

may enhance total neoantigen burden but not elicit an effective antitumor response due to the 

subclonal nature of these neoantigens (13). Miao et al also made a similar observation (26). 

Our study is distinguished from these earlier reports in that we provided a robust quantitative 

measurement that was subjected to systematic evaluations, and we also evaluated prognosis 

in addition to treatment response. Overall, CSiN may serve as a valuable predictive tool for 

medical oncologists treating patients with checkpoint blockade, and has addressed some of 

the limitations of prior neoantigen-based predictive biomarkers.

CSiN incorporates genetic information that is not captured by the neoantigen load and 

neoantigen fitness models or by expression-based biomarkers. A number of expression-

based biomarkers for immunotherapy have been proposed and validated on different levels 

including, PD-L1 expression in the tumor microenvironment (46, 47), Th1-type chemokine 

expression (48), and T cell infiltration (49), But CSiN augments and complements, rather 

than replaces, these biomarkers. We show that CSiN is associated with longer survival only 

in patients with sufficient T cell infiltration. Similarly in the treatment cohorts, the P values 

for testing the correlation between CSiN and treatment response in the high T cell/high PD-

L1 patient subsets are generally smaller compared with the P values of the full cohorts (Fig. 

2 and Supplementary Information), even though the subset cohorts are much smaller in 

sample size. These results suggest that it is crucial for all components of the neoantigen-host 

immune axis to be functionally active, in order to enable efficient immune elimination of 
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tumor cells. The insignificant association of CSiN with prognosis in the cohorts with cases 

of less immunogenic tumors including liver cancers and pediatric ALL also supports this 

notion. Our observations may inspire potential future studies to construct more sophisticated 

predictive and prognostic models that incorporate CSiN, neoantigen load, the neoantigen 

fitness model and other biomarkers together for improved performance.

Our results reporting the positive correlation between neoantigens and treatment response in 

RCCs are interesting. Currently, the field is still debating the role of neoantigens in the 

immune response to RCCs. While RCCs have low neoantigen/mutation loads, Turajlic et al 
discovered that RCCs have the highest number of insertion/deletion mutations on a pan-

cancer basis (50), which tend to encode high quality neoantigens. In terms of predicting 

survival after immunotherapy treatment, Samstein et al reported a significant correlation 

between tumor mutation burden and progression-free survival (51), while this observation 

was not made in the phase 3 JAVELIN Renal 101 trial (52). Cherkasova et al discovered the 

re-activation of a HERV-E retrovirus in RCCs, which can encode an immunogenic peptide 

recognizable by cytotoxic T cells (53). It is highly likely both neoantigens and self antigens 

contribute to the immunogenicity in RCCs. In the future, it will be of interest to investigate 

in more and larger cohorts whether CSiN is more predictive of patients’ response to 

immunotherapies when such antigens have been incorporated in the calculation,.

One limitation of our study and, to some extent, this field, is that we used neoantigens 

predicted from genomics data for correlation with patient phenotypes. Despite our efforts to 

validate the neoantigen predictions, it is likely there are still false positive and false negative 

predicted neoantigens that convoluted our analyses. In future studies, incorporating the 

genomics-based approach with other methods, such as mass spectrometry(54), may improve 

the sensitivity and specificity of neoantigen detection, and thus further enhance the 

predictive power of CSiN.

Class I and class II neoantigens represent very different aspects of immune response. But 

several recent studies have implicated neoantigen-specific CD4+ T-cells in direct tumor 

clearance (55–57). Our results also suggest that the inclusion of class II neoantigens is 

important for treatment response prediction. In the future, it will be interesting to carry out 

comprehensive research into the roles of class II neoantigens in the tumor 

microenvironment.

