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Abstract

The unique physicochemical characteristics of nanoparticles have recently gained increasing attention in a diverse
set of applications, particularly in the biomedical field. However, concerns about the potential toxicological effects
of nanoparticles remain, as they have a higher tendency to generate excessive amounts of reactive oxygen species
(ROS). Due to the strong oxidation potential, the excess ROS induced by nanoparticles can result in the damage of
biomolecules and organelle structures and lead to protein oxidative carbonylation, lipid peroxidation, DNA/RNA
breakage, and membrane structure destruction, which further cause necrosis, apoptosis, or even mutagenesis. This
review aims to give a summary of the mechanisms and responsible for ROS generation by nanoparticles at the
cellular level and provide insights into the mechanics of ROS-mediated biotoxicity. We summarize the literature on
nanoparticle toxicity and suggest strategies to optimize nanoparticles for biomedical applications.
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Introduction
Nanoparticles (NPs) are a class of novel synthetic particles
with dimensions < 100 nm. Depending on their shape and
size, the distinct physical and chemical characteristics give
NPs different functions. NPs are widely used in many
consumer products, including textiles, cosmetics, water
purification, and food packaging [1, 2]. They are also used
in the engineering of photocatalysts, energy, and optoelec-
tronics [3–6].
In particular, NPs have become a favored material in

biomedical materials and are widely used in biosensors, siR-
NAs delivery, targeted gene knockdown, drug delivery, and
in bio-filling medical materials [7–11]. Further uses of NPs
are still being discovered. For example, Duan et al. [12]
showed that Fe3O4-polyethylene glycol-polyamide-amine-
matrix metalloproteinase2@ chlorin e6 (Fe3O4-PEG-G5-
MMP2@Ce6) nanoprobes significantly inhibited gastric

tumor growth. In another case, pDNA-polyethylenimine
CeO nanoparticles (pDNA-PEI-CeO NPs) could induce
more fibrosarcoma cell apoptosis [13]. Furthermore, hollow
silica-Fe-polyethylene glycol-human epidermal growth fac-
tor receptor 2 nanoparticles (HS-Fe-PEG-HER2 NPs) could
selectively bind tumor cells and were used as imaging
agents to distinguish normal tissue from cancerous cells
[14]. Finally, silver nanoparticles (Ag NPs) serve as nano-
antibiotics, which efficiently combat resistant bacterial
biofilm-associated infections [15].
Despite the potential for positive applications of NPs

in various fields, an increasing number of studies have
indicated their adverse effects on organisms [16, 17] and
cells following NP exposure [18, 19]. The toxic potential
of NPs is dependent on their size and shape, which de-
termined their propensity to induce the generation of
reactive oxygen species (ROS) [20, 21]. The excess gen-
eration ROS may induce an array of physiopathologic
outcomes, including genotoxicity, apoptosis, necrosis,
inflammation, fibrosis, metaplasia, hypertrophy, and car-
cinogenesis [18, 22, 23]. The toxicity of NPs has also
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been shown to enhance the expression of pro-
inflammatory cytokines and activate inflammatory cells,
such as macrophages, which further increase the gener-
ation of ROS [23, 24]. The increased generation of ROS
following exposure to NPs has been also shown to induce
the modulation of cellular functions, with fatal results in
some cases [17, 23, 25]. In this review, we discuss the main
mechanisms underlying the ROS bursts induced by NPs,
analyze the primary reasons for the cytotoxicity of NPs,
and summarize the potential pathogenic effects of NPs.
Our present review provides overwhelming evidence that
the over-production of ROS is the major cause of the
biotoxicity of NPs. Therefore, novel research should aim to
reduce the cytotoxicity of NPs by designing NPs which in-
duce low ROS production.

The Application of NPs in the Biomedical Field
NPs have been used in a variety of medical applications,
and several novel NPs exhibit properties which are
promising for their use in novel biomedical materials. As
summarized in Table 1, Nano-C60 can be used as an
anticancer agent, which inhibits cancer cell proliferation,
both in vivo and in vitro [26]. ZnO NPs have been used
as fillers in orthopedic and dental implants [38]. TiO2

can be used as antibacterial agents, in air and water puri-
fication, and for dental prostheses [52–54]. Davaeifar
et al. reported that a phycocyanin-ZnO nanorod could
protect the cell by decreasing endogenous ROS gener-
ation [68]. Pacurari et al. pointed out that SWCNTs
could be applied as a clinical diagnostic agent and as
bioengineering materials [88]. Beyond that, numerous
NPs can be used as antimicrobial agents, which kill bac-
teria by inducing ROS bursts (Table 1).

