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Abstract
Estimating total narrow-sense heritability in admixed populations remains an open question. In this work, we used extensive
simulations to evaluate existing linear mixed-model frameworks for estimating total narrow-sense heritability in two
population-based cohorts from Greenland, and compared the results with data from unadmixed individuals from Denmark.
When our analysis focused on Greenlandic sib pairs, and under the assumption that shared environment among siblings has a
negligible effect, the model with two relationship matrices, one capturing identity by descent and one capturing identity by
state, returned heritability estimates close to the true simulated value, while using each of the two matrices alone led to
downward biases. When phenotypes correlated with ancestry, heritability estimates were inflated. Based on these
observations, we propose a PCA-based adjustment that recovers the true simulated heritability. We use this knowledge to
estimate the heritability of ten quantitative traits from the two Greenlandic cohorts, and report differences such as lower
heritability for height in Greenlanders compared with Europeans. In conclusion, narrow-sense heritability in admixed
populations is best estimated when using a mixture of genetic relationship matrices on individuals with at least one first-
degree relative included in the sample.

Introduction

Heritability is the fraction of phenotypic variance attributed
to genetics. More specifically, assuming that the variance σ2P

of a phenotype equals the sum of its genetic σ2G and
environmental variance σ2e , heritability in its broad sense
(H2) is expressed by the ratio σ2G/σ

2
P (Fisher 1918; Wright

1921). The genetic variance σ2G can be further broken down
into its additive (σ2A), dominant (σ2D), and epistatic (σ2I )
components (Visscher et al. 2008; Zaitlen and Kraft 2012).
Most of the existing literature focuses on the fraction of
phenotypic variance σ2P owing to additive effects alone (σ2A/
σ2P)—the so-called narrow-sense heritability (h2).
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Heritability is interesting in its own right, but it is also
pivotal in quantitative genetic studies with many practical
uses. Because, by definition, heritability measures the
contribution of genetics to a phenotype, it allows us to gain
insights into the genetic architecture of a trait. Moreover,
knowledge about the heritability of a trait helps us evaluate
the effectiveness of a genome-wide association study
(GWAS), as the so-called SNP heritability h2g of a trait
informs us about the maximum discovery potential of a
given genotyping platform. Similarly, heritability estimates
provide an upper bound to the accuracy of polygenic pre-
dictions with predictors potentially having higher perfor-
mance in more heritable traits.

There exist many ways to estimate narrow-sense herit-
ability h2 and they usually boil down to estimating the
variance owing to additive effects (σ2A). Assuming an
additive model, a classical approach is to use the phenotypic
correlation between related individuals (Fisher 1918;
Wright 1921; Yang et al. 2010), which for a pair j and k is

cor yj; yk
� �

¼ σ2AKcausal j;k½ � :

Kcausal is an idealized genetic relationship matrix (GRM)
that reflects genetic relationships between individuals at an
unknown set of causal variants.

Because the set of causal variants is unknown, Kcausal has
been approximated by the expected relatedness in the ped-
igree matrix KPED, which equals twice the kinship matrix Φ

Kcausal � KPED ¼ E 2Φð Þ:

The entries in the kinship matrix Φ are known as kinship
coefficients. Kinship coefficient φ is the probability that a
random allele from subject j is identical by descent (IBD) to
an allele at the same locus from subject k. As an example,
for a pair of full siblings j and k, this expected probability
equals ¼ and therefore KPED[j,k]=½. For a design that
focuses exclusively on sib pairs and assuming no
dominance contribution, an estimate of the additive genetic
variance σ̂2A is therefore two times the phenotypic correla-
tion rP of sib pairs

σ̂2A ¼ 2rP½sibs�:

When extended pedigrees are available, the entire KPED

can be leveraged in a linear mixed-model (LMM) frame-
work. In this case, the phenotype vector y is modeled as

y � N μ; σ2AKPED þ σ2eI
� �

and the genetic variance σ̂2A is estimated with restricted
maximum likelihood (Shaw 1987; Blangero and Almasy
1997; Lange 2002; Kang et al. 2010).

When genetic data are also available, the total IBD
fraction of the genome KIBD[j,k], also referred to as π̂ (π̂=
2φ), can be estimated for j and k and used in the above
LMM instead of its expected value from KPED[j,k]. In other
words, instead of being approximated with KPED, Kcausal is
now approximated with KIBD (Visscher et al. 2006, 2007).

The advent of SNP chips resulted in the use of thou-
sands of markers in the computation of the GRM, thus
allowing to estimate heritability in samples without pedi-
gree information (Yang et al. 2010; Lee et al. 2011). In
this case, assuming an N ×M genotype matrix G with
zero-column mean and unit-column variance, Kcausal is
approximated with an identity-by-state (IBS) genetic
covariance matrix

KIBS ¼ 1
M

GG
T
:

Given that the set of M-typed SNPs typically does not
include all causal variants and/or it includes tag SNPs that
are in imperfect linkage disequilibrium (LD) with said
variants, the use of KIBS can lead to an underestimation of
the total heritability. For unrelated individuals, this
estimate reflects only the proportion of phenotypic variance
captured directly or indirectly by the typed SNPs—i.e., the
so-called SNP heritability h2g (note that SNP heritability h2g
is smaller than total heritability h2 and is based on unrelated
individuals). The GCTA software (Yang et al. 2011) uses
KIBS on unrelated individuals in order to estimate h2g. It has
been shown that h2g can vary with minor allele frequency
(MAF), LD, and genotype certainty (Speed et al. 2017).
The LDAK software (Speed et al. 2012) can be used in
order to accommodate these parameters in the computation
of KIBS.