The neoantigen repertoire is in constant dynamic evolution (2, 58), with immunoediting and 

immunotherapy treatments actively modifying its landscape. CSiN offers a new tool to 

monitor the neoantigen profiles, where different tumor clones could have different growth 

advantages subject to the pressure of T cell cytotoxicity determined by each clone’s 

neoantigen composition. Overall, our work offers a rigorous methodology of predicting 

response to immunotherapy and prognosis from routine patient samples, and should be 

useful for personalizing medicine in the modern era of immunotherapy.
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Materials and Methods

Study Design

The objective of this research project is to study the implication of the clonal structure of 

neoantigens for predicting treatment response and prognosis. The research subjects were 

individual cancer patients, some of whom received immunotherapy. As this is a retrospective 

analysis study, the researchers were not blinded to the allocation labels. We included all 

available samples and data from either public or private sources in our study. We stopped the 

data collection on a lock date of September 1, 2019. The endpoints considered were 

response categories and survival of cancer patients following baseline assessment and in 

some cases immunotherapy. Usually just one sample per patient was available. In the 

uncommon cases of more than one sample collected for an individual patient, we averaged 

the scores (e.g. CSiN) calculated from each sample.

The Cauchy–Schwarz index of Neoantigens and the other neoantigen-based metrics used 
for comparison

The CSiN score considers the pairing between the repertoire of neoantigens and the tumor 

mutations to which they belong. One way to characterize this property is to average the 

product of the variant allele frequencies (VAF) of somatic mutations and the number of 

neoantigens generated by each mutation, normalized by the average VAF and average 

mutation-specific neoantigen load in each patient. The CSiN score is >1 under favorable 

pairing, and vice versa. This forms the backbone of the final CSiN score. The name CSiN 

was selected because the pairing of tumor mutations and neoantigens and its effect on the 

overall score bear analogy to the Cauchy-Schwarz inequality, which describes the upper 

bound of the product sum of two vectors of real numbers and the condition for the equality 

to be achieved. Refer to Supplementary Information for the implementation details of CSiN 

and additional analyses involving CSiN which are not shown in the main text. A cartoon 

showing the workflow of CSiN is shown in Fig. S7.

As a comparison for CSiN scores, we also calculated the neoantigen load and the neoantigen 

fitness scores. Published studies have calculated neoantigen load in slightly different 

manners, due to various reasons such as usage of different software for mutation calling (17, 

18, 22, 35, 68, 69). Our neoantigen load calculations were based on our own mutation 

calling and neoantigen calling pipelines when raw genomics data were available, and follow 

the general standards for neoantigen load calculation. Specifically, we counted the total 

number of neoantigens of both class I and class II (if class II neoantigens were available 

from our pipelines or from the original reports when raw genomics data were not available), 

all HLA alleles, and all registers from all missense, indel, and stop-loss mutations. The 

neoantigen fitness calculation was done as described previously (16, 27), but included both 

class I and class II neoantigens (when class II neoantigens are available). In Supplementary 

Information, we have also shown the results for the neoantigen fitness scores calculated with 

only class I 9-mer neoantigens from missense mutations.
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The QBRC mutation calling pipeline

We used the QBRC mutation calling pipeline for somatic mutation calling, developed in the 

Quantitative Biomedical Research Center (QBRC) of UT Southwestern Medical Center. In 

short, exome-seq reads were aligned to the human reference genome by BWA-MEM (59). 

Picard was used to add read group information and sambamba was used to mark PCR 

duplicates. The GATK toolkit (60–62) was used to perform base quality score recalibration 

and local realignment around Indels. MuTect (63), VarScan (64), Shimmer, SpeedSeq (65), 

Manta, and Strelka2 (66) were used to call SNPs and Indels. A mutation that was repeatedly 

called by any two of these software programs was retained. Annovar was used to annotate 

SNPs and Indels, and protein sequence changes (67). All SNPs and Indels were combined 

and only kept if there were at least 7 total (wild type and variant) reads in the normal sample 

and at least 3 variant reads in the tumor sample. Somatic mutations and germline mutations 

were annotated according to the variant allele frequencies in the normal and tumor samples.