The Mechanisms of Increased ROS Induced by NPs
in Cells
ROS are chemically reactive particles that contain oxygen,
including hydrogen peroxide (H2O2), reactive superoxide
anion radicals (O2-), and hydroxyl radicals (•OH) [92, 93].
ROS are predominantly generated in organelles such as
the endoplasmic reticulum (ER), in peroxisomes, and most
notably in the mitochondria [94]. During oxidative phos-
phorylation, oxygen is used for the synthesis of water by
the addition of electrons through the mitochondrial elec-
tron transport chain (ETC). Some of these electrons are
accepted by molecular oxygen to form O2-, which can fur-
ther transform H2O2 and •OH [93].
In a physiological context, ROS are produced as a nat-

ural response to the normal metabolism of oxygen [95]
and serve a vital role in various cellular signaling path-
ways [96, 97]. Dröge and Holmstrom et al. reported that
ROS could activate numerous signaling cascades, includ-
ing the epidermal growth factor (EGF) receptor, the
mitogen-activated protein kinase (MAPK) cascades, the

transcription factor activator protein-1 (AP-1), and the
nuclear factor-KB (NF-κB), and further participated in
the process of mammalian growth, proliferation, and dif-
ferentiation [98, 99]. Further studies showed that ROS
also regulated wound repair [100], survival after hypoxia
[101], intracellular pH homeostasis [102], and innate im-
munity [103].
Nevertheless, following exposure to NPs, the intracel-

lular generation of ROS may sharply increase by indu-
cing ROS bursts in cells [20] (Table 1). The main
mechanistic explanations for ROS bursts are that metal
ions released by NPs promote ROS overexpression by
impairing mitochondrial respiration [30, 104].
The metal ions released by NPs have been shown to

mix into redox cycling and chemocatalysis via the Fenton
reaction [H2O2 + Fe2+ → Fe3+ + HO− + •OH] or Fenton-
like reaction [Ag+ H2O2+H

+ = Ag+ + •OH + H2O] [23,
105, 106]. The dissociated metal ion (i.e., Ag+) also causes
cellular enzyme deactivation, membrane structure disrup-
tion [31, 107], disturbed electron-shuttling process [108],
depleted redox potential levels, reduced mitochondrial
membrane potentials (MMP) [109], and further enhances
the accumulation of intracellular ROS. NPs have been also
reported to promote the intracellular ROS accumulation
by disturbing the electron transfer process [32, 110], in-
creasing the NADP+/NADPH ratio [30], and interfering
mitochondrial function [18]. NPs further interfere with
the expression of oxidative stress-related genes, such as
soxS, soxR, oxyR, and ahpC [58]; antioxidant genes, like
sod1 and gpx 1[111, 112]; and the NADPH production-
related gene met9 [30]. The instability in the expression of
oxidative and antioxidant genes caused by NPs accelerates
intracellular ROS accumulation.
Interestingly, increased ROS production has been

strongly associated with particular sizes and shapes of
NPs [113, 114]. For example, TiO2 NPs contributed to
intracellular ROS generation, which led to nucleic acid
and protein damage [10]. Liao et al. found that 10 nm
TiO2 NPs had higher genotoxicity than other sizes tested
and therefore could induce more ROS generation [115].
In another case, Se NPs promoted the production of
ROS in cells, and the yield of intracellular ROS was
highly associated with the diameter of Se NPs. In this
case, a diameter of 81 nm induced more ROS produc-
tion than other sizes tested [113]. Cho et al. further
showed that the shape of NPs strongly affected their cap-
acity to induce ROS production. Day flower-mimicking
metallic nanoparticles (D-NP) lead to a significantly higher
production of ROS than night flower-mimicking metallic
nanoparticles (N-NP), resulting in an enhanced cell killing
effect [114] (Fig. 1).
NPs can induce intracellular ROS bursts at a very low

concentration (showed in Table 1), for example, Nano-
C60 at 1 μg/mL can significantly increase cell apoptosis
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Table 1 NPs played their biologic role by inducing ROS burst in cells

No. Type of NPs Potential applications ROS Dose Molecule mechanism of biotoxicity References

1 Nano-C60 Antibacterial agents, Anticancer
agents.

↑ 1 μg/mL Necrosis, apoptosis, autophagy, DNA fragmentation,
cell membrane damage.