More recently, it has been shown that KIBD can be
effectively substituted in the LMM by an IBS genetic
covariance matrix KIBS>t, in which all KIBS entries below a
threshold t are set to zero (Zaitlen et al. 2013). Moreover,
the same authors introduced a method for the simultaneous
estimation of SNP h2g and total heritability h2 by jointly
fitting an LMM with KIBD & KIBS (or KIBS>t instead of
KIBD). This way, the authors provided heritability estimates
with narrower confidence intervals and showed that total
heritability estimates under this approach were very similar
to those under KIBD (or KIBS>t) alone.

In order for existing methods to produce meaningful
heritability estimates, no population structure should be
present in the studied samples (Zaitlen and Kraft 2012).
Population structure can arise when individuals of different
ancestry are found in the same sample and/or when indi-
viduals are admixed. Individuals from different populations
tend to have different minor allele frequencies as well as
different environmental exposures (Zaitlen and Kraft 2012).
Because population structure correlates with environmental
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structure, it can inflate heritability estimates. It has been
shown that, for SNP heritability (h2g) estimates, inclusion of
principal components (PCs) as fixed effects cannot fully
account for the structure bias (Browning and Browning
2011). Moreover, the differences in ancestral allele fre-
quencies affect the computation of KIBS, which ceases to be
proportional to KIBD—even for close relationships. To date,
there is not a clear strategy for estimating and interpreting
heritability in structured/admixed populations.

Nevertheless, an LMM that uses a relationship matrix Kγ
based on local ancestry, i.e., the genetic ancestry of an
individual at a particular chromosomal location, instead of
genotypes has been proposed (Zaitlen et al. 2014). The
authors of this method produced accurate estimates of total
heritability h2 for several phenotypes in admixed African-
American samples by fitting an LMM with Kγ and rescaling
its regression coefficient accordingly. However, this method
also has limitations, as it relies on accurate knowledge of
local ancestry and assumes that samples are unrelated.

In light of the above, finding an efficient framework for
total narrow-sense heritability estimates in admixed popu-
lations with high levels of relatedness remains an open
question. Many experimental designs could benefit from a
better understanding of how heritability estimates are
affected by the simultaneous presence of population and
family structure. In this work, we use extensive simulations
to evaluate the performance of existing classical and LMM
frameworks for estimating total (h2)—but also SNP (h2g)—
heritability in two population-based cohorts from Green-
land. The Greenlanders are a population isolate with many
unique characteristics, such as small census size, high levels
of relatedness, and extensive population structure with
ancestry from both the Inuit and Europeans (Moltke et al.
2015; Pedersen et al. 2017). Our goal is to find a way to
estimate and understand narrow-sense heritability in such
populations, thus gaining valuable insights into the genetic
architecture of complex traits in said populations.

Materials and methods

Samples

Greenlanders

The Greenlandic subjects (N= 4659) came from two gen-
eral health surveys. The first survey (Bjerregaard et al.
2003) consisted of Greenlanders living in Denmark (the
BHH cohort, N= 546), recruited during 1998–1999, as well
as Greenlanders living in Greenland (the B99 cohort, N=
1328), recruited during 1999–2001 as part of a general
population health survey. The second survey (Jørgensen
et al. 2013) consisted of Greenlanders living in Greenland

(the IHIT cohort, N= 2785), recruited during 2005–2010 as
part of a population health survey.

Danes

The population-based Danish sample (N= 5470) was
obtained from Inter99 (Glümer et al. 2004), a randomized
intervention study collected at the Research Centre for
Prevention and Health. In addition, 513 (N= 1169) Danish
sib pairs were identified across several available Danish
cohorts, namely the population-based cohorts (i) Inter99
(Jørgensen et al. 2003) (N= 294), (ii) Helbred2006
(Thuesen et al. 2014) (N= 121), (iii) Helbred2008 (Byberg
et al. 2012) (N= 38), and (iv) Helbred2010 (Aadahl et al.
2014) (N= 57), all recruited from the Research Centre for
Prevention and Health, Glostrup Hospital, Denmark, as well
as cohorts collected for the study of type 2 diabetes, namely
(v) Vejle Diabetes Biobank (Petersen et al. 2016) (N=
570), recruited at the Vejle Hospital, Denmark, (vi) the
ADDITION study (Lauritzen et al. 2000) (N= 8), recruited
at the Department of General Practice at the University of
Aarhus, Denmark, and (vii) SDC (Andreasen et al. 2008)
(N= 81) recruited at the outpatient clinic at Steno Diabetes
Center, Denmark.