The QBRC neoantigen calling pipeline

We used the QBRC neoantigen calling pipeline for neoantigen calling, which follows similar 

standards as those pipelines used in previous publications (17, 18, 22, 35, 68, 69). The 

validity of our neoantigen predictions is demonstrated in Supplementary Information. We 

kept only frameshift, non-frameshift, missense and stop-loss mutations that would lead to 

protein sequence changes. We kept only somatic mutations whose variant allele frequencies 

(VAFs) were <0.02 in the normal sample and VAFs>0.05 in the tumor samples. For class I 

HLA proteins (A, B, C), we predicted putative neoantigens of 8–11 amino acids in length, 

and for class II HLA proteins (DRB1 and DQB1/DQA1), we predicted putative neoantigens 

of 15 amino acids in length. Class I and II HLA subtypes were predicted by the ATHLATES 

tool (70), which has been shown to be accurate for these HLA alleles (71). Samples whose 

total successfully typed HLA alleles (counting both chromosomes) were <8 were regarded 

as poor quality data, and were left out from downstream analyses. Putative neoantigens with 

amino acid sequences exactly matching known human protein sequences were filtered out. 

For class I bindings, the IEDB-recommended mode (http://tools.iedb.org/main/) was used 

for prediction of binding affinities, while for class II binding, NetMHCIIpan embedded in 

the IEDB toolkit was. Neoantigens were kept only if the predicted ranks of binding affinities 

were ≤2%. Tumor RNA-seq data, if available, were aligned to the reference genome using 

the STAR aligner (72). FeatureCounts was used to summarize gene expression levels (73). 

Neoantigens whose corresponding mutations were in genes with expression level <1 RPKM 

in either the specific exon or the whole transcript were filtered out. For the samples analyzed 

by our pipeline, we applied the filtering by RNA-seq data on the neoantigen list when RNA-

Seq data are available. We showed the results for calculating CSiN with only exome-Seq 

data in Supplementary Information, which indicated that filtering the neoantigen list by 

RNA-Seq data is important for the predictive performance of CSiN. Finally, in accordance 

with our pipeline, Ott et al (74) have shown that neoantigens of class I and class II, and also 

different registers can all possibly be immunogenic, and IEDB (https://www.iedb.org/) has 

documented many immunogenic antigens of different peptide lengths.
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Patient cohorts

For all patient cohorts, if approval of access to raw exome-seq and RNA-Seq data was 

obtained, we predicted the somatic mutations and neoantigens using our in-house pipelines. 

In cases where raw genomics data were not accessible, we analyzed the processed 

neoantigen and mutation data included in the supplemental files of the original publications. 

For exploratory analysis and association with overall survival, we collected data from 110 

RCC patients from the Kidney Cancer Program at UT Southwestern Medical Center (32), 94 

ccRCC patients from Sato et al (23), and 162 ccRCC patients from TCGA (75) (the RCC 

cohort); 427 lung adenocarcinoma patients from TCGA (76) (the LUAD cohort); 389 lung 

squamous cell carcinoma patients from TCGA (77) (the LUSC cohort); 401 melanoma 

patients from TCGA (78) (the SKCM cohort); 103 pediatric and young adult T-lineage acute 

lymphoblastic leukemia patients (the pALL cohort) from Liu et al (24); and 292 liver cancer 

patients from TCGA (79) (the LIHC cohort) (Table S1).

For association of CSiN scores with immunotherapy response, 10 patient cohorts were 

collected that are summarized in Table S1. Table S1 shows the total number of patients 

within each cohort used in this study for correlation of treatment response and neoantigen-

based predictive markers. In the VanAllen cohort, there are 40 patients with matched RNA-

Seq and exome-seq data and three of these patients were removed due to lack of response 

information. For the Riaz cohort, three patients were removed as two of them have lack of 

response information (“not evaluated” reported by the original study) and the third patient’s 

HLA alleles cannot be typed accurately from the sequencing data. In the Miao cohort, two 

patients were removed due to the HLA typing issue. In the Rizvi cohort, three patients were 

removed due to lack of response information (not reaching six-month follow up) and five 

patients were removed due an HLA typing issue. In the Snyder cohort, three patients were 

removed as the neoantigen data were not available from the original publication (we used 

neoantigens called by the original study for this cohort as we don’t have access to the raw 

genomics data). In the IMmotion150 cohort, 99 patients on atezolizumab and 50 patients on 

sunitinib had both exome-seq and RNA-Seq. Three patients treated by atezolizumab and 

four patients treated by sunitinib were further removed because response information was 

not available. For the Hellmann cohort, the neoantigen lists were generated by the original 

authors and used by us in this work. There are 74 patients with neoantigen data generated. 