[26–28]

2 Carbon-
based
nanodots

Antibacterial agents. ↑ > 1 mg/
mL

Oxidize the phospholipids, destroy the membranes. [29]

3 Ag Antibacterial agents. ↑ 150 μg/
mL

Intracellular oxidation, membrane potential variation,
membrane permeability disruption, DNA damage,
genomic instability, cell cycle arrest, cellular contents
release, inactivate proteins, autophagy, disturb
electron transfer process.

[30–36]

4 Gold-silver
nanocage

Antibacterial agents. ↑ 2.5 μg/
mL

Destruction of cell membrane, apoptosis. [37]

5 ZnO Wastewater purification, antibacterial
agents, antitumor agents, fillers in
orthopedic, and dental implants.

↑ 20 μg/
mL

Disintegration the cell membrane, inhibition enzyme
activity, inhibition DNA synthesis, DNA damage,
interruption of energy transduction, mitochondrial
damage, apoptosis, intracellular outflow, mitotic
arrest, carcinogenic.

[38–45]

6 Gold Anticancer agents, antibacterial
agents.

↑ 20 μM Collapse membrane potential, inhibit ATPase
activities, inhibit the subunit of ribosome.

[46, 47]

7 MgO Antibacterial agents, anticancer
agents.

↑ 100 mg/
mL

Lipid peroxidation, apoptosis. [48, 49]

8 Fe3O4 Antibacterial agents. ↑ 32 μg/
mL

DNA cleavage. [50]

9 CdSe Antibacterial agents. ↑ Inhibition proliferation. [51]

10 TiO2 Antimicrobial agents, air and water
purification, dental prosthesis.

↑ 10 μg/
mL

Loss respiratory activity, interfere oxidative
phosphorylation, DNA lesions, mitochondrial
dysfunction, carcinogenicity.

[52–57]

11 Al2O3 Antibacterial agents, cross-linker. ↑ 0.16 mg/
L

DNA damage, mutagenesis. [58, 59]

12 VO2 Antimicrobial agents. ↑ 2.5 μg/
mL

Mitochondrial dysfunction apoptosis. [60, 61]

13 V2O5 Antimicrobial agents. ↑ 20 mg/L Interruption mitochondrial function. [62, 63]

14 PCAE Antimicrobial agents. ↑ 30 μg/
mL

Membrane damages. [64]

15 Co-ZnO Antimicrobial agents. ↑ 20 μg/
mL

Low toxicity. [65]

16 Hybrid Gold/
Polymer

Antimicrobial agents. Unknown Unknown No cytotoxicity. [66]

17 Ag-Fe NPs Antimicrobial agents. ↑ 100 mg/L LDH release, disruption membrane integrity. [67]

18 Phycocyanin-
ZnO nanorod

Protect cell. ↓ 50 μg/
mL

Decrease in ROS production. [68]

19 Ag/lyz-Mt Antimicrobial agents, water
disinfection.

↑ 160 μg/
mL

Damage cell membrane. [69]

20 PEGylated
ZnO

Antimicrobial agents, biological
labeling.

↑ 45 ppm Low cytotoxicity. [70]

21 CdS NPs Antimicrobial agents. ↑ 4 μg/mL Inhibition proper cell septum formation, change
morphology, fragment nuclei.

[71]

22 CdTe Antimicrobial agents. ↑ 0.4 mg/L Morphological damages, apoptosis, genotoxicity. [72]

23 ZnO@APTMS/
Cu QDs

Antibacterial agents. ↑ 1.4 × 10-4

M
Inhibition proliferation. [73]

24 CuO Antimicrobial agents. ↑ 5 mg/L Increase cell permeability, lipid peroxidation, DNA
damage, morphological alterations, mitochondrial
dysfunction, interruption ATP synthesis.

