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Abstract

The gasotransmitters, nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are 

endogenously-produced volatile molecules that perform signaling functions throughout the body. 

In biological tissues, these small, lipid-permeable molecules exist in free gaseous form for only 

seconds or less, and thus they are ideal for paracrine signaling that can be controlled rapidly by 

changes in their rates of production or consumption. In addition, tissue concentrations of the 

gasotransmitters are influenced by fluctuations in the level of O2 and reactive oxygen species 

(ROS). The normal transition from fetus to newborn involves a several-fold increase in tissue O2 

tensions and ROS, and requires rapid morphological and functional adaptations to the extrauterine 

environment. This review summarizes the role of gasotransmitters as it pertains to newborn 

physiology. Particular focus is given to the vasculature, ventilatory, and gastrointestinal systems, 

each of which uniquely illustrate the function of gasotransmitters in the birth transition and 

newborn periods. Moreover, given the relative lack of studies on the role that gasotransmitters play 

in the newborn, particularly that of H2S and CO, important gaps in knowledge are highlighted 

throughout the review.
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I. INTRODUCTION

Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), the three gases 

categorized as gasotransmitters [1], have each followed a similar course in the history of 

biomedical science: from initial consideration as merely environmental toxins to the 

eventual realization that they are endogenous signaling molecules. This revelation, and the 

subsequent study of the physiological role of these gasotransmitters, has extended 

understanding of inter- and intracellular signaling mechanisms in several ways. First, unlike 

canonical receptor-ligand membrane transduction pathways, these gases diffuse across lipid 
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membranes and can thus signal between cells and intracellular compartments more freely 

than larger signaling molecules. Second, the gasotransmitters can interact with a longer and 

more varied list of targets than larger conventional signaling molecules that are often 

selective for only one receptor. Third, the chemical reactivity of NO and H2S, and the 

bioactivity of many of their reaction products, confers a level of complexity to their 

signaling capabilities that goes well beyond simple ligand-receptor interactions 

characteristic of more classical signaling molecules. Finally, oxygen exerts an influence on 

the activity of gasotransmitters by a variety of mechanisms, positioning them as more 

versatile players in oxygen-sensing than can be achieved with most other second messenger 

systems.

A defining characteristic of neonatal physiology is the need to adapt to extrauterine life, a 

transition that includes dramatic and rapid changes in cardiovascular function, several-fold 

increases in tissue dissolved oxygen levels, and transformative modifications in how oxygen, 

carbon dioxide, nutrients, and wastes are exchanged with the environment. Studies in adult 

humans and animals have demonstrated that gasotransmitters play an important role in 

regulating many of the systems that are critical to the birth transition and neonatal 

homeostasis, such as vascular tone and ventilatory control. In some cases the roles of 

gasotransmitters have actually been studied in newborns, but most work, particularly for H2S 

and CO, has been done in adults and can only be tenuously extrapolated to the newborn. 

This is despite the fact that gasotransmitters would seem to be ideal candidates as signaling 

molecules for the rapid, oxygen-sensitive changes that occur at birth.

In this review, we present a summary of the work that has been done to characterize the role 

of gasotransmitters in neonatal physiology. We also highlight understudied areas where 

gasotransmitters can be reasonably expected to play a key role in the newborn. It is our hope 

that this article will not only be useful to the neonatal physiologists looking to include 

gasotransmitters in their studies, but that it will also point out aspects of newborn physiology 

that may offer useful insights into the signaling mechanisms of gasotransmitters in general. 

This review provides an overview of gasotransmitters as they pertain to the newborn, and the 

reader interested in more detail about gasotransmitters is referred to summaries in the field 

[2–5].

II. DETERMINANTS OF TISSUE CONCENTRATIONS

The gasotransmitters have a relatively short half life in biological tissues, ranging from a few 

milliseconds in blood to seconds in most tissues. As a result, concentrations of their free 

gaseous forms can fluctuate rapidly in response to changes in the rates of either production 

or clearance. Both enzyme-dependent and enzyme-independent pathways have been found 

for all three gasotransmitters, although enzyme-dependent production appears to be the 

predominant endogenous source [6–9].

All three of the gasotransmitters rapidly react with or bind to hemoglobin, and thus the 

blood serves as a reservoir depot as well as a pathway for biochemical clearance. Clearance 

of NO and H2S can also occur by various redox reactions, while CO is chemically inert. In 

this section we will briefly summarize the pathways of synthesis and clearance that 
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determine the concentrations of free NO, H2S, and CO. The rates of both production and 

metabolism of the gasotransmitters are also influenced by O2 concentrations, and thus we 

will discuss how gasotransmitter levels are affected by the dramatic changes in PO2 that 

occur at birth.

Nitric oxide

The concentration of free NO in circulation is believed to be at or below low nanomolar 

levels, while the perivascular concentration of endogenous NO is generally estimated to be 

at or below mid-nanomolar levels [10,11]. These concentrations are the result of a balance of 

several NO-producing, NO-preserving, and NO-consuming, pathways. These include the 

synthesis of NO by NO synthase (NOS), preservation of NO in the form of various NO 

adducts that can be converted back into NO, and rapid NO-scavenging reactions that oxidize 

NO to nitrate. In the newborn, most of these pathways are altered so as to decrease NO 

availability [12–18].

NO Synthesis.—De novo NO is produced endogenously by endothelial or neuronal NO 

synthases (eNOS or nNOS) that are present constitutively [19], or by inducible NO synthase 

(iNOS) that can be upregulated in various tissues in response to inflammatory stimuli [20]. 

NO production by NOS is of significant developmental importance, as eNOS deficiency 

correlates with defective angiogenesis in hypoplastic human fetal lungs [21], and mice 

deficient for eNOS display a range of abnormalities including fetal growth restriction, 

reduced survival, an increased rate of limb abnormalities [22,23], and impaired myocardial 

angiogenesis and morphology [24,25].

