
Differential Regional Stiffening of Sclera by Collagen Cross-
linking

Bola A. Gawargious3, Alan Le1,2,4, Michael Lesgart5, Shoaib Ugardar1,2, Joseph L. 
Demer1,2,4,6,7

1Department of Ophthalmology, University of California, Los Angeles.

2Stein Eye Institute, University of California, Los Angeles.

3Department of Integrative Biology and Physiology, University of California, Los Angeles.

4Bioengineering Interdepartmental Programs, University of California, Los Angeles.

5Department of Psychology, University of California, Los Angeles.

6Department of Neurology, University of California, Los Angeles.

7David Geffen Medical School at University of California, Los Angeles.

Abstract

Purpose: Corneal collagen cross-linking by ultraviolet light activation of riboflavin has been 

used clinically to enhance corneal stiffness. We sought to determine if cross-linking differentially 

affects scleral regions.

Methods: Adjacent, parallel strips of sclera were cut from superolateral, superomedial, 

inferolateral, and inferomedial quadrants of posterior and equatorial sclera of 12 human cadaver 

eyes. One of each pair served as control while the other was cross-linked by immersion in 0.1% 

riboflavin and 365 nm exposure at 6mW/cm2 irradiance for 30 minutes. Behavior of strips was 

characterized using a microtensile load cell. Preloaded strips were imaged using orthogonally 

mounted cameras and optical coherence tomography to determine specimen dimensions including 

cross-sectional area. Tension was measured during 0.1 mm/s constant rate elongation.

Results: Young’s modulus (YM), the slope of the relationship relating tensile stress to strain, was 

calculated at 8% strain, and increased significantly after cross-linking (P<0.001). In posterior 

sclera, mean (± standard error of mean, SEM) YM increased in the superolateral, superomedial, 

inferolateral, and inferomedial quadrants by 46±15%, 32±11%, 67±20%, and 53±11%, 

respectively. In equatorial sclera, YM increased by 139± 43%, 68±27%, 143±92%, and 68±14%, 

respectively. The YM of pooled equatorial quadrants increased significantly more than that of the 

pooled posterior quadrants.
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Conclusions: Scleral collagen cross-linking by ultraviolet activation of riboflavin differentially 

increases scleral YM more in the equatorial than posterior sclera, and most in the lateral, 

equatorial sclera. Cross-linking might be used to arrest progressive myopia or to prevent 

staphyloma formation.

Keywords

biomechanics; collagen cross-linking; myopia; sclera; Young’s Modulus

Introduction

Myopia affects around 30% of the population in the United States and Europe, but up to 

60% in Asian countries,1, 2 with myopic progression occurring in up to 50% of such cases.3 

Severe myopia, a leading cause of blindness worldwide, is associated with sight-threatening 

consequences such as retinal detachment and macular choroidal degeneration.4 Pathological 

scleral thinning and localized ectasia often occur in high myopia.5 Because biomechanical 

properties of the sclera influence globe shape and size,6 scleral thinning may permit further 

globe elongation and progressive refractive error. Pathological scleral thinning involves 

structural scleral abnormalities such as decreased collagen fiber diameter,7 deficiencies in 

collagen fibrillogenesis,8 and impairment of collagen cross-linking (CXL).9 Reversing these 

abnormalities would beneficially change scleral biomechanical properties and might serve as 

a treatment for myopic progression.

Cross-linking induced by riboflavin and ultraviolet-A light (UVA) can increase corneal 

rigidity to treat keratoconus10 and has emerged as the favored initial treatment.11–14 

Riboflavin serves as a photosensitizer in CXL, forming of intra- and interfibrillar covalent 

bonds between collagen fibers when activated by UVA.15, 16 The riboflavin also shields 

underlying tissues, such as the corneal endothelium and iris, from UV irradiation.13 Cross-

linking increases corneal Young’s modulus (YM), a measure of stiffness, by about 4.5 fold 

and typically prevents progression of keratoconus.17,18

Since human sclera contains approximately 50% collagen by weight, primarily type I 

collagen19 much like cornea, CXL can also be used to increase scleral stiffness. Wollensak 

conducted CXL using riboflavin and UVA and noted a significant increase in the YM of 

porcine (145%) and human (31%) sclera in vitro,20 as well as in rabbit sclera (465%) in 

vivo.21 This study, however, did not consider possible regional variation as a result of CXL. 