Genotyping and quality control

Both the Greenlandic and the unrelated Danish samples
were typed on Illumina’s Cardio-MetaboChip (Illumina,
San Diego, CA, USA). The Cardio-MetaboChip includes
196,725 SNPs selected from genetic studies of cardiovas-
cular, metabolic, and anthropometric traits (Voight et al.
2012). Moreover, the unrelated Danish samples and the
Danish sib pairs were typed on Illumina’s Infinium
OmniExpress chip, which includes ~710,000 markers.
Standard quality control was carried out separately on each
dataset with PLINK v1.9 (Chang et al. 2015) and included
filtering for per-individual (‑‑mind 0.01) and per-
marker (--geno 0.01) genotype missingness= 1%. The
datasets passing quality control consisted of (i) 4659
Greenlanders typed on 187,181 Cardio-MetaboChip auto-
somal SNPs, (ii) 5470 unrelated Danes typed on 186,639
Cardio-MetaboChip and 618,037 OmniExpress autosomal
SNPs, and (iii) 1169 Danes forming sib pairs typed on
609,605 OmniExpress autosomal SNPs.

Phenotype simulations

We simulated 1000 quantitative phenotypes with true total
narrow-sense heritability h2= {0.4, 0.6, 0.8} using real
genetic data from 4659 Greenlanders and 6639 (5470+
1169) Danes. Simulations were carried out separately on
each dataset as follows:

Estimating narrow-sense heritability using family data from admixed populations 753



First, we defined an N × C causal genotype matrix
Gcausal by sampling C= 1500 SNPs from a list of all
available SNPs.

Second, we sampled SNP effects, represented by a C × 1
effect vector b, from a standard normal distribution N(0,1).
In order to model the relationship between the effect size of
SNP i and its allele frequency fi, a genotype matrix G can be
standardized according to the formula

Gj;i ¼ Gj;i � 2fi
� �

2fi 1� fið Þ½ �α2;

(Speed et al. 2017). GCTA assumes a specific inverse
relationship between SNP effect size and allele frequency
by converting the original matrix Gcausal into a zero-column
mean and unit-column variance standard score matrix
Gcausal. This can be seen as a special case of the above
standardizing formula for α=−1.

Third, we computed a vector of polygenic score S by
multiplying Gcausal by the corresponding effect vector b

S ¼ Gcausalb;

and its additive genetic variance as

σ2A ¼ var Sð Þ:

Finally, we computed the phenotype vector P by adding
an environmental vector ε of i.i.d. error terms to vector S

P ¼ Sþ ε:

Error terms were sampled from the distribution
N 0; var Sð Þ 1

h2 � 1
� �� �

(Yang et al. 2011).
In some simulations involving the Greenlanders, we also

modeled the interaction between environment and ancestry
by adding an interaction vector E×Anc to the sum

P ¼ Sþ E� Ancþ ε:

In particular, if h2E�Anc is the proportion of phenotypic
variance explained by the interaction and θInuit is the vector
of proportion of Inuit ancestry, then

E� Anc ¼ θInuit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2E�Anc

h2

� �
varðSÞ

varðθInuitÞ

s
:

As a consequence, the noise terms in ε are now sampled
from N 0; var Sð Þ 1

h2 � 1
� �� var E� Ancð Þ� �

.
In other simulations involving the Greenlandic sib pairs,

we added a vector E reflecting shared environment—i.e., the
household effect (Almasy and Blangero 1998)—between
siblings

P ¼ Sþ Eþ ε:

In particular, we drew environmental effects from a
normal distribution making sure to assign the same value to
all individuals belonging to the same sibling cluster. As a
consequence, the noise terms in ε are now sampled from
N 0; var Sð Þ 1

h2 � 1
� �� var Eð Þ� �

.

Linear mixed model

In an LMM, the phenotype y is modeled as a mixture of
fixed and random effects (i.e., the effects of the causal
variants)

y ¼ μþGcausalbþ ε:

Assuming that b ~ N(0, σ2A
C ) and ε ~Ν(0, σ2eI) under the

GCTA model with α=−1, y follows a multivariate normal
distribution with mean μ and variance

varðyÞ ¼ varðμþGcausalbþ εÞ
¼ varðGcausalbÞ þ varðεÞ
¼ Gcausalvar bð ÞGT

causal þ var εð Þ
¼ Gcausal

σ2A
C G

T
causal þ σ2eI

¼ σ2eKcausal þ σ2eI

;

such that

y � N μ; σ2AKcausal þ σ2eI
� �

:

Total narrow-sense heritability is then defined as

h2 ¼ σ2A
σ2A þ σ2e

:

Because Kcausal is unknown, we approximated it with
other GRMs instead, such as KIBD, KIBS, and KIBS>t.

Relationship matrices

We computed the KIBD matrix for the entire Greenlandic
sample from pairwise kinship coefficients (π̂j;k = 2φj,k=
½k1,j,k + k2,j,k) using RelateAdmix (Moltke and
Albrechtsen 2014) or alternatively REAP (Thornton et al.
2012) on a genotype file with MAF cutoff= 0.01. We
note that the total genomic IBD estimates are generally
robust to the ascertainment scheme of the array used. We
subsequently identified 1465 Greenlandic sib pairs by use
of empirical thresholding over k1 (IBD1, 0.3 < k1 ≤ 0.7)
and k2 (IBD2, 0.1 < k2 ≤ 0.5) on the RelateAdmix output.
We then recomputed the KIBD matrix for the identified sib
pairs using RelateAdmix. KIBD for the Danish sib pairs
was computed with the PLINK --genome flag, using
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MAF cutoff= 0.01. For both the Greenlandic and Danish
sib pairs, we also computed a KIBD>t matrix, in which all
entries below a threshold t= 0.05 were set to zero, and a
K0

IBD matrix, in which all between-sib-pair values were set
to zero.