Several factors indicate that overall production of NO by NOS enzymes is decreased during 

the postnatal period. First, postnatal levels of all three NOS isoforms are generally reported 

to be decreased compared to the fetus [12–15]. Second, asymmetric dimethylarginine 

(ADMA), an endogenous competitive inhibitor of NOS, is increased in neonates [26], 

especially in preterm males [27,28]. Third, plasma concentrations of nitrite, which serve as 

an index of NOS activity [29–31], are similar in fetal umbilical and maternal blood, but fall 

by more than 50% within minutes after birth and remain low for a week or more. This 

phenomenon is particularly pronounced in preterm infants [17,18]. Therefore, NO 

biosynthesis by NOS appears to be suppressed in newborns. Availability of L-arginine, the 

primary substrate of all three NOS isoforms and an essential amino acid in newborns [32], is 

also a determinant of NOS activity. Although plasma L-arginine concentrations in term 

infants are comparable to those of adults, they are markedly lower in premature infants [32–

34] as well as term infants with pulmonary hypertension [35,36], suggesting L-arginine 

deficiency may also contribute to decreased NO production in some neonatal pathologies 

[37,38].

NO storage and metabolism.—For some time after the discovery of NOS, it was widely 

held that the NO it produced was metabolized rapidly via irreversible pathways that ended 

with nitrite and nitrate, two anions once thought to have little physiological relevance. 

However, work over the past two decades has now established a number of mechanisms by 

which endogenous NO can be preserved in the form of NO-derived adducts that either retain 
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NO-like bioactivity or are capable of releasing free NO again. These NO-active compounds 

(NOx) include nitrosothiols (SNOs), heme and iron-nitrosyls (hemeNO and FeNO), and 

dinitrosyl iron complexes (DNICs). Even nitrite and nitrate are now widely acknowledged to 

contribute to NO signaling, the former by reduction to NO in reaction with various metal-

containing enzymes [39] and the latter by bacterial nitrate reductase enzymes that convert 

nitrate to nitrite [40]. Somewhat ironically, early experiments that detected vasodilation by 

what was later determined to be NO were likely stimulating the release NO from these NOx 

species using ultraviolet light rather than by activation of NO production by NOS [41]. 

These NOx species constitute a significant reservoir of NO in the circulation and within 

tissues, but the relative concentrations of these compounds and how they are formed and 

regulated is still largely uncharacterized, particularly in the fetus and newborn.

As mentioned above, although circulating NOx concentrations are very well maintained in 

adults [31] plasma concentrations of NOx fall abruptly at birth and are maintained at levels 

well below those of the fetus and adult for the first few days of life [17,18]. This 

phenomenon may be partly due to reduced NOS levels and activity. In addition, neonates 

display markedly lower dietary nitrate and nitrite intake [42], lower rates of bacterial nitrate-

to-nitrite reduction [16], and greater renal nitrite and nitrate excretion [18,43,44]. The extent 

to which this birth-related fall in NOx levels contributes to neonatal physiology remains to 

be determined.

Effects of O2 on NO levels.—Oxygen availability is a key determinant of both 

production and consumption of NO [45], and the question thus arises how the increase in O2 

concentrations at birth may affect steady-state concentrations of NO. Briefly, O2 is required 

for the production of NO from L-arginine by NOS. Although the Km of eNOS for O2 (23 

μM) is low enough that NO production in the fetus is likely not limited by O2 availability, 

the Km for iNOS (135 μM) and nNOS (350 μM) [46] is markedly higher than fetal dissolved 

O2 concentrations (arterial ~25 to 30 μM) and thus NO production by these NOS isoforms 

would seem to be oxygen-limited. Nonetheless, there is evidence that nNOS does function in 

the sheep fetus, as selective inhibition of nNOS has been found to attenuate post-ischemic 

brain injury [47].

In addition to NO production by NOS, the production of NO from NOx species such as 

nitrite is also O2-dependent. Under hypoxic conditions the production of NO from the 

reaction of nitrite with deoxygenated heme iron becomes more prevalent [39]. In the case of 

hemoglobin, this reaction (NO2− + Hb + H+ → NO + MetHb + OH−) has been proposed to 

result in NO-mediated vasodilation that is maximal at oxyhemoglobin saturations of 

approximately 50% [48]. However, although fetal hemoglobin facilitates this reaction 

approximately twice as fast as adult hemoglobin [49] and deoxyhemoglobin is more 

prevalent in the fetus than in the adult, nitrite only produces vasodilation at 

supraphysiological concentrations in fetal lambs [50], calling the physiological relevance of 

this reaction into question. For many of the other heme-containing proteins, such as 

cytoglobin, myoglobin, and neuroglobin, O2-affinity is so great that availability of the 

deoxygenated heme for reducing nitrite would appear to be limited at physiological O2 

tensions in the adult [39]. Nonetheless, although the mechanisms remain undefined, there is 

abundant evidence that nitrite contributes to NO-dependent signaling pathways in the adult, 
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and that this is potentiated by hypoxia [40]. The physiological relevance of nitrite-derived 

NO at fetal O2 tenions, or of the markedly reduced nitrite levels in the newborn are not yet 

understood. They conceivably relate to the redistribution of cardiac output among organs 

that takes place at birth.

O2 is also required for the predominant pathways of NO consumption in biological tissues, 

and thus rates of NO consumption would be expected to vary by more than 10-fold across 

the range of fetal-to-newborn tissue O2 tensions (Figure 2). The O2-dependence of NO 

consumption in tissues does not appear to be due to simple NO autooxidation, as it proceeds 

by different kinetics and is markedly faster in biological matrices than in aqueous buffer 

[45,51,52]. In adult plasma, the conversion of NO to nitrite has been attributed to 

ceruloplasmin [53], but this may not be the predominant mechanism of NO consumption in 

neonates as fetal plasma NO consumption does not correlate with ceruloplasmin 

concentrations in sheep or humans [54]. Thus, the mechanisms of O2-dependent NO 

consumption and whether these pathways change developmentally, remain unanswered 

questions.

Hydrogen Sulfide

The study of H2S is fraught with many of the same challenges as NO in that it reacts rapidly 

by numerous pathways in biological tissues, and assays that reliably distinguish between 

free H2S and its metabolites have been difficult to establish [55]. Most recent work indicates 

that the physiological concentration of free H2S is low nanomolar or less in blood, and tens 

of nanomolar in tissues [55]. These concentrations are determined by a dynamic equilibrium 

between rates of H2S synthesis and consumption. Likewise, although H2S production is not 

O2-dependent, H2S consumption is, and thus birth-related changes in O2 levels are likely to 

affect H2S steady-state levels.