In a study by Wang, CXL of anteriorly to posteriorly oriented scleral strips in the equatorial 

and posterior regions produced 185% and 201% increases in YM, respectively.22 However, 

since scleral thickness varies markedly between the equatorial and posterior regions,23 

scleral strips in this orientation necessarily have nonuniform thickness, and so cannot reflect 

likely regional variations in mechanical effects of CXL. In the present study, we investigated 

the effect of CXL on biomechanical strength and volume of circumferentially cut scleral 

strips in 8 scleral regions.
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Methods

Specimen Preparation.

Institutional review board review is not required for the cadaveric material studied here that 

was obtained in conformity with applicable local laws. Two eyes were harvested by eye 

banks within 48 hours of death and were obtained unfrozen but stored at just above 0° C. 

Ten eyes were obtained from cadavers donated to medical research and had been previously 

frozen. In all eyes, circumferentially oriented, parallel adjacent scleral strips measuring 

2×8mm were trimmed by scalpel from the superolateral, superomedial, inferolateral, and 

inferomedial quadrants of the equatorial as well as posterior sclera. Equatorial strips were 

cut between the rectus muscle insertions, while posterior strips were cut 1 mm from edge of 

the optic nerve. The eye was initially hemisected sagitally, separating medial and lateral 

portions. Scleral strips were then excised from 4 different regions in each of the halves. (Fig. 

1). One strip of each identically-prepared parallel pair was used as a control while the other 

underwent CXL. The retina, choroid, and episcleral tissue were removed before other 

procedures.

Cross-linking.

Each treated strip was immersed in 0.1% dextran-free riboflavin for 30 min, and then 

exposed to 365nm UVA light at 6mW/cm2 irradiance for 30 min using the LightLink CXL 

Corneal Cross-Link System (LightMed, San Clemente, CA). Riboflavin was applied drop 

wise onto the specimens every 30 s during CXL. To avoid dehydration, treated and control 

strips were kept in Ringer’s solution in petri dishes placed on ice until tensile testing.

Tensile Testing.

Tensile testing was performed in a horizontally mounted load cell incorporating a precise 

train gauge (LSB200, FUTEK, Irvine, CA) with 5mN force resolution attached to a linear 

motor (Ibex Engineering, Newbury Park, CA) having 20nm distance resolution. Scleral 

strips were tested in an environmental chamber simulating physiological conditions at 36°C 

and 100% humidity for 5 minutes. Excess moisture was wiped away. Scleral strips were 

anchored in serrated clamps separated by 5 mm to set initial specimen length, and preloaded 

to 0.05 N tension to eliminate slack. Preloaded strips were photographed with two 

orthogonally mounted digital cameras (Canon 70D and Canon 5D) to determine specimen 

dimensions, and also imaged using optical coherence tomography (OCT, Thorlabs Inc., 

Newton NJ) to measure cross-sectional area for stress calculation.

Young’s Modulus Calculation.

Tensile force was divided by mean specimen cross-sectional area in four OCT images 

obtained at 0.5 mm intervals along the specimen length to calculate stress. The YM, the ratio 

of tensile force to stress, was analyzed at 8% strain. In each of the 8 scleral regions, 10 

control and 10 cross-linked samples were tested. Of the 12 specimens prepared for each 

region, two were typically damaged by ruptures due to preparation or clamping, so data from 

only the 10 specimens free of artifacts is included in the reported results. The sample size in 

the current study is similar to sample sizes in relevant literature20, 21, 24.
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Cross-linking Shrinkage Analysis.