KIBS and KIBS>t (t= 0.05) for both Greenlanders and
Danes were computed with GCTA using a MAF cutoff=
0.01. Causal variants were removed from the computation
of KIBS and KIBS>t. Because causal variants are selected
from the entire list of available SNPs, we assume that
they have an allele frequency distribution similar to the
genotyped SNPs. We can explicitly control for this by
adding --grm-adj 0 to the GCTA command line;
however, this setting had no effect on our estimates and
was dropped early (data not shown). For some heritability
estimations, we also computed K�

IBS after removing not
only the causal variants, but also all variants in LD with
those (i.e., applying extreme LD pruning in the vicinity of
causal variants). In addition, we estimated heritability by
use of a Kc

IBS matrix in which causal variants were
included in the computation. Finally, household effects in
Greenlandic sib pairs were captured by use of the KHH

matrix, whereby 1’s were assigned to all pairs of an
individual with itself and its siblings and 0’s otherwise.

Heritability estimation

Additive genetic variance σ̂2A and, subsequently, total
narrow-sense heritability h2 were estimated for various
GRMs with the GRM-based restricted maximum likelihood
(GREML) procedure implemented in GCTA and in LDAK.
For the sib pairs in particular, we carried out total narrow-
sense heritability estimations using (i) the IBD-based
matrices (KIBD, KIBD>t, and K0

IBD) alone, (ii) the IBS-
based matrices (KIBS, K�

IBS, and Kc
IBS) alone, (iii) KIBS

together with KIBD, KIBD>t, K
0
IBD, or KIBS>t, and (iv) the

classical sib-pair approach. When two relationship matrices
were used, σ̂2A was equal to the sum of the two variance
components corresponding to said matrices (Zaitlen et al.
2013). In the particular case of evaluating the household
effect, its variance σ̂2HH was subtracted from the final esti-
mation. We also estimated σ̂2A after adjusting for the first 5,
10, or 20 PCs, or a proportion of Inuit ancestry (where
applicable). We note that SNP array ascertainment is not
expected to affect total heritability estimates, as those are
dependant on robust IBD measures. Conversely, SNP her-
itability estimates are sensitive to the ascertainment scheme
of a given genotyping platform.

Analysis settings

We ran phenotype simulations and heritability estimates on
four groups of Greenlanders: (i) all samples (N= 4659), (ii)

sib pairs (N= 1688), (iii) more distantly related individuals
(“cousins”; N= 2615), and (iv) unrelated individuals (N=
585), as well as two separate groups of Danes: (i) unrelated
individuals (N= 5470), and (ii) sib pairs (N= 1169). In
both populations, the π̂ threshold for identifying unrelated
individuals was 0.0625. Note that we did not merge the
unrelated Danes with the Danish sib pairs because, unlike
the Greenlanders, they do not come from the same
population-based study. We estimated heritability on the
above groups using different GRMs, without and with
covariates (summarized in Table 1). For the sake of sim-
plicity, we do not show results that are nonsensical (e.g.,
KIBD for unrelated individuals).

Application to real data

We applied the best-performing model to real phenotypic
data from the two population-based Greenlandic cohorts.
All phenotypes considered were quantitative and consisted
of basic anthropometric traits (height, weight, body mass
index, hip circumference, waist circumference, and waist-
to-hip ratio), as well as serum lipid levels (total cholesterol,
HDL cholesterol, LDL cholesterol, and triglycerides). Data
were rank-transformed to the quantiles of a standard nor-
mal distribution. Age and sex were included as covariates.
We also carried out an empirical investigation of the
impact of allele frequency and LD weighting—as defined
in the LDAK model (Speed et al. 2017)—on heritability
estimates. In particular, we estimated total narrow-sense
heritability for the ten available traits assuming seven
different genotype standardizations by setting LDAK’s
parameter α= {−1.25, −1, −0.75, −0.5, −0.25, 0, 0.25},
and accounting for LD weighting. In this context, the
model used by GCTA can be seen as a special case of the
LDAK model by setting α=−1 and ignoring LD
weighting.

Table 1 Overview of the different approaches for estimating
heritability from simulated data.

Unrelated Sib pairs “Cousins” Alla

LMM

KIBD/KIBD>t /K
0
IBD N/A h2 N/A N/A

KIBS/K
�
IBS h2g h2 N/A N/A

Kc
IBS N/A h2 N/A N/A

KIBD/KIBD>t/K
0
IBD/KIBS>t and KIBS N/A h2 and h2g h2 and h2g h2 and h2g

Classical sib-pair analysis N/A h2 N/A N/A

The linear mixed models were run with and without covariates. Only
the meaningful combinations of methods and sample groups were
considered.