H2S synthesis and storage.—H2S is synthesized from the sulfur in cysteine or its 

derivatives by the tissue specific-enzymes cystathionine-γ-lyase (CSE), cystathionine-β-

lyase (CBS), and 3-mercaptopyruvate sulfurtransfurase (3-MST) (Figure 3) [9]. CSE and 

CBS are absent or sparse and levels of activity are relatively low in the human fetus and 

newborn [56]. Hepatic CSE expression and activity increase rapidly after birth reaching 

mature levels at about 3 months of age [57,58]. Availability of cysteine, a conditionally 

essential amino acid in preterm infants [59,60], may also be limited during neonatal life. 

Therefore, like NO, H2S biosynthesis also seems to be developmentally unfavored in the 

newborn. However, significant physiological importance of H2S has been indicated in 

neonates. Pulmonary vascular development and lung alveolarization are impaired in CSE−/− 

and CBS−/− mouse pups [61] and CBS−/− mice have a high mortality rate after the third and 

fourth postnatal weeks [62]. CBS deficiency is also associated with severe abnormalities of 

the eye, skeleton, vasculature, and central nervous system [63].

H2S is a reactive molecule with a half life of seconds to minutes in the body [64,65]. At 

physiological pH, H2S exists at equilibrium with HS− (28% vs 72% at 25°C) [66]. Pathways 

for the clearance of free H2S are shown in Figure 3. They include: 1) mitochondrial 

oxidation to produce sulfite, thiosulfate, or sulfate; 2) binding to heme (ferric preferred over 
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ferrous) to form an H2S complex which then leads to polysulfide and thiosulfate formation; 

3) reaction with thiols, although prior oxidation of either H2S or the reactant thiol is 

required, to make persulfide; 4) assemblies of iron-sulfur clusters; and 5) oxidation to 

hydrogen thioperoxide, sulfenic acid, or sulfinic acid. Akin to NO, the concentrations of H2S 

metabolites are much higher than that of the free H2S itself. It was largely due to assay 

methods that did not distinguish between H2S and these metabolites that endogenous H2S 

concentrations were previously overestimated [55].

Similar to NO, some H2S metabolites can also regenerate free H2S by various pathways, and 

thus serve as a stable storage form of H2S [67–69]. Sulfane sulfur such as persulfide is one 

example of labile sulfur compounds that can release H2S by reduction [70]. So far, 

knowledge about the physiological role of these sulfur compounds is very limited [67,71]. 

Information is even more sparse with regard to the fetus and newborn, with only one study 

measuring urine thiosulfate as a marker of whole body H2S turnover in newborns. This work 

found that preterm newborns at greatest risk of microvascular dysfunction also have the 

highest levels of H2S turnover, suggesting that overproduction of this gasotransmitter may 

play a role in the pathology of these patients [72].

Effects of O2 on H2S levels.—Unlike NO and CO, O2 is not required to produce H2S. 

However, the predominant pathways for H2S consumption do require O2, and thus O2 

tensions tend to be inversely proportional to free H2S concentrations. This has been 

demonstrated in tissue homogenates from several vertebrate organs including the salamander 

gastric tract [73], trout gill and heart [74,75], rat lung [76], seal and bovine pulmonary 

arteries [77], and mouse brain and liver [55]. In the adult lung, the O2-dependence of H2S 

consumption has an EC50 of approximately 5 mmHg PO2, and an Emax of >30 mmHg, 

which encompasses the physiological range of fetal tissue PO2s (~5 to 25 mmHg) [78]. 

Although H2S concentrations are largely unstudied in the fetus and newborn, extrapolation 

of what is known about O2-dependence of H2S metabolism in adult tissues would predict 

that H2S concentrations are markedly elevated in the fetus and then to fall rapidly within 

minutes after birth. Tests of this hypothesis using assays of H2S concentrations are needed.

Carbon monoxide

Interest in CO grew in the early 1900’s because of its danger in marsh gas of mines, where it 

was harm workers by occupying the O2 binding sites of hemoglobin. Carbon monoxide 

differs from NO and H2S in that it is, for the most part, chemically inert in vivo. Tissue CO 

concentrations are thus the result of a relatively simple equilibrium between its rate of 

production and the rate at which it diffuses into perfusing blood and is then eliminated from 

the lungs. Like NO and H2S, CO binds avidly to deoxyhemoglobin, which has an affinity for 

CO that is much greater than that of O2 [79]. As a result, although total concentrations of 

CO in blood are ~95 μM (based on 15 g/dl hemoglobin and 1% carboxyhemoglobin), 

concentrations of free CO are ~0.002 μM [80,81]. Likewise, mean tissue concentrations of 

free CO are also thought to lie in the low nanomolar range, with possible local increases as a 

result of surges in CO production [80]. As discussed in this section, CO also differs from 

NO and H2S in that overall tissue concentrations are elevated during the neonatal period.
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Synthesis.—CO is generated from the oxidative degradation of heme by one of two 

different heme oxygenases designated HO-1 and HO-2. HO-1, also known as heat-shock 

protein 32, is inducible, responding to a long list of known stimuli such as oxidative stress, 

hypoxia, hyperoxia, ischemia, and hyperthermia [82]. The CO-producing reaction also 

releases free Fe2+ and biliverdin, with subsequent reduction of biliverdin to produce 

bilirubin (Figure 4). Newborns are exposed to many of these stresses as a result of the 

normal birth transition. Accordingly, circulating levels of HO-1 mRNA are upregulated 

during the first 2 or 3 days after birth in neonates [83], and are also found to be elevated in 

pig and mouse lungs [84] and rat liver [85] in the days following birth.

The availability of heme substrate is a rate-limiting factor in heme oxygenase activity. 

Metabolism of heme as a result of red blood cell turnover represents the largest source of 

CO production in the body [86]. Accordingly, due to the higher hematocrit and shorter red 

blood cell half-life during the neonatal period, whole body CO production is found to be 

twice of that of the adult [87]. In addition, CO production in the near-term fetus is higher 

than the immature fetus and adult, also suggesting an augmented role for CO in the perinatal 

period [88,89].