Only whole exome-seq was done and only about half of these patients consented to 

genomics data sharing, so we decided to use these neoantigens called by the original report. 

For the Hugo cohort, 28 patients had both exome-seq and RNA-Seq data, and two were 

removed due to an HLA typing issue. Stratified analyses (Fig. 2 and Supplementary 

Information) were performed for the IMmotion150, VanAllen, Hugo, Riaz and Miao cohorts 

(with RNA-Seq data available) based on ssGSEA analyses (80) of the Teff gene signature 

(81) to focus on the top 60% patients, and also performed for the Hellmann cohort based on 

PD-L1 IHC level with a cutoff on IHC readings (which are given in integers by the original 

report for 69 patients) chosen such that the top subset is closest to 60% of the whole cohort. 

For cases in which multiple types of treatment outcomes were recorded in a cohort, we used 

the primary criterion employed by the original publications. Patient samples that were 

analyzed but were not shown in Fig. 2 (e.g. IMmotion150 patients on the sunitinib arm) 

were shown in Supplementary Information.
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Statistical analyses

All computations and statistical analyses were carried out in the R computing environment. 

For all boxplots appearing in this study, box boundaries represent interquartile ranges, 

whiskers extend to the most extreme data point which is no more than 1.5 times the 

interquartile range, and the line in the middle of the box represents the median. For 

association of CSiN score, neoantigen load and the neoantigen fitness model with binary/

categorical response variables, we tested the association of the dichotomized CSiN scores 

with the ordered response categories (e.g. complete response→partial response→stable 

disease→progressive disease) using an ordinal chi-square test. The three types of predictive 

scores are each split on the median within each cohort, to ensure comparability and avoid the 

scaling problem. The alternative hypothesis is that patients with better response and survival 

outcome are more likely to have higher CSiN scores. We employed the chisq_test function 

in the R coin package for this purpose. For survival-type analysis, we adopted the log-rank 

test for evaluating whether patients with higher CSiN scores had better prognosis. T cell 

infiltrations and activation of the IFN-γ signature were predicted using the single sample 

gene set enrichment analysis (ssGSEA) method (80). ssGSEA analysis was performed using 

the R GSVA package by calling the gsva function with parameter method=“ssgsea” and 

rnaseq=T (82). The forest plot was performed by the forest_model function in the R 

forestmodel package. For model comparison, 5,000 bootstrap resamples of each cohort were 

generated, and each resample was used to evaluate the predictive or prognostic performance 

of CSiN, neoantigen load and the neoantigen fitness score. The P values of 5,000 bootstraps 

of each approach were compared using two-sided Wilcoxon signed-rank test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Motivation for CSiN score. (A) Illustration showing the motivation of examining pairings of 

neoantigens and the tumor mutations with which they are associated. We demonstrated two 

hypothetical patients, one with an unfavorable distribution of neoantigens and the other with 

a favorable distribution. The actual mutations and neoantigens shown are based on real data. 

The outermost circle indicates the whole tumor. Each circle indicates a population of tumor 

cells with certain mutations. Each different color indicates a distinct mutation, and the area 

of each circle indicates the proportion of cells having the mutation. For the formula, on the 
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left of each multiplication sign “x”, is the normalized VAF, and on the right of each “x” is 

the normalized per-mutation neoantigen load. The colorings in the formula correspond to the 

tumor mutations shown above with the same colorings. The two bigger tables on the right 

show the neoantigen sequences, registers (“Dist”), and the HLA alleles for each neoantigen. 