[74–76]

25 Mn3O4 Antioxidant. ↓ 20 ng/μL Protect biomolecules against ROS. [77]
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Table 1 NPs played their biologic role by inducing ROS burst in cells (Continued)

No. Type of NPs Potential applications ROS Dose Molecule mechanism of biotoxicity References

26 PEGylated
nanoceria

Antioxidant. ↓ 10 μM Cell protection, radical scavenger. [78]

27 CeO2 Against oxidative damage. ↓ 2.5 μg/
mL

Suppressed ROS production, protect cells, and
tissues.

[79]

28 AuNPs-rGO-
NC

Anticancer agents, antimicrobial
agents.

↑ 50 μg/
mL

Reduction cell activity, [80]

29 CONPs Anticancer agents. ↑ 10 μM DNA damage. [81]

30 Graphene Cancer theotherapy, bioimaging,
biosensing.

↑ 25 μg/
mL

DNA damage, mutagenesis. [82, 83]

31 Fe2O3 Antibacterial agents. ↑ 80 μg/
mL

DNA damage. [84]

32 NiO Antibacterial agents. ↑ 10 mg/L DNA damage. [85, 86]

33 PtAuNRs Anticancer agents. ↓ OD at 0.5 Induce hyperthermia. [87]

34 SWCNTs Clinical diagnostic agent,
bioengineered research.

↑ 50 μg/
cm2

DNA damage. [88]

35 bsCdS Anticancer agents. ↑ 15 μg/
mL

Apoptosis, depletion ATP, DNA damage. [89]

36 Ag@OTV Against H1N1 infection. ↓ Unknown Less cytotoxicity. [90]

37 PATA3-C4
@CuS

Antibacterial agents. ↑ 5.5 μg/
mL

Less cytotoxicity. [91]

Fig. 1 The production of ROS induced by NPs in surrounding solution and cells [32]. The electrons generated from NPs could enter into cells and
disturb the functions of respiratory chain, then enhance the intracellular ROS production. Electrons also could react with O2 directly and increased
the generation of extracellular ROS
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by inducing oxidative stress [26, 27]. Notably, most NPs
have a dose-dependent effect, as has been reported for
VO2 NPs [60, 61] and CuO NPs [74, 75].

Catastrophic Consequences of NPs on Cells by
Increased ROS Production
NPs which enter the cell often have adverse effects on it.
The most supported explanation for the cytotoxicity of
NPs is that oxidative stress is induced by a ROS burst.
ROS bursts caused by NPs have resulted in the oxidative
modification of biomacromolecules, in the damage of
cellular structures, in the developing drug resistance, in
gene mutation, and in carcinogenesis [116, 117]. Fur-
thermore, ROS bursts have altered the normal physio-
logical functions of cells, as in is the case with trigger
inflammation, which ultimately blocks cell functions and
damages the organism [23, 118, 119]. Generally, NPs are
first adsorbed on the cell surface, and then passed
through the membrane into the cell, where they induce
ROS generation [36]. Due to its strong oxidative poten-
tial, ROS is highly stressful to cell [46] and attacks nearly
all types of biomolecules in the cell, including carbohy-
drates, nucleic acids, unsaturated fatty acids, proteins
and amino acids, and vitamins [36, 120, 121] (Fig. 2).

ROS Results in Lipid Peroxidate and Membrane
Structure Damage
Lipids, especially unsaturated fatty acids, are important
intracellular macromolecules, which play key roles in the
structure and functioning of the cell membrane. NPs are

strongly attracted to the cell membrane, where they can
generate ROS and lead to outer membrane lipid peroxi-
dation. The altered fatty acid content of the cell mem-
brane may result in increased cell permeability, which
results in the uncontrolled transport of NPs from the
extracellular environment into the cytoplasm, where cel-
lular damage may progress further [76, 122].
Intracellular NPs induce the next round of ROS bursts.

Overburdened ROS lead to the rupturing of the mem-
branes of organelles, the leakage of the organelles’ con-
tents [52, 123], the inactivation of cell receptors [124],
the release of lactate dehydrogenase (LDH), and further
irreversible cell damage [125].