CO storage and metabolism.—As mentioned above, CO is not significantly catabolized 

in vivo. After generation, CO rapidly equilibrates between tissue and blood by diffusion and 

binds to protein-bound the ferrous hemes with a half life of usually tens of minutes. The sole 

route of elimination of CO is via exhalation in the lung [90,91]. Heme-CO, such as 

carboxyhemoglobin (COHb), therefore reflects endogenous CO production and represents 

the main storage form of CO in the body (Figure 4). It has been suggested that COHb might 

be useful as a marker for high hemoglobin turnover to allow an earlier identification of 

newborns at risk of hyperbilirubinemia [92]. Moreover, COHb levels during the early 

postnatal period may serve as a practical marker for subsequent development of 

bronchopulmonary dysplasia, a disease associated with increased CO production [93,94]. 

However, COHb levels can be confounded by multiple factors such as postnatal age, 

gestational age, hemoglobin concentration, oxyhemoglobin saturation, ambient CO levels, 

and blood pH [95].

Effects of O2 on CO levels.—O2 is a substrate, along with heme, for the production of 

CO by both HO-1 and HO-2. However, the affinity of these enzymes for O2 is so high 

(~0.013 to 0.03 μM [96]) that it would seem unlikely that O2 availability is a limiting factor 

for HO activity even in the relatively hypoxic environment of the fetus (Figure 2). Fetal 

COHb concentrations are higher than those of the mother [97], although the extent to which 

this is due to fetal HO activity as opposed to the equilibrium of CO exchange between 

maternal and fetal blood has not been measured directly. However, CO competes with O2 for 

binding to the ferrous heme of many proteins including hemoglobin (220-fold greater 

affinity than O2, P50 = 0.0094 to 0.022 mmHg [79]), myoglobin (39-fold greater affinity 

than O2, P50 = 0.07 mmHg [79]), and cytochrome c oxidase (2.5-fold greater affinity than 

O2, P50 = 0.27 mmHg [98]). As a result, if tissue CO production is held constant, an increase 

in PO2 results in an increase in PCO due to a decrease in the availability of hemes for CO-

binding [80]. Likewise, for any given PCO, an increase in PO2 results in a decrease in CO 
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binding to heme. Due to this relationship, the rate of CO scavenging by hemoglobin is 

inversely proportional to blood PO2, and modeling of this phenomenon suggests that blood 

at normal fetal arterial oxyhemoglobin levels would scavenge tissue CO at a rate that is 

roughly twice that of blood at newborn oxyhemoglobin levels [80]. This interdependence of 

PO2 and PCO would be strongest when the PO2 is at or near the P50 of the heme for O2. 

Thus, the fetus would be more strongly impacted by this phenomenon than the adult, since 

the fetal arterial and venous PO2 gradient normally encompasses the P50 of fetal hemoglobin 

for O2. Experimentally, however, hypoxia in the newborn piglet results in an increase in CO 

concentrations in the cerebrospinal fluid [99], possibly suggesting rates of CO production 

are elevated in response to hypoxia.

III. CHEMICAL REACTIVITY AND SIGNALING PATHWAYS

The chemical and physical properties of gasotransmitters lay the foundation for their 

signaling mechanisms. This section will categorize the known biological targets of 

gasotransmitters according to their chemical reactivity, with emphasis on ontogeny in the 

newborn period.

Nitric oxide

The biological targets of NO can be classified into three main categories: free radicals, 

metals, and thiols. As a free radical itself, NO shows reactivity towards reactants with 

unpaired orbital electrons, such as other radicals and transition metals. For example, the 

reaction between NO and superoxide radicals approaches diffusion limited rates [100]. This 

reaction scavenges NO and produces the peroxynitrite intermediate which typically leads to 

pro-oxidant events [101]. The birth transition results in a spike in ROS and chelatable metal 

iron levels [102,103], particularly in preterm infants, making NO more likely to be pro-

oxidant in the newborns.

Ferrous iron in heme proteins is the main metal target of NO. sGC with ferrous heme iron, is 

a specific receptor of NO, and is considered to be the most important biological target of 

NO. When bound to NO, sGC is activated and produces cGMP which leads to multiple 

downstream signaling cascades that finally result in vasodilation. Fetuses and neonates have 

higher lung expression of sGC than adults [104–107]. Likewise, inhibition of NOS activity 

in fetal sheep in utero significantly attenuates the fall in pulmonary artery pressure and 

increase in pulmonary blood flow that occurs with the onset of ventilation and increased 

oxygenation that occurs after birth, consistent with an essential role for NO in the birth 

transition [108].

Apart from activation of sGC, NO can also mediate signaling via nitrosylation of thiols 

[109]. Although NO free radical does not readily react with thiols, oxidation of either NO or 

the thiol, which may be more likely to occur during the transition from fetus to neonate 

[102,103], can facilitate the formation of nitrosothiols. Once formed, SNOs can readily 

transnitrosylate other thiol groups, whereby the NO moiety of one SNO is transferred to 

another thiol group. For example, nitrosoglutathione infused intravenously is found to 

transfer the NO moiety to plasma proteins within one circulatory transit time [110]. The 

extent to which SNO formation, either de novo or via transnitrosylation, is targeted to 
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specific signaling functions is largely understudied in the newborn. At the same time, 

cellular pathways of SNO degradation are not well characterized but appear to involve 

denitrosylases such as thioredoxin, which is upregulated by oxygen in the newborn lung 

[111,112]. This potential of a heightened role for SNO signaling in the newborn period, 

together with evidence that some nitrosothiols have potent sGC-dependent vasodilatory 

activity that is greater in fetal vessels than in adult [113], highlights an important knowledge 

gap in the field.

A third category of NO-mediated signaling which has come to light recently is its effect on 

gene transcription via epigenetic mechanisms [114]. For example, the activity of jumonji C, 

an O2− and Fe2+-dependent histone demethylase, is inhibited by NO [115,116]. Histone 

acetylation may also be under the regulation of NO during neural crest and cranio-facial 

development [117,118]. There is also evidence that NO influences DNA methylation via 

regulation of the activity of ten-eleven translocation (TET) enzymes. Similar to jumonjiC, 

TETs also utilize Fe2+ and O2 [119], and thus their activities might be expected to change 

markedly during the birth transition when O2 levels increase and NO levels decrease, 

although this does not appear to have been studied.