N/A not applicable or not tested.
aAnalysis carried out in Greenlanders only.
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Results

Admixture and relatedness in the Greenlandic and
Danish data

Principal component analysis (PCA) and ADMIXTURE
(Alexander et al. 2009) analysis of 4659 individuals showed
that the general Greenlandic population is the result of
admixture between Greenlandic Inuit and European popu-
lations, and that there is high variance in the admixture
profiles of the Greenlanders (Fig. 1a) (Moltke et al. 2015;
Pedersen et al. 2017). We note that assuming K= 2
ancestral components is a simplification of the admixture
history of the Greenlanders as it has been previously shown
that there are up to three distinct Inuit ancestral components
with FST values as high as 0.04 (Moltke et al. 2015).
Conversely, a sample of 5470 Danish individuals appeared
largely unstructured (Fig. 1b), matching previous observa-
tions (Athanasiadis et al. 2016). We identified a large
number of sib pairs in the Greenlandic sample (1465 pairs,
N= 1688 individuals, Fig. S1A). We also confirmed the
lack of relatedness in the 5470 unrelated Danish samples
(Fig. S1B) and the presence thereof in the 513 Danish sib
pairs (Fig. S1C).

Identity by state in the Greenlandic and Danish data

We illustrate the intrinsic differences of IBS between
admixed and unadmixed populations by plotting the IBS-
based genetic covariance against the IBD-based π̂ estimates

from the Greenlandic and Danish sib pairs, respectively
(Fig. 2). For a given kinship (e.g., full siblings), the corre-
sponding IBS values were far more dispersed in the
Greenlanders (Fig. 2a) than in the Danes (Fig. 2b). This is
due to the heterogeneous admixture profiles in the Green-
landers (Fig. 1a). In other words, whereas IBS is propor-
tional to IBD in unadmixed individuals, this does not hold
for the admixed individuals.

Heritability estimates in phenotypes with no
population-specific environmental effects

We explored a number of approaches for estimating narrow-
sense heritability h2 in the admixed Greenlandic and the
unadmixed Danish population. We simulated quantitative
traits by (i) randomly selecting 1500 causal loci with effect
sizes depending on the allele frequency, such that the effect
sizes of the standardized genotypes are normally distributed
as assumed in the GCTA software, and (ii) adding envir-
onmental noise so that the true simulated h2 was 0.4, 0.6, or
0.8. In these simulations, all individuals were set to having
the same environmental variance regardless of their ances-
try. We then estimated h2 in an LMM framework for dif-
ferent GRMs—e.g., KIBD, KIBS, and KIBS>t and
combinations thereof (Fig. 3; Figs. S2 and S3; Supple-
mentary file). In the following paragraphs, we first report
the results based on one GRM, followed by the results
based on two GRMs. As a reminder, for heritability esti-
mates to be interpreted as “total” (h2), it is required that the
sample includes related individuals.
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Fig. 1 Population structure of the Greenlandic and Danish
cohorts. a Principal component analysis of the entire Greenlandic
sample (N= 4659). Individuals were colored according to their
admixture proportions as estimated with ADMIXTURE assuming
K= 2 ancestral components. Note that Greenlanders with a high

proportion of Inuit ancestry (blue points) present further population
structure along the second principal component. b Principal compo-
nent analysis of the unrelated Danish sample (N= 5470). Due to
persisting batch effects, the Danish data were pruned with PLINK
(window size= 50; step size= 5; r2= 0.1) before the analysis.
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Total heritability estimates in sib pairs using one GRM

The use of KIBD, which captures the fraction of the genome-
shared IBD (π̂), resulted in underestimates of total herit-
ability both in the Greenlandic and the Danish sib pairs

(Fig. 3). Total heritability in the Greenlandic sib pairs was
also underestimated when we used KIBD>t (Fig. 3a) or K

0
IBD

(Fig. S2A). Conversely, using KIBD>t or K
0
IBD in the Danish

sib pairs did not result in any significant downward biases
(Fig. 3b; Fig. S2B). These results were insensitive to the

Fig. 2 Identity by state and identity by descent in the Greenlandic
and Danish sib pairs. a Scatterplot of within-pair (blue) and between-
pair (black) IBS-based genetic covariance against IBD-based π̂= 2φ
estimates for the Greenlandic (MetaboChip) siblings. IBS was com-
puted with GCTA and IBD was computed with RelateAdmix. b
Scatterplot of within-pair (blue) and between-pair (black) IBS-based

genetic covariance against IBD-based π̂= 2φ estimates for the Danish
(OmniExpress) siblings. IBS was computed with GCTA and IBD was
computed with PLINK. A negative IBS value denotes that two indi-
viduals are related to each other less than average. An y= x dotted line
is shown in red.
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Fig. 3 Heritability estimates of
simulated phenotypes without
ancestry-specific
environmental interactions. a
Mean total heritability estimates
and 95% confidence intervals
from 1 000 simulated
phenotypes with true simulated
heritability of 0.4 (peach), 0.6
(yellow) and 0.8 (green) in
Greenlandic sib pairs. b Mean
total heritability estimates and
95% confidence intervals in
Danish sib pairs. Genotype
scaling parameter ɑ was set
to −1 (GCTA’s standard) for
both phenotype simulation and
heritability estimation. KIBD:
IBD-based GRM; KIBD>t: IBD-
based GRM in which all entries
below t= 0.05 were set to zero;
KIBS: IBS-based GRM.
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method of IBD inference: both our method of choice
(RelateAdmix) and an alternative (REAP) returned similar
results (data not shown).