For neoantigens of missense mutations, “Dist” refers to the distance between the altered 

amino acid and the left end of neoantigen; for neoantigens of insertions/deletions and 

stoploss mutations, “Dist” refers to the distance between the left end of the mutation and the 

left end of neoantigen. The “+” sign indicates the left end of neoantigen is on the right of the 

altered position and vice versa. (B) The distribution of the CSiN scores in the RCC, LUAD, 

LUSC, and SKCM cohorts. T-tests were used for comparison of CSiN scores between 

different subtypes of the same tumor cohort. (C) A scatterplot showing the relationship 

between CSiN and the expression level of the IFN-γ signature in the RCC cohort. Spearman 

correlation between them is shown. (D) Heatmaps of the pairwise Spearman correlations of 

the CSiN, mutation load, neoantigen load, and the transcriptomics-based features are shown 

for the RCC, LUAD, LUSC and SKCM cohorts, which are calculated as in (C).
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Fig. 2. 
Association of CSiN score with checkpoint inhibitor treatment response. (A) The VanAllen 

cohort. 11 patients with clinical benefit (response group), 6 patients with long-term survival 

with no clinical benefit (long-survival) group, and 20 patients with minimal or no clinical 

benefit (nonresponse) group. (B) The Snyder cohort. 27 patients with DCB, and 34 patients 

with NDB. (C) The Riaz cohort. 3 patients with complete response (CR), 12 patients with 

partial response (PR), 23 patients with stable disease (SD), and 27 patients with progressive 

disease (PD). (D) The Hugo cohort. 3 patients with complete response, 10 patients with 
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partial response, and 13 patients with progressive disease. (E) The Miao cohort. 12 patients 

with clinical benefit, 8 patients with intermediate benefit, and 13 without clinical benefit. (F) 

The IMmotion150 cohort. There were 8 patients with CR, 15 patients with PR, 16 patients 

with SD, and 16 patients with PD. These patients were treated with atezolizumab and 

possess high Teff signature expression. (G) The Hellmann cohort. There were 23 PD-L1+ 

(IHC>=3) patients with DCB, and 16 PD-L1+ patients with NDB. (H) The Acquired cohort. 

There were 8 patients with short term progression (progression<12 month) and 6 patients 

with sustained response (progression>12 month). (I) The Rizvi cohort. 11 patients with DCB 

and 15 patients with NCB. Biopsy and genomics data were obtained close to time of 

progression for all patients, while baseline biopsies were lacking for many patients. For (A)-

(I), we tested the association of the dichotomized CSiN scores with the ordered response 

categories using an ordinal Chi-Square test. (J) Boxplots of bootstrap P values evaluating the 

robustness of the predictive performance of CSiN, neoantigen load and the neoantigen 

fitness score, with each P value generated from a bootstrap resample of each cohort. Two-

sided Wilcoxon signed-rank test was used to compare the bootstrap P values. NS: P>0.01, *: 

P=0.01–0.05, **: P=0.001–0.01, ***: P=0.0001–0.001, ****:P<0.0001.
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Fig. 3. 
Association of CSiN score with overall survival of patients. (A-E) Kaplan-Meier estimator 

was used to visualize patient overall survival. P values for logrank tests are shown. (A) The 

RCC cohort. (B) The LUAD cohort. (C) The LUSC cohort. (D) The SKCM cohort. (E) The 

patients identified as having “High T cells” are extracted from each cohort, combined, and 

tested together. The high and low CSiN score designations follow those in (A-D). The top 

140 RCC patients, 100 LUAD patients, 100 SKCM patients, and 40 LUSC patients with the 

highest T cell infiltration were designated as having “High T cells”, so the more 

immunogenic tumor types have more patients selected (83). (F) Forest plot for the 

coefficients of the multivariate CoxPH analysis of the combined cohort in (D). Disease type, 

pathological stage, gender, age and the binarized CSiN were included as covariates. The 

dotted line shows the no effect point. 95% Confidence intervals were shown as bars. (G) 

Boxplots of bootstrap P values evaluating the robustness of the prognostic performance of 
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CSiN, neoantigen load and the neoantigen fitness score, with each P value generated from a 

bootstrap resample of each cohort. Two-sided Wilcoxon signed-rank test was used to 

compare the bootstrap P values. *: P=0.01–0.05, **: P=0.001–0.01, ***: P=0.0001–0.001, 

****:P<0.0001.
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