Hydrogen sulfide

Although H2S is reactive and may play an important role in various biological functions, no 

specific target comparable to the importance of sGC signaling for NO has yet been identified 

for H2S. Metals and thiols are the main biological targets of H2S. Unlike NO, H2S does not 

readily react with ferrous iron in heme proteins such as oxyHb and deoxyHb, nor does it 

activate sGC. Instead, it binds to the ferric iron in heme and reduces it into ferrous form. For 

example, H2S can convert the oxidized ferric form of sGC, which does not respond to NO 

and might be more abundant in the oxidative neonatal environment [120,121], into the active 

ferrous form [122]. In addition, H2S inhibits the cGMP hydrolase activity of 

phosphodiesterase [123], thereby augmenting the effects of sGC activation by NO. The 

possibility that excessive oxidation of sGC heme may contribute to the unresponsiveness of 

some infants to inhaled NO for the treatment of pulmonary hypertension in infants 

highlights one potential therapeutic potential for H2S. In addition, methemoglobin levels 

tend to be higher in newborns due to relatively low plasma methemoglobin reductase levels 

[124–126]. As a result, H2S is more likely to react with methemoglobin in neonates, 

resulting in the production of thiosulfate and polysulfides, which further mediate signaling 

by H2S [127].

Although thiols are a main target of H2S, H2S does not react with them directly. Instead, the 

reaction requires prior oxidation of the reactant thiol to disulfide, sulfanic acid, or S-

nitrosothiol, or oxidation of the H2S to HSOH [128]. This results in persulfidation of the 

reactant thiol by addition of the sulfur atom from H2S, leading to a disulfide bond. As with 

S-nitrosylation, addition of H2S to the thiols of proteins can lead to conformational changes 

that modify their activity [127]. KATP, TRPA1, and Keap1 are such targets by this pathway, 

as they can mediate the signaling of H2S and its polysulfide metabolites [129]. In addition, 

similar to transnitrosylation of SNOs, the -SH moiety of persulfides is also readily 

transferred to other thiol groups, leading to sulfuration of a broad spectrum of targets. In an 
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oxidative environment, disulfides might be more abundant in neonates after the birth 

transition [130], potentially rendering more reactive thiol targets for H2S.

H2S has long been assumed to be an antioxidant. However, H2S does not directly react with 

O2 and thus this reaction is too slow to account for any significant biological effects [66]. 

H2S also does not readily react with ROS such as superoxide or hydrogen peroxide. 

Although the sequestration of oxidative iron by H2S has been proposed, autoxidation of H2S 

catalyzed by Fenton chemistry can also paradoxically generate considerable ROS leading to 

toxic effects [131,132]. Investigation is needed to test for the role of H2S in the regulation of 

ROS during periods of physiological oxidative stress such as labor and delivery.

Carbon monoxide

Compared with NO and H2S, CO is quite inert, and thus it is more likely to act as a reserved 

line of signaling. So far, the search for a specific signaling target of CO has not been 

successful. Only transition metals in a specific redox state, such as hemes with ferrous iron, 

have been identified as targets of CO [133]. It has been proposed that the signaling of CO 

might be mediated exclusively through its interaction, either directly or indirectly, with the 

transition metals of biological targets. Binding of CO to the ferrous heme of proteins leads 

to conformational and thus functional changes. Major proteins with high binding affinity for 

CO include hemoglobin, myoglobin, cytochrome P450 enzymes, and cytochrome c oxidase 

[134]. sGC has also been proposed to be an important target of CO. However, this activation 

is about 30-fold less potent than that of NO and the low binding affinity of CO to sGC 

requires supraphysiological concentrations of CO, raising doubt about the significance of 

sGC as a target of CO signaling [80].

In contrast to an apparent lack of direct targets for CO, increasing evidence suggests the 

importance of non-specific effects that result from inhibition of cytochrome c oxidase by 

competing with O2 for binding to the heme. This inhibition is proposed to account for the 

mitochondrial ROS generation that occurs at CO tensions at least as low as 0.19 mmHg 

(~0.2 μM) [135], as well as ROS-dependent signaling that activates redox-sensitive 

transcription factors and protein kinases to induce certain antioxidant enzyme systems at 

tensions as low as 0.076 mmHg (0.08 μM) [136,137]. These concentrations, as well as those 

observed to have biological effects in piglet pial arteries (0.09 mmHg) [138], are within the 

predicted range of plausible physiological tissue concentrations [80]. Notably, CO 

concentrations comparable to those that result from neonatal hyperbilirubinemia or routine 

low-flow general anesthesia have been associated with oxidative stress and impaired 

neuronal development in the mouse pup forebrain [139].

IV. VASOACTIVITY OF GASOTRANSMITTERS

Nitric oxide

The first and most widely-known physiological function of NO is ability to vasodilate. NO 

can be generated by endothelium via simulation with agonists such as acetylcholine and 

bradykinin, and by blood flow-induced shear stress [140]. It activates sGC to produce cGMP, 

which leads to modulation of L-type Ca2+ and large-conductance Ca2+-activated potassium 
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channels via cGMP-dependent protein kinase (PKG) [113]. In newborns, the acetylcholine-

dependent vasodilation in the skin of the forearm correlates directly with infant body size 

and head circumference, whereas vasodilation by sodium nitroprusside, which is 

endothelium-independent, showed no correlation with any anthropometric measures [141]. 

Thus, endothelial function may be decreased in low-birthweight infants, and is consistent 

with evidence that low birthweight results in impaired endothelial function later in life 

[142,143]. Both endothelium-dependent and -independent NO-mediated vasodilation also 

varies with postnatal age in the newborn piglet, where vasodilation in arteries isolated from 

animals on the first day of life is markedly reduced compared to vessels taken from animals 

a few days or weeks later [144,145]. In contrast to the apparent lack of NO-mediated 

vasodilation of pulmonary arteries from neonatal piglets, NOS inhibition in near-term fetal 

lambs causes a 50% reduction in birth-related pulmonary vasodilation, suggesting that a 

significant part of the rise in pulmonary blood flow at birth depends upon an acute release of 

NOS-derived NO [146–148]. Of note, it is possible that the effects of NO on overall 

pulmonary vascular resistance may be due to vasodilation of the pulmonary veins as well as 

the arteries [145,149]. In addition to the pulmonary vasculature, NO also appears to play an 

important role in mediating the postnatal changes in resistance of intestinal, cerebral, and 

skeletal vasculatures [150,151].

Due to its diffusion limited reaction with NO, superoxide is a determinant of NO 

bioavailability and thus vascular tone. Under physiological conditions, an increase in the 

ratio of superoxide and NO leads to vasoconstriction, while a decrease leads to vasodilation. 