For closely related unadmixed individuals, IBS is pro-
portional to IBD, and therefore estimates based on KIBS will
correspond to the total narrow-sense heritability as well
(Hayes et al. 2009). Indeed, true simulated h2 was fully
recovered in the Danish sib pairs when KIBS was used (Fig.
3b), but showed consistent downward biases across all
simulated h2 values in the Greenlandic sib pairs (Fig. 3a).
Removing all SNPs with any LD with the causal variants
(r2= 0) from the GRM (i.e., using the K�

IBS matrix) returned
lower yet still comparable h2 estimates in both the Green-
landic (Fig. S2A) and Danish sib pairs (Fig. S2B). Con-
versely, when causal variants were included in the
computation of the GRM (i.e., using the Kc

IBS matrix), then
Kc

IBS ffi Kcausal and, consequently, h
2 was recovered (Fig. S4).

Total heritability estimates in sib pairs using two GRMs

The use of two GRMs (e.g., KIBD & KIBS) for heritability
estimates is meant to leverage datasets in which both closely
and more distantly related individuals are present (Zaitlen
et al. 2013). However, when we applied this approach to the
entire Greenlandic dataset (N= 4659), we observed a
downward bias in total heritability estimates for the KIBD &
KIBS model, while using KIBS>t & KIBS erroneously
returned heritability estimates near 1.00 regardless of the
true simulated value (Fig. S5). Nevertheless, when we
performed the two-GRM analysis on the 1465 Greenlandic
sib pairs alone, the true simulated h2 was almost perfectly
recovered for all GRM combinations, with estimates
showing only a minor downward bias (Fig. 3a; Fig. S2A).
Interestingly, these models outperform the classical sib-pair
analysis as evidenced by their lower root-mean-square
deviation (Table S1; Fig. S3). Extending the sample to
include more distant relatives (“cousins”; π̂= [0.15, 0.67];
N= 2615) resulted in underestimates of the total heritability
(Fig. S6), implying that the KIBD & KIBS model performs
efficiently only on first-degree relatives when admixture is
present. We therefore further examined the KIBD & KIBS

model in the following section, focusing our attention on
the sib pairs.

Total heritability estimates of phenotypes with shared
environment between siblings

When we performed the two-GRM analysis of phenotypes
that included the effect of shared environment on the 1465
Greenlandic sib pairs, the true simulated h2 was inflated
(squares in Fig. S7). The stronger the household effect, the
higher the inflation. Notably, the inclusion of 10 PCs or a
proportion of Inuit ancestry did not have any noticeable

effect on the estimates (circles and triangles in Fig. S7).
However, when we performed the KIBD & KIBS & KHH

analysis and subtracted the variance of the household effect,
we were able to recover almost perfectly the total herit-
ability estimates (diamonds in Fig. S7).

SNP heritability estimates in unrelated individuals

As previously mentioned, the use of KIBS on unrelated
individuals yields SNP (h2g) rather than total heritability (h2)
estimates (Yang et al. 2010). Bearing this in mind, we
estimated h2g in both unrelated Greenlanders and unrelated
Danes (Fig. S8; Table S2). In all cases, we found that h2g <
h2, as expected. For the Danish samples in particular, the
MetaboChip h2g was smaller than the OmniExpress h2g.

Heritability estimates in phenotypes with population-
specific environmental effects

In all of the above simulations, we assumed that the
environmental component was independent of ancestry.
However, when we added to the simulated phenotypes an
environmental component correlating with ancestry, the use
of KIBS in the unrelated Greenlanders led to overestimates
of SNP heritability h2g, despite adjusting for population
structure (Table S2).

Adjusting the KIBD model for either the first 10 PCs or a
proportion of Inuit ancestry produced a consistent yet

uninterpretable pattern along the h2E�Anc
h2 ratio (Fig. S9). On

the contrary, adjusting the KIBD & KIBS model for the same
covariates produced a predictable as well as interpretable

pattern across all choices for the
h2E�Anc
h2 ratio (Fig. 4). In

particular, estimates from the KIBD & KIBS model without
covariates corresponded to the inflated quantity

σ2A þ σ2E�Anc

σ2A þ σ2E�Ancþ σ2e
(squares in Fig. 4). After adjustment for

ancestry, the resulting estimates corresponded to removing
the environmental interaction component (σ2E�Anc) from the

numerator and denominator of the formula (i.e., σ2A
σ2A þ σ2e

;

circle and triangle points in Fig. 4). We note that adjustment
for 10 PCs was equivalent to adjustment for a proportion of
Inuit ancestry (Fig. 4).

Thanks to the interpretability of the resulting “condi-
tional” estimates, we were able to recover the true simulated

heritability σ2A
σ2A þ σ2E�Anc þ σ2e

– i.e., the “marginal” heritability

(Weissbrod et al. 2018) (diamond points in Fig. 4). We
achieved this by rescaling the conditional estimates by a

factor of 1� σ̂2E�Anc

σ2P
, where σ̂2E�Anc is an estimate of the

environmental interaction variance computed as

σ̂2E�Anc ¼ σ2P � σ2
P̂
. P̂ is the phenotype residuals after
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regressing out the effect of structure captured either by
admixture proportions or the first two principal components.