ROS Attacks Proteins and Results in Functional
Inactivation
ROS attacks the hydrophobic residues of amino acids,
contributing to the breakage of peptide bonds and inter-
fering with the function of these proteins [126–128].
Carbonylation is another feature of proteins subjected to
oxidative damage [129]. Carbonylated proteins form
aggregates that are chemically irreversible and cannot be
degraded via proteasomes, leading to the permanent loss
of function in these proteins [130, 131]. Gurunathan
et al. [132] showed that PtNPs could enhance the gener-
ation of ROS and increase carbonylated protein levels,
which inhibited osteosarcoma proliferation and contrib-
uted to apoptosis. In one case, combustion and friction-
derived nanoparticles (CFDNPs) had accumulated in the
brain of young adults with Alzheimer’s disease, which

Fig. 2 The crucial role of ROS in the cytotoxicity induced by NPs [33]. The possible cellular events taking place after NPs interact with intracellular systems
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likely promoted ROS generation, resulting in protein
misfolding, aggregation, and fibrillation [133]. Further-
more, Pelgrift et al. showed that Mg NPs may inhibit
gene transcription or damage proteins directly [10].

ROS-Induced Gene Mutation
Nucleic acids, including DNA and RNA, are essential to cell
function, growth, and development, and their component
nucleotides are vulnerable targets of ROS [134–136]. Due to
their low redox potential, ROS can directly react with
nucleobases and modify them [137]. For example, ROS
could oxidize guanine to 8-oxo-7,8 dihydroguanine (8-
oxoG) [138] and adenine to 1,2-dihydro-2-oxoadenine (2-
oxoA) [139]. These base modifications lead to DNA damage
[140]. Because of their genotoxic potential and their capacity
to induce ROS formation [141], NPs significantly induce sin-
gle- and double-strand DNA breakages [142, 143], chromo-
some damage, and aneuploid genic events [144].
The increased production of ROS is the main cause of

gene miscoding, aneuploidy, polyploidy, and the activation
of mutagenesis in cells exposed to NPs [145–148]. Among
the nucleotide pools, guanine is the most vulnerable and is
easily oxidized to 8-oxoG by ROS [149]. The increased level
of 8-oxo-dG in DNA results in the mismatch of DNA bases
[150]. Similarly, the incorporation of A:8-oxoG causes an
increased rate of G:C > T:A deleterious transversion muta-
tions [151, 152]. The ratio of G:C > T:A transversion to G:
C > A:T transition mutation has also been used as an index
to quantify the oxidative DNA damage [153].
The generation of ROS induced by NPs resulted in the

accumulation of DNA damage, which drives the devel-
opment of mutagenicity [154], oncogenesis [155], multi-
drug resistance [156, 157], aging, and immune escape
[158]. Jin et al. showed that the overproduction of ROS
dramatically increased mutagenesis of DNA-binding
transcriptional regulator genes, which resulted in an ex-
pedited antibiotic efflux [159], which in turn promotes
the multiple-antibiotic resistance of bacteria [34]. Gian-
noni et al. reported that mitochondrial DNA mutations
occurred with increasing intracellular ROS and further
damaged the activity of ETC complex I and resulted in
mitochondrial dysfunction [160, 161].
DNA damage induced by NPs has been shown to in-

hibit amino acid synthesis, replication [162], and cause
the aberrant accumulation of p53 [163] and Rab51 pro-
teins [82, 142]. DNA damage may also delay or fully
arrest the cell [164]. Cells with damaged DNA lose the
capacity for growth and proliferation [165] and may
eventually result in cell death [166] (Fig. 3).

Increased Production of ROS Induces Cell Damage
and Disease Occurrence
NP cytotoxicity is associated with oxidative stress, en-
dogenous ROS production, and the depletion of the

intracellular antioxidant pools. The increased oxidative
stress leads to oxidative damage to biomacromolecules,
which further affects the normal functioning of the cell
and contributes to the occurrence and development of
various diseases [167].
NPs induce membrane damage and enhance the trans-

port of NPs into the cytoplasm. NPs concentrate in lyso-
somes, mitochondria, and the nucleus, which results in
catastrophic consequences for the cell [168, 169]. It has
been reported that NPs can reduce adenosine triphos-
phate (ATP) generation [89], deplete glutathione, induce
protein mistranslation [170], rupture lysosomes [171], and
inhibit the ribosomal subunit from binding transfer RNA
(tRNA). These cellular events indicate a collapse of the
fundamental biological process in the cell and lead to a
significant decrease in cell viability [47]. Singh and Scherz-
Shouval et al. reported that NPs could disturb cytoskeletal
functions by inducing ROS generation and activate the
process of autophagic and apoptosis in cells [89].
NPs enter the body via different routes, for instance