In chronically instrumented fetal sheep, Giussani et al demonstrated that vascular oxidant 

tone plays an important role in regulating the peripheral vascular resistance via NO-

dependent pathways [152–155]. The vascular oxidant tone is operational in late gestation in 

fetal sheep, and may contribute to the maintenance of arterial blood pressure in the perinatal 

period. Resetting of this vascular oxidant vascular tone at birth may also be an important 

factor in the physiological reduction of pulmonary vascular resistance, as exogenous 

superoxide dismutase results in pulmonary vasodilation in newborn lambs with pulmonary 

hypertension [156].

It is worth noting that, under some conditions such as hypoxia, NO can also lead to a 

species-dependent vasoconstriction via biased activation of sGC to produce cIMP instead of 

cGMP, thus favoring vasoconstriction [157–160]. To our knowledge, such NO-mediated 

vasoconstriction has not yet been studied in newborns.

As mentioned earlier, some metabolites of NO, such as nitrite, nitrosothiols, and DNICs 

[161], are capable of preserving its bioactivity and mediating vasodilation. Nitrite levels are 

markedly decreased in neonates [6,18]. Although we have found that nitrite itself has 

minimal vasoactivity at physiological concentrations in fetal [50], neonatal [162,163], and 

adult [164,165] sheep, we have also noted that nitrite potentiates vasodilation by 

nitrosothiols in adult sheep and rats [164]. We have recently observed the same potentiating 

effects of nitrite in neonatal lambs. Specifically, as shown in Figure 5, intravenous infusion 

of nitrosoglutathione (GSNO; 500 μM) produces a dose-dependent systemic hypotension 

that is markedly accentuated if the lambs are pre-treated with an intravenous infusion of 

nitrite to raise plasma nitrite concentrations by 2- to 4-fold above basal levels, well below 
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the 100-fold increases needed for nitrite to cause vasodilation [50]. The mechanism by 

which nitrite potentiates vasodilation by nitrosothiols remains unclear, but may involve a 

vascular store of intracellular NOx species as discussed above. The effect of the birth-related 

fall in circulating nitrite levels on the systemic vascular constriction that is essential to 

maintaining arterial blood pressure after birth, and the potential role of a vascular NOx store, 

awaits further investigation.

Hydrogen sulfide

The vasoactivity of H2S is not as well-defined as that of NO. H2S has been demonstrated to 

induce either dilation or contraction, depending on the species, organ bed, and experimental 

conditions such as type and concentration of H2S donor used, oxygen tensions, presence of 

endothelium, substance used for precontraction, and composition of the organ bath buffer 

[166]. The long list of mechanisms suggested to be involved in H2S-mediated vasodilation 

includes opening of ATP- and voltage-sensitive potassium channels (KATP and KV, 

respectively) and Ca2+-dependent potassium channels (SKCa, IKCa, BKCa), closing of 

voltage-dependent Ca2+ channels, release of endothelial NO and hyperpolarizing factor, 

alteration of intracellular pH and ATP levels, oxidation of protein kinase G 1α, activation of 

transient receptor potential cation channel, release of calcitonin gene-related peptide, 

inhibition of phosphodiesterase, reduction of renin release, and inhibition of ACE activity 

[123,166–170]. The contractile effects of H2S have been proposed to involve reduction of 

cAMP concentrations, inhibition of beta-adrenergic vasodilation, inhibition of prostanoid-

mediated vasodilation, opening of L-type Ca2+ channels, and activation of Na+,K+,2Cl−-

cotransport [167,171,172].

Investigation of the vasoactivity of H2S in human vessels is very limited [173–177]. While 

there are no reports in infants, a few reports from neonates of other species exist. Using a 

cranial window preparation in piglets, Leffler et al showed that H2S production by 

endogenous CSE results in vasodilation of pial arteries [178,179]. They also found that 

vasodilation by endothelin-1 is mediated by H2S activation of KATP and BKCa channels 

[180]. In the ductus arteriosus of mice, H2S is proposed to be an endothelium-derived 

hyperpolarizing factor [181]. However, no significant ductus arteriosus reactivity was found 

for endogenous H2S in chickens [182]. Intriguingly, H2S has also been proposed as an 

oxygen sensor in hypoxic vasoconstriction and hypoxic vasodilation of various adult 

vertebrate species [77,78,183], capable of responding to changes in arterial PO2 that are 

within the fetal-to-neonatal range (Figure 2). It is therefore reasonable to speculate that H2S 

may play a role in the cardiovascular transition at birth.

Carbon monoxide

Vasodilation is one of the most characterized functions of CO, although it is significantly 

less potent than NO [5]. The supraphysiological concentrations of exogenous CO necessary 

to achieve vasodilation have cast some doubt on its role as an endogenous vasodilator. Early 

studies with cerebral arteries from adult rabbits and dogs found no response to exogenous 

CO at concentrations more than three orders of magnitude above physiological levels [184]. 

However, Leffler et al observed significant dilation of piglet pial arteries in response to 

addition of nanomolar concentrations of CO, and suggested HO-2 could produce adequate 
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amounts of CO to act as an endogenous dilator [185]. Subsequent work indicates that 

newborn piglet vessels are more responsive to CO than those of older animals [186,187]. 

While the vasodilating potency of NO increased over the first few days of life, that of CO 

decreased [145], suggesting CO may play a compensatory vasodilating role. Using the 

closed cranial window model in 3 to 7-day-old piglets, endogenous CO has been identified 

as a cerebral vasodilator during hyperemia, hypotension, and seizures [188–191]. Carbon 

monoxide also mediates the cerebral vasodilation induced by arachidonic acid, prostaglandin 

E2, and ADP [192–194]. Furthermore, work by Parfenova and Leffler has demonstrated that 

coupling of neuronal activity to cerebral blood flow is facilitated by activation of glutamate 

receptors leading to increased intracellular Ca2+ in astrocytes that then results in activation 

of calmodulin-dependent HO-2 to produce CO. The resulting CO then stimulates arteriole 

myocyte KCa channels to dilate cerebral arterioles [195–201]. Endothelial NO also appears 

to play a permissive role in CO-induced cerebrovascular dilation in the piglets [202,203]. 

However, prolonged production of CO can inhibit NOS and reduce NO to elevate 

cerebrovascular tone [138].

