Skip to main content
. 2020 May 20;11:2516. doi: 10.1038/s41467-020-16330-5

Fig. 1. Optical properties of single silicon vacancies h-VSi.

Fig. 1

a Crystallographic structure of 4H-SiC and position of h-VSi centre (highlighted by a pink sphere symbolising a missing Si atom). b Level structure of the h-VSi centre at zero magnetic field. Ground state (GS) and V1 excited state show degenerate sublevels mS=±12 and mS=±32. Optical transitions between V1 and GS are spin conserving and associated with the transitions A1 and A2. Emission from the second excited state, V1’, is not observed owing to ultrafast relaxation (dashed arrows). c Single h-VSi centre emission spectrum under off-resonant excitation. d ZPL emission fine structure recorded over 20 min. The red dots are raw data. The two emission lines associated with A1 and A2 transitions are clearly resolved. The blue dashed line is a Lorentzian fit to the raw data, giving linewidths (FWHM) of 86 ± 6 and 77 ± 6 MHz for the A1 and A2 lines, respectively. The black line is data after deconvolution correction for the finite linewidth of the scanning Fabry–Pérot cavity (Lorentzian FWHM of 29 ± 2 MHz), the resulting real emission linewidths are 57 ± 6 and 48 ± 6 MHz, respectively, which is very close to the Fourier transform limit. e Second-order autocorrelation function recorded for a single h-VSi centre under pulsed off-resonant excitation (pulse energy: 5.7 pJ). We observe g2 (τ = 0) = 0.12 ± 0.01, clearly indicating single-photon emission. f g2 (τ = 0) as a function of laser pulse energy. The line is a guide to the eye. Error bars correspond to one standard error.