through the skin, lungs, or intestinal tract (Fig. 4a) and
can have a wide variety of toxicological effects and
induce biological responses such as inflammation and
immune responses [172–174]. In one case, exposure of
cells to silica NPs caused macrophages to secrete a large
amounts of interleukin-1β (IL-1β), which ultimately re-
sulted in cell death [175]. Gao and colleagues reported
that pulmonary inflammation was considerably higher in
mice after exposure to carbon nanotubes, which could
activate alveolar macrophages and induce a strong in-
flammatory response [176]. In another study, guinea pigs
exposed to ZnO NPs suffered pulmonary damage, which
leads to a decrease in total lung capacity and vital cap-
acity [177–179].
ZnO NPs also induced severe injuries in the alveolar

epithelial barrier and caused inflammation in the human
lungs [180]. In another case, NPs absorbed into the
intestines caused the inflammation and degradation of
the intestinal mucosa [181]. Shubayev et al. noted that
Mg NPs enhanced the migration of macrophages to the
nervous system by degrading the blood-brain and blood-
nerve barriers in an MMP-dependent manner [182].
Furthermore, mice which inhaled carbon nanotubes
exhibited immunosuppression and repressed antibody
response in naive spleen cells [183]. Finally, Cd NPs
caused a severe decrease in blood monocyte viability, ul-
timately resulting in immunodeficiency [184].
In addition to the above pathologies, the highly vari-

able level of ROS has been identified as the main cause
of the development of numerous human diseases.
Tretyakova and Liou et al. showed that oxidized DNA
tends to form DNA-protein conjugates, which accumu-
late in the heart and brain and contribute to the occur-
rence of cancer, aging-related diseases, and chronic
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Fig. 4 NP entrance into and damage of organs. a NPs could enter into the organisms through the oral cavity, nasal cavity, respiratory tract,
kidneys, and intestinal tract; b NPs could spread by systemic circulation and accumulate in the kidneys, liver, heart, brain, intestinal tract, and
lungs, leading to organ dysfunction (This figure was created in BioRender.com).

Fig. 3 Cellular events induced by NPs. ① NPs contribute to the destruction of the cell membrane and to lipid peroxidation. ② The lysosomal
membrane is destroyed by NPs and results in the release of their contents. ③ The mitochondrial membrane is damaged by NPs, leading to
content release. NPs reduce the generation of ATP and increase the production of ROS. ④ The ROS induced by NPs results in the mistranslation
of RNA. ⑤ NPs prevent the binding of tRNA to the ribosome. ⑥ The ROS induced by NPs result in the polymerization of proteins and DNA. ⑦
The ROS induced by NPs leads to DNA mutations ⑧ The nuclear membrane is destroyed by NPs, resulting in the release of its contents
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inflammation [185, 186]. Andersen [187] concluded that
diabetes, as well as cardiovascular and neurodegenerative
diseases, were highly related to the imbalance of ROS.
Additionally, Pérez-Rosés et al. showed that increased
ROS promoted Alzheimer’s and Parkinson’s disease de-
velopment [188].
It has been further reported that NPs promote the

apoptosis of breast cancer cells [35] and destroy malig-
nant tissues and pathogens by promoting the generation
of ROS [189, 190]. However, ROS has also been found
to induce the proliferation of both normal and cancer-
ous cells, stimulating mutations, and initiating carcino-
genesis in normal cells and multidrug resistance in
cancerous cells [191, 192]. Handy et al. found that fish
exposed to carbon nanotubes exhibited granulomas in
their lungs and tumors in their livers with extended ex-
posure times [193]. Some NPs have caused multiple
organ failure, primarily affecting the heart, lung, kidneys,
and liver. TiO2 NPs have been shown to promote
reduced body weight, spleen lesions, blood clotting in
the respiratory system, necrosis and fibrosis in liver cells,
and in alveolar septal incrassation [194, 195]. In one
study, NPs also prevented stem cell differentiation,
which aggravated organ damage [196]. Further research
has also reported that NPs decreased sperm quality
[197] and that exposure of sperm to carbon NPs influ-
enced their ability to fertilize eggs and impaired the
development of the embryos in purple sea urchins [198].
Mounting evidence shows the toxicological effects of
NPs on microorganisms, algae, nematode, plants, ani-
mals, and humans specifically [22, 199, 200] (Fig. 4b).