In the lungs, CO might play an important role in reducing pulmonary vascular tone in 

highland-adapted species. In studies comparing newborn lambs and llamas, a species 

acclimated to high altitude for over two million years, Llanos et al found pulmonary 

hypertension at high altitude only in the lambs, despite greater pulmonary NO production. In 

contrast, llamas displayed enhanced production of CO, rather than NO, implicating CO as a 

key vasodilator in the newborns of highland-adapted species [204–207].

V. GASOTRANSMITTERS IN THE NEONATAL GASTROINTESTINAL TRACT

This section will cover the role of NO, H2S, and CO in the neonatal gastrointestinal (GI) 

tract. The GI tract is of particular importance since it has historically emerged as the center 

of NO recycling, as well as non-enzymatic NO generation. The GI tract also contains 

microbiota that contribute to gasotransmitter production and elimination. We will therefore 

explore the enzymatic and non-enzymatic sources of these gasotransmitters in the GI tract, 

as well as delineate their known roles and mechanisms of action in the normal function of 

the neonatal GI tract. Where the neonatal-specific research is sparse, as is the case for CO 

and H2S, we will point out the known functions in the adult GI tract, then speculate on the 

potential contributions of these gases in the neonate, as well as highlight the need for more 

neonatal research.

Nitric Oxide

NOS-independent NO Generation in the GI Tract.—The GI tract is a prominent 

source of NOS-independent NO production. The rat and adult human oral cavity contain 

nitrate-reducing bacteria that reduce the physiologically inert nitrate to nitrite, a portion of 

which subsequently disproportionates into NO and nitrosating species such as N2O3 and NO
+ upon acidification in the low pH stomach environment [208], or can circulate in the blood 

where it may be reduced to NO and contribute to vasodilation, particularly at low oxygen 

tensions [209–213]. Plasma nitrate can be derived from dietary sources such as beets, 
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radishes, and leafy vegetables. The salivary glands actively concentrate nitrate from plasma 

into saliva, raising salivary concentrations by as much as ten-fold [214].

Historically, dietary intake of nitrate/nitrite was viewed as detrimental due to the ability of 

nitrite to oxidize hemoglobin to methemoglobin, leading to cyanosis, a problem that 

particularly affects newborn infants. Intake of nitrite-treated meats was also shown to be 

associated with GI cancer, possibly through the intermediacy of N-nitrosamine formation. 

Recent research is however increasingly demonstrating more favorable, physiological roles 

of dietary nitrate/nitrite; dietary nitrate intake is associated with better indices of 

cardiovascular health such as lower blood pressure, and improved exercise performance as 

has been reviewed more comprehensively elsewhere [212,215]. Vitamin C and other 

phenolic compounds have been shown to favor the formation of NO over the potentially 

detrimental nitrosating species by catalyzing nitrous acid reduction to NO and also reducing 

the nitrosating species to NO [216,217]. Besides the benefit of protecting from nitrosating 

species, the NO that is produced in the gastric lumen can easily diffuse into the adjacent 

epithelium and affect GI function.

Though dietary nitrate can be a significant source of NO or NO-like bioactivity in the adult, 

it does not seem to be a major source of NO in the neonate. There is essentially very little 

nitrate-to-nitrite-to-NO conversion in the human newborn in the first weeks of life [6,16]. 

There are multiple factors that ensure neonatal nitrite levels remain low. First, the infant 

dietary intake of nitrate and nitrite is only 5% and 0.6% of the normal adult intake, 

respectively [42,218]. In addition, although the infant salivary glands are able to concentrate 

nitrate into the saliva similar to the adult, the oral commensal bacteria that are essential for 

reducing nitrate to nitrite are largely absent during the first few weeks after birth [16]. 

Furthermore, neonatal saliva production is markedly lower than the adult [16], and 

preventing adults from swallowing saliva essentially blocks the physiological effects of 

dietary nitrate [212].

Nitrite can be protonated to HNO2 (pK = 3.3), and then quickly disproportionates to produce 

NO. Thus, swallowed nitrite becomes an important source of NO in the stomach when pH is 

low, and NO concentrations there are found to be orders of magnitude higher than in other 

portions of the GI tract [219]. However, the neonatal stomach, particularly that of preterm 

infants, is less acidic than that of the adult [220–222], and thus stomach NO levels would be 

expected to be much lower.

The intestinal microbiome also appears to play an important role in regulating NO 

bioavailability. Lactobacilli can act as a nitrite sink in the GI tract [223], and dietary 

supplementation with both lactobacilli and nitrate in rats led to a 3 to 8 fold increase in NO 

in the small intestine and cecum, but not in the colon [218]. Lactobacilli and bifidobacteria 

are very prevalent in the diet and GI tract of infants fed breast milk [224], and their 

prevalence in stool samples increases gradually over the first few weeks of life [225]. In 

vitro, these bacterial strains are able to convert nitrite into NO, while other strains of bacteria 

(E. coli and S. aureus) can act as an NO sink to suppress NO concentrations [218]. Intestinal 

NO gas has also been measured in human preterm infants, and was found to be decreased by 

antibiotic treatment [226]. Altogether, these results demonstrate how bacteria are important 
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contributors to NOS-independent NO-generation, and NO metabolism in the human infant 

GI tract. Moreover, NO-generation by commensal bacteria in the human neonate is even 

more relevant considering the increasingly common use of probiotics, especially in preterm 

infants, to minimize risk for necrotizing enterocolitis [227,228].

NO and GI Function.—NO generated from eNOS, iNOS and nNOS contributes to almost 

all aspects of GI processes and functions such as gastric motility, gastric secretions, 

preservation of mucosal barrier integrity, mesenteric and intestinal perfusion, and innate 

immunity against enteropathogens as well as protection against epithelial injury. One of the 

most prominent roles of NO in the GI tract is its modulation of mesenteric vascular tone in 

both the fasted state to support basal GI function, and in the postprandial state when blood 

flow to the gut and intestines increases in support of digestion and absorption.

Normally, the adult small intestine receives about 10 % of cardiac output, about 80 % of 

which passes to the mucosal and submucosal layers. Total blood flow to the small intestine 

can increase by almost 100 % in the postprandial phase [229]. Interestingly, blood volume 

per gram of tissue is higher in the neonatal rat and piglet intestines compared to adults, 

increasing rapidly in piglets between days 1 and 3 post-birth and then falling gradually with 

increasing age [230,231]. The fetal-to-neonatal increase in intestinal blood flow is also 

observed in lambs, with an ~100 % increase in blood flow in 2 to 10-day-old lambs 

compared to fetal lambs at 90% gestation [232–234]. These flow changes are accompanied 

by decreases in intestinal postprandial hyperemia in both piglets and newborn lambs [232].