Twenty specimens, measuring approximately 3.5×3.5 mm, were excised from the posterior 

(10 specimens) and equatorial (10 specimens) regions. Excess moisture was removed, and 

the specimen equilibrated in the environmental chamber for 10 minutes prior to OCT 

imaging. The specimen was then immersed in 0.1% riboflavin for 30 minutes. Next, each 

specimen was placed on an inclined platform to prevent riboflavin pooling, and exposed to 

365nm UVA at 6mW/cm2 irradiance for 30 minutes to produce CXL, during which 

specimens were dropwise irrigated with riboflavin every 30 seconds. After CXL, specimens 

were placed in the environmental chamber for 10 minutes, and were re-imaged by OCT.

Specimen thickness and volume were determined using OCT before and after CXL. The 

entire length of each specimen was cross-sectionally imaged at 125 μm intervals, requiring 

approximately 28 image planes in which specimen boundaries were then manually traced to 

determine cross-sectional areas. Summed areas were multiplied by 125 μm to calculate 

specimen volume. This current study only investigated CXL shrinkage in the posterior and 

equatorial sclera because we lacked sufficient scleral tissue to study CXL shrinkage in all 8 

scleral regions individually.

Statistical Analysis.

In each region, paired t-tests were conducted for YM to compare control and cross-linked 

samples. An unpaired t-test was used to determine regional variation in YM. A secondary 

analysis was conducted to assess the effect of outlier values, with removal of all values more 

than 2 standard deviations (SD) from the mean. Since outlier removal did not change the 

overall conclusions, in the interest of rigor we report results of all data acquisitions that were 

free of obvious experimental artifacts.

Results

Stress-Strain Analysis.

Significant increases in YM were evident after CXL in all 8 scleral regions. Figure 2 shows 

example stress-strain curves of individual samples (dotted curves) and their overall average 

(solid curve) in the posterior superolateral region.

Average stress-strain curves for posterior sclera are shown in Fig. 3. In posterior 

superolateral sclera, mean YM (± SEM) increased 46±15% from 23.2±2.5 MPa to 32.4±2.9 

MPa. In posterior superomedial sclera, YM increased 32±11% from 26.2±3.7 MPa to 

34.7±5.8 MPa. In posterior inferolateral sclera, YM increased 67±20% from 22.1±2.0 MPa 

to 34.6±3.0 MPa, similar to the 53±11% increase in posterior inferomedial sclera from 26±4 

MPa to 37±5 MPa. Data are summarized in Table 1 and Fig. 1.

Average stress-strain graphs for equatorial sclera are shown in Fig. 4. The YM of equatorial 

superolateral and equatorial inferolateral sclera was similarly increased by CXL by 139± 

43% and 143±92%, respectively. The YM of equatorial superolateral sclera was increased 

by CXL from 17.1±3.8 MPa to 30.8±3.5, while that of equatorial inferolateral sclera 

increased from 23.3±4.3 MPa to 44.3±4.8 MPa. Likewise, CXL increased the YM of 
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superomedial and equatorial inferomedial sclera similarly by 68±27% and 68±14%, 

respectively. The YM of equatorial superomedial sclera was increased by CXL from 

23.3±3.0 MPa to 34.7±3.8 MPa, while that of equatorial inferomedial sclera increased from 

21.4±3.2 MPa to 32.8±3.0 MPa. Data are summarized in Table 1 and Fig. 5.

Un-paired t-testing showed that the increase in YM produced by CXL was significantly 

greater in the pooled equatorial than in the pooled posterior regions (P<0.01), and the 

increase in the pooled lateral regions was significantly greater than in the pooled medial 

regions (P<0.05, Fig. 5). However, CXL affected YM similarly in the pooled superior 

(71±14% increase) and inferior regions (118±29% increase) with P=0.14.

Scleral Shrinkage.