The New Type of NPs with Fewer or No
Cytotoxicity
NPs possess a range of biomedical properties that make
them valuable (e.g., as antibacterial and anticancer agents
[26–28]). Their main mode of action is their ability to
increase the production of ROS in cells; however, this
property also makes these particles toxic, by causing gene
mutation, apoptosis, and even carcinogenesis [45, 49, 58].
Consequently, there is an urgent need to develop new
NPs which retain their required properties without leading
to excessive ROS production. Recent studies have re-
ported on novel types of NPs which could remove intra-
cellular ROS. These types fall into two classes: (1) NPs
which can scavenge ROS [77] and (2) NPs which are
coated with additional materials to decrease their cytotox-
icity [87].
Panikkanvalappil and colleagues showed that Pt NPs

inhibit the double-strand breakage of DNA by degrading
ROS [201]. In another case, Mn3O4 NPs modulated cel-
lular redox resulting in the protection of biomacromole-
cules against oxidative stress [77]. Furthermore, the
CeO2 NP is a novel agent that protects cells and tissues

against oxidative damage with its free radical-scavenging
capacity [79, 202].
H2O2 is the main by-product of NP-cell interactions.

H2O2 destroys important biomolecules including pro-
teins, lipids, and nucleic acids. However, when cells were
treated with specialized MNPs coated with mercaptopro-
pionic acid (MPA-NPs) or aminated silica (SiO2-MNPs),
such damage was not observed [203, 204]. Similarly, GO
coated with polyvinylpyrrolidone (PVP) has fewer toxic
effects on dendritic cell (DCs), T-lymphocytes, and mac-
rophages than without this coating. PVP-GO has been
shown to reduce the apoptosis of T-lymphocytes and
even increase the activity of macrophages [205]. Pt-coated
AuNRs (PtAuNRs) retain the efficacy of traditional gold
nanorods (AuNR) and can trigger cell death of desired
cells while scavenging the ROS, thereby protecting
healthy, untreated cells from the indirect death induced
by ROS production [87].

Conclusions and Outlook
NPs that possess unique physicochemical properties (e.g.,
ultra-small size, large surface area to mass ratio, and high
reactivity) make them highly desirable in different applica-
tions. Engineered NPs for commercial purposes have been
rapidly increasing. For that reason, the biosafety of NPs
has gained more attention in the public. In this review, we
summarized the mechanisms and responsible for ROS
formation by NPs at the cellular level as well as recent ad-
vances of ROS-related NP toxicity in the biomedical field
and highlighted the emerging field of cell-friendly NPs.
The generation of ROS induced by NPs associated with
their size, morphology, surface area, and component. In
addition, ROS has bio-multifunctional in cell biology and
biomedicine as well as the key mediator of cellular signal-
ing, including cell apoptosis, viability, and differentiation.
However, to improve the biosafety of NPs and acceler-

ate their use in the biomedical field, some bottlenecks
need to be overcome and much work is still required.
First, it is expected that high-throughput methods
(HTMs) are designed to efficiently detect the biotoxicity
of NPs in vitro and in vivo. HTMs could save time and
resources, combine multiple parameters on a single sys-
tem, and minimize methodological or systematic errors.
It also would offer a deep understanding of the relation-
ship between NP properties and cell responses, which
could help us identify the optimal condition.
Second, the molecular and cellular mechanisms related

to the biotoxicity of NP-induced ROS are still unclear.
There is a demand to further explore the mechanisms
associated with the formation of ROS by NPs, which
would provide more information to modify the chemico-
physico features of NPs to control the ROS generation.
This could help researchers develop novel strategies to
reduce the hazards of engineered NPs for accelerating
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their clinical and commercial translation in the biomed-
ical filed.
Finally, due to their structural characteristics, NPs may

enter the body freely via multiple routes, and the accu-
mulation of NPs in the body can induce inflammation
and immune responses, which result in cell injury or
death, organ dysfunction, and ultimately stimulate the
occurrence of numerous diseases, such as Alzheimer’s,
Parkinson’s, liver inflammation, and dysembryoplasia.
These issues have become more pressing with the wide-
spread use of NPs.
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