These fetal-to-neonatal-to-adult blood flow and vascular resistance changes have 

multifactorial causes, but have been shown to be mediated partly through changes in the 

eNOS → sGC → cGMP vasodilation pathway in the mesenteric arteries. In the piglet, 

whose GI system closely matches the human system [232], decreases in intestinal vascular 

resistance are flow-stimulated and NO-mediated. However, the eNOS → sGC → cGMP 

pathway contributes to the regulation of intestinal vascular resistance to a greater extent in 3-

day-old vs. 35-day-old swine as determined by eNOS inhibition in both whole animal and 

isolated artery experiments [235–237]. In these studies, flow-mediated decreases in vascular 

resistance were eliminated by L-NAME only in the 3-day-old piglets, which also had greater 

acetylcholine and substance P-induced relaxation. Furthermore, the cGMP content of 3-day-

old piglets was also higher than in 35-day-old piglets following acetylcholine/substance-P-

induced relaxation. Of note, NO-mediated vasodilation serves to counterbalance the 

myogenic vasoconstriction exhibited by mesenteric terminal arteries shortly after birth (1-

day-old), in contrast to postnatal day 40 when myogenic vasoconstriction is no longer 

observed [238,239]. Subsequent studies revealed that the eNOS protein levels are increased 

two-fold in 1-day-old piglets, compared to fetal or 1-day-old non-fed piglets, and eNOS 

levels continue to increase until day 10, after which protein levels decreased to day 1 levels 

[240], correlating with increased sensitivity to NO-mediated vasodilation. Together, these 

studies indicate that eNOS-dependent vasodilation is of more importance in the newborn 

piglet than in the fetus or adult.

The mesenteric endothelium regulates blood flow in response to endocrine, neural, and 

physiologic stimuli most of which utilize the eNOS-dependent pathway as a major 
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determinant to effect an increase in mucosal blood flow. Neurohormones such as serotonin, 

acetylcholine, adenosine diphosphate, bradykinin [241], gastrin [242] and cholecystokinin 

[243] can all bind to luminal endothelial cell receptors, and increase mucosal blood flow in 

an eNOS-dependent manner, under both basal and postprandial hyperemic conditions. In 

adult rats, glucose-mediated hyperemia was inhibited by L-NAME, but reversed by L-

arginine and L-NAME co-infusion [244], and the NO production requires activation of the 

adenosine-A2b receptor [245]. Postprandial hyperemia has also been specifically studied in 

neonatal pigs (3-week old), in which the hyperemia is also inhibited by NO-blockade [246].

Submucosal sympathetic nerves, which are the primary determinants of intestinal blood flow 

in the adult, contain both adrenergic vasoconstrictor fibers and non-adrenergic non-

cholinergic (NANC) vasodilatory fibers. NANC fibers contain nNOS and produce NO as 

their primary neurotransmitter, and help to increase blood flow through an sGC-dependent 

mechanism. nNOS derived NO is a significant mediator of gut motility by inhibiting smooth 

muscle contractility directly, and through inhibiting the release of excitatory mediators. Loss 

of nNOS signaling is a key feature in the gastroparesis associated with diabetes, showcasing 

the importance of NO in normal gastric function [247,248]. The importance of nNOS in the 

human neonate is also apparent in Hirschsprung disease, a common cause of neonatal and 

infantile large gut obstruction due to dysfunctions in the development of nNOS-containing 

nerves, involving reduced expression of nNOS mRNA and protein [249,250], and 

dysfunctional NO transmission to the target cells [251,252]. Studies have consistently 

described decreases in nNOS-containing myenteric nitrergic cell density from fetus to birth, 

with continued decreases during the first few years of life [15,253]. The biological relevance 

of these changes are not well understood.

Hydrogen sulfide and carbon monoxide

Compared to NO, there is a large gap in knowledge about the physiological involvement of 

CO and H2S in the adult GI tract, particularly so in the neonate. Of the few studies that are 

available, most have been performed using exogenous donor compounds and under 

pathophysiological conditions. While it is still possible to gain hints about the normal 

physiological function of these molecules from these studies, any conclusions should be 

made with caution as more research is performed to obtain a clearer picture of all 

gasotransmitters in both adult and neonatal physiology.

Metabolism of H2S in the GI tract.—Due to the presence of mainly sulfate-reducing 

bacteria, which reduce inorganic sulfate (SO4
2−) to H2S, and other bacteria that reduce 

cysteine and methionine to H2S, the adult human gastrointestinal tract, especially the colon, 

is a site of significant H2S metabolism and bioactivity [254–256]. The GI tract also contains 

the CSE and CBS, which produce H2S from cysteine, especially in the colonic epithelial, 

smooth muscle, and neuronal cells, and interstitial cells of Cajal, in both animals and 

humans [257–260]. Similar to both NO and CO, H2S was historically regarded as a toxin in 

the GI tract. In fact, since bacteria-derived H2S is still being implicated in the etiology and 

pathogenesis of inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis, 

and also in colorectal cancer [256]. Though there are many conflicting reports in the 

literature, endogenous H2S does seem to have some physiological relevance in the GI tract 
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where it has mainly been implicated in the modulation of gastric motility through its 

hyperpolarization and relaxation of enteric smooth muscle cells [261,262], involving the S-

sulfhydration and activation of KATP channels, inhibition of Rho/RhoA, [258], inhibition of 

both L-type Ca2+ and BK channels [263], or through crosstalk with NO [264,265]. Similar 

to NOS and HO-2, expression of CSE and CBS is reduced in Hirschsprung’s disease [257], 

demonstrating the possible importance of H2S to normal GI motility function in a neonatal 

or pediatric population group.

Sulfate-reducing bacteria have been observed in the feces of human infants as early as two 

weeks following delivery, with a prevalence that increases with developmental age 

[266,267]. The physiological contributions of endogenous and bacterial H2S to neonatal and 

infant gastrointestinal health are otherwise unknown due to very limited study, but it is likely 

that H2S at low concentrations coordinates with NO and CO to effect the fetal-to-