Posterior sclera was on average significantly thicker at 1.00±0.03mm than equatorial sclera 

at 0.77±0.03mm prior to CXL (P<0.001). Cross-linking generally reduced scleral thickness, 

as illustrated by the OCT cross section in Fig. 6. Pooling all quadrants, CXL reduced scleral 

volume 17±1% in the equatorial and 13±1% in posterior sclera (P<0.001).

Figure 7 illustrates relative reduction of both thickness and volume in posterior and 

equatorial sclera. Correlation analysis indicated that 90% of the volume reduction was due to 

thickness reduction, with little change in length and width.

Outliers.

After removal of YM values lying more than ±2SD from the mean of all sample results 

before and after CXL, average SEM for the remaining values decreased by 16% in posterior 

and 21% in equatorial sclera. Nevertheless, after outlier removal, the increase in YM due to 

CXL remained significantly greater in equatorial than posterior sclera (P< 0.01), and greater 

in lateral than medial sclera (P<0.05). These relative changes are the same as illustrated in 

Fig. 5 when considering the entire date set, an approach that avoids possible bias and which 

is therefore the basis for the principal data reported here.

Discussion

Cross-linking using riboflavin and UVA increased YM significantly in all regions of human 

sclera. The effect was varied topographically, being relatively greater in the equatorial than 

posterior region (Fig. 5). This difference is in part attributable to regional variation in scleral 

thickness. Consistent with previous studies,23 we found that the average posterior sclera 

thickness at 1.00mm to be significantly greater than the equatorial sclera thickness averaging 

at 0.77mm. Limited to a fixed tissue depth, UVA illumination therefore cross-linked a 

greater percentage of the total thickness of the equatorial than posterior sclera, and thus 

produced a greater increase in relative stiffness. In addition, we found that CXL increases 

YM significantly more in the lateral than in medial sclera. It should be noted that the 

irradiance and time of UV exposure were chosen to provide a stronger scleral crosslinking 

effect than the standard Dresden protocol for corneal cross-linking. Since other dosages of 

UV exposure were not investigated, specific protocols for in vivo scleral CXL would likely 

require optimization.
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Another factor in differential regional effect of CXL may be a ceiling effect suggested by 

Fig. 5. After CXL, mean pooled YM similarly averaged about 33 MPa in posterior, 

equatorial, lateral, and medial regions. The differential effect of CXL might also be 

understood as increasing scleral YM to a maximum value regardless of reginal variation in 

untreated YM. Thus, the lower the untreated YM, the greater the relative increase in YM due 

to CXL.

Previous studies used calipers to measure volume changes post CXL21, 22, 24. In this study, 

we measured volume more accurately by OCT, showing that CXL significantly reduces 

equatorial and posterior sclera volume (Figs. 6 and 7), almost entirely due to thinning similar 

to that of corneal CXL25 In vivo, corneal thickness returned to baseline after CXL treatment 

for keratoconus26. It is unknown if similar reversal of scleral thinning might occur after CXL 

in vivo.

The current results differ substantially from those of Wang et al.22, the only other study to 

evaluate regional variations in human sclera tissue due to CXL. The Wang et al. study 

reported human YM in the quantitatively implausible range of 200–470 MPa,22 roughly an 

order of magnitude greater than typically observed in sclera. Such unrealistic scleral values 

are more typical of muscle at approximately 480 MPa,27, 28 or tendon, approximately 560 

MPa.28–31 Our study of sclera yielded a mean YM of 23±1 (SEM) MPa, similar to the report 

of Wollensak, who did not investigate, however, possible regional variations.20 Prior studies 

of scleral YM20, 22 applied loading to scleral strips that had been cut sagitally from anterior 

to posterior, a direction in which systematic variation in specimen thickness compromises 

accurate computation of YM. Consistent with the anatomical literature23, we found 

equatorial to be significantly thinner than posterior sclera. Assuming that the thinnest cross-

section is applicable to the entire specimen would exaggerate apparent YM by exaggerating 

computed stress, which is calculated as force divided by cross sectional area. Finally, in 

previous studies where CXL was performed in whole globes prior to specimen excision6, 22, 

control specimens were obtained from different eyes, introducing intersubject variability. 