Application to real phenotypes

We applied the best model (i.e., KIBD & KIBS & 10 PCs)
and the follow-up PCA-based adjustment to ten quantitative
traits in the 1465 Greenlandic sib pairs (Table 2). Not all
phenotypes were equally sensitive to the PCA-based
adjustment of their estimated conditional heritability,
implying trait-specific environment-by-ancestry interac-
tions. The GCTA model accommodates only one type of
genotype standardization (α=−1), resulting in strong

assumptions about the distribution of effect sizes. We
therefore also used the LDAK model (Speed et al. 2017)
and found that the optimal α value for genotype standar-
dization varied across traits with most phenotypes sup-
porting α ≥−0.5 (Fig. S10; Table S3). Total heritability
estimates under the LDAK model (Speed et al. 2017) were
generally higher than under GCTA (Table 2; Table S3),
with the greatest difference observed for height (0.657 ±
0.042 for GCTA against 0.786 ± 0.041 for LDAK). In
addition, heritability estimates in eight out of ten real phe-
notypes were smaller in the Greenlanders than in their
European or Mexican counterparts estimated with similar
models.

Fig. 4 Mean total heritability estimates for true simulated herit-
ability of 0.4 (peach), 0.6 (yellow), and 0.8 (green) from
1000 simulated phenotypes and 95% confidence intervals of the
sampling distribution in Greenlandic sib pairs under the KIBD &
KIBS model, without (squares) and with (circles and triangles)
population structure covariates, as well as after the additional
PCA-based adjustment (diamonds). The relationship between the
environment-by-ancestry (E × Anc) interaction and the true simulated

heritability is quantified by the h2E�Anc/h
2 ratio on the x axis. The

models with the covariates (circles and triangles) correspond to esti-
mates of conditional total heritability after adjusting for the E × Anc
effect (dotted line). Further rescaling of the conditional heritability
estimates by 1− σ̂2E�Anc

σ2P
returns the marginal simulated heritability

(dashed line). h2E�Anc: proportion of variance captured by the E × Anc
interaction; Inuit adm. :proportion of Inuit admixture. Adjustment for 5
or 20 first PCs returned virtually identical results (data not shown).

Table 2 Total narrow-sense heritability estimates for real phenotypes under the KIBD & KIBD & age & sex & 10 PCs model using (i) GCTA; (ii)
GCTA followed byPCA-based rescaling; and (iii) LDAK with an optimal trait-specific parameter α and LD weighting, as well as comparison
with (iv) published totalheritability estimates in Europeans and Mexicans.

GCTA estimate
(mean ± s.e.)

Rescaled GCTA
point estimate

Best LDAK estimate
(mean ± s.e.)

Estimate from the literature
(mean ± s.e.)

Height 0.656 ± 0.042 0.611 0.786 ± 0.041 0.860 ± 0.117 (Visscher et al. 2007)

Weight 0.533 ± 0.044 0.504 0.536 ± 0.049 0.630 (Mamtani et al. 2014)

Body mass index 0.505 ± 0.045 0.494 0.470 ± 0.05 0.340 ± 0.120 (Vattikuti et al. 2012)

Hip circumference 0.494 ± 0.046 0.472 0.534 ± 0.05 0.680 (Mamtani et al. 2014)

Waist circumference 0.464 ± 0.047 0.461 0.479 ± 0.051 0.620 (Mamtani et al. 2014)

Waist-to-hip ratio 0.352 ± 0.050 0.348 0.385 ± 0.054 0.280 ± 0.120 (Vattikuti et al. 2012)

Total cholesterol 0.487 ± 0.047 0.475 0.523 ± 0.05 0.510 (van Dongen et al. 2013)

HDL cholesterol 0.453 ± 0.046 0.431 0.512 ± 0.049 0.480 ± 0.110 (Vattikuti et al. 2012)

LDL cholesterol 0.497 ± 0.050 0.496 0.534 ± 0.052 0.510 (van Dongen et al. 2013)

Triglycerides 0.312 ± 0.051 0.308 0.333 ± 0.054 0.470 ± 0.120 (Vattikuti et al. 2012)
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Discussion

In this work, we explored the performance of existing
methods for heritability estimates in the admixed Green-
landic population. Our goal was to propose a framework for
unbiased heritability estimates in datasets where both
population and family structure are notably present, as well
as a way to interpret the resulting estimates. Even though
the main focus is on total narrow-sense heritability (h2), we
also report the results for SNP heritability (h2g), a quantity
that has gained a lot of attention in the past decade due to
the availability of GWAS data (Yang et al. 2010; Lee et al.
2011; Browning and Browning 2011).

Through extensive simulations, we observed that all
LMMs using one GRM led to downward biases in total
heritability estimates when applied to family data from
Greenland. Common choices of GRM, such as KIBD and
KIBS, led to underestimates of total heritability in Green-
landic sib pairs, whereas no such biases were generally
observed for the Danish sib pairs, indicating that inheriting
DNA from different ancestral populations (i.e., admixture)
exerts a biasing effect on both IBD- and IBS-based esti-
mates. Even though this is not surprising for the IBS-based
estimates, as the IBS ~ IBD assumption does not hold for the
Greenlanders, it is not very clear why IBD-based heritability
estimates are also affected by admixture. One possible
explanation could be that IBD estimates become less accu-
rate for more distantly related pairs, and therefore including
them in the LMM introduces noise as evidenced by the
underperformance of the full KIBD matrix in the Danes.

We also observed that an LMM with two GRMs (KIBD &
KIBS), a method designed to work on data with notable
presence of family structure (Zaitlen et al. 2013), also led to
downward biases in total heritability estimates when applied
to the entire dataset from Greenland. However, when the
same analysis focused on the Greenlandic sib pairs, it
returned nearly unbiased heritability estimates. This could
be due to the fact that, by restricting the analysis to the sib
pairs, we controlled more efficiently for the noise that
comes from between-sib-pair IBD estimates (Moltke and
Albrechtsen 2014). The KIBD & KIBS model performs well
under the assumption that shared environment among sib-
lings has a negligible effect. We show that a nonzero
household effect can potentially inflate total heritability
estimates, but this effect can be accounted for with the
inclusion of a shared environment matrix KHH—at least in
the simulation setting. We note that the KIBD & KIBS model
outperformed the KIBD model in the Danes, rendering more
advisable the use of two GRMs in total narrow-sense her-
itability estimates in unadmixed populations too.

When there is no environmental correlation with ances-
try, the KIBD & KIBS (or any other combination of one IBD-
and one IBS-based GRM) model provides an accurate

estimate of the true heritability matched only by the clas-
sical sib-pair analysis. However, we expect environmental
structure to exert an inflating effect on heritability estimates
due to its correlation with genetic structure. We found that
adjusting for structure did not remove the inflation.
Nevertheless, we provide a way to interpret the resulting
total heritability estimates from the KIBD & KIBS & 10 PC
models, as well as a way to adjust for the inflation. In
particular, this inflated quantity is referred to as “conditional
heritability” in a recent paper (Weissbrod et al. 2018), after
adjusting for model covariates like in our case. We observed
that, under the KIBD & KIBS & 10 PC models, the resulting
conditional heritability estimate will be inflated by a factor
of 1/(1− h2E�Anc), and we propose an adjustment that
accounts efficiently for this inflation in order to retrieve the
“marginal heritability” (Weissbrod et al. 2018). Finally, we
note that the classical sib-pair approach will also produce
inflated estimates when there is interaction with the envir-
onment, and that adjustment for PCs will not fix the issue.

As for the total narrow-sense heritability estimates of the
real phenotypes obtained with the best model (KIBD &KIBS &
10 PCs), we observe that in some occasions, these are lower
for the Greenlandic population than for European populations.
A notable example is height, for which total heritability in the
Greenlanders was estimated to be 0.656 ± 0.042 (0.611 after
the PCA-based adjustment), whereas in unadmixed Europeans
it was estimated at 0.860 (Visscher et al. 2007). We believe
that this could be due to the reduced genetic diversity
observed in the Greenlanders as a consequence of their par-
ticular population history, which included an extreme and
prolonged bottleneck in recent times (Moltke et al. 2015;
Pedersen et al. 2017), even though we did observe a notable
increase when LD weighting was included in the estimation
model according to LDAK (Speed et al. 2017).

Finally, our SNP heritability (h2g) estimates in unrelated
Greenlanders could be inflated due to genetic structure as
reported previously (Browning and Browning 2011), even
though we could not assess the level of inflation. In any
case, SNP heritability estimates in the Greenlanders should
be interpreted with caution because, as we saw, IBS mea-
sures are affected by admixture that can lead to artificially
increased levels of LD between causal and typed markers.

It is important to note that this work does not solve all
problems of heritability estimates in admixed populations.
Our work should be viewed as a first attempt to explore the
problem, and therefore the insights and solutions we pro-
vide here might not apply in all cases. Additional work is
warranted in order to, e.g., model more accurately complex
patterns of environmental stratification—similar to the
household effect (Almasy and Blangero 1998)—and expo-
sure of the same genetic ancestry to different environmental
backgrounds. In addition, even though there are multiple
methods for improving heritability estimates using, for
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example, LD score regression or partitioning SNPs
according to allele frequencies (Gazal et al. 2017; Evans
et al. 2018), we have not explored them here as they are
harder to implement in admixed populations, where LD
patterns and allele frequencies can be misspecified.

In summary, we advise against the use of KIBD or KIBS

alone for total narrow-sense heritability estimates in popu-
lations with substantial levels of population and family
structure. Instead, KIBD & KIBS & 10 PCs on a subset with
high relatedness (preferably sib pairs) are advisable, given
that KIBD can now be efficiently computed for admixed
populations (Thornton et al. 2012; Moltke and Albrechtsen
2014), with the caveat that the method could be capturing
sizeable levels of shared environment among siblings. In
any case, the resulting conditional h2 estimates should be
viewed as potentially inflated by a factor that we estimated
at 1/(1− h2E�Anc), and an additional PCA-based adjustment
should be carried out in order to recover the marginal total
heritability estimate.

Data availability

The Greenlandic MetaboChip data have been submitted to
the European Genome-Phenome Archive (https://ega-a
rchive.org/) under accession number EGAS00001002641.
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