The present approach mitigated interindividual variability by using adjacent scleral strips in 

the same eye as controls.

Diminished CXL is an important factor in the weakening process of myopic sclera9 as in 

myopic human eyes that have significantly lower scleral YM.32 There is a natural increase in 

CXL with advancing age9 and in diabetics.33 In older people, the natural increase in CXL is 

believed to slow myopic progression.34 Similarly, the increase glycation-induced CXL in 

diabetic patients has been proposed to explain their reduced axial myopia.33 It is therefore 

hypothesized that if natural CXL is associated with retardation of myopic progression, then 

artificially inducing CXL using UVA/riboflavin might be used therapeutically to retard axial 

elongation and reduce the risk of blindness.35 Other treatment options exist, such as scleral 

reinforcement surgery,36 in which a strip of cadaveric sclera is wrapped around the globe to 

prevent further elongation.37, 38 In one study, scleral reinforcement was usually successful in 

arresting the progression of myopia.39 However, such procedure is both highly invasive and 

relies on the availability of healthy scleral donor tissue, which is currently becoming scarcer 

with the increasing prevalence of myopia.
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Complications of high myopia, such staphylomata, may be sight-threatening. Staphylomata 

form as localized scleral ectasia having a radius of curvature less than the surrounding 

scleral curvature.40 Localized posterior scleral ectasia is an important component of several 

vision-threatening myopic maculopathies.41–43 It is theorized that the prevention of posterior 

staphyloma could prevent further visual impairment related to maculopathies.41 Because the 

formation of staphylomata involves localized scleral weakening, CXL might be a 

prophylactic measure to reinforce scleral tissue. The topographically differential effect of 

CXL might be useful as a treatment for staphylomata formation in various regions of the 

globe.
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Fig. 1. 
Scleral regions tested and mean percent increase in Young’s modulus (± standard error of 

mean) following cross-linking.
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Fig. 2. 
Individual stress-strain curves of 10 samples from the posterior superolateral sclera (dotted 

curves), with average curves solid. Note greater stress for cross-linked specimens.
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Fig. 3. 
Stress-strain curves in posterior superomedial, superolateral, inferomedial and inferolateral 

sclera for control and cross-linked (CXL) specimens. Error bands ± standard error of mean.
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Fig. 4. 
Stress-strain curves in equatorial sclera for control specimens and after cross-linking (CXL). 

Error bands ± standard error of mean.
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Fig. 5. 
Top. Young’s Modulus (YM, top row) and its percentage increase (bottom row) in control 

specimens, and after cross-linking (CXL), in posterior, equatorial, lateral, and medial sclera. 

Error bars – standard error of mean.
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Fig. 6. 
Cross sectional optical coherence tomography of the same scleral specimen before and after 

cross-linking.

Gawargious et al. Page 15

Curr Eye Res. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Shrinkage due to cross-linking in posterior and equatorial sclera.
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Table 1.

Effect of Cross-linking on Scleral Young’s Modulus

Regions Control YM (MPa, SEM) Cross-linked YM (MPa, SEM) Percent Increase (SEM) Significance

Posterior Superolateral 23.2±2.5 32.4±2.9 46±15% 0.01

Posterior Superomedial 26.2±3.7 34.7±5.8 32±11% 0.05

Posterior Inferolateral 22.1±2.0 34.6±3.0 67±20% 0.01

Posterior Inferomedial 25.7±4.5 36.6±5.1 53±11% 0.001

Equatorial Superolateral 17.1±3.8 30.8±3.5 139±43% 0.001

Equatorial Superomedial 23.3±3.0 34.7±3.8 68±27% 0.005

Equatorial Inferolateral 23.3±4.3 44.3±4.8 143±92% 0.001

Equatorial Inferomedial 21.4±3.2 32.8±3.0 68±14% 0.001

SEM – standard error of mean. Significance by 2-tail t-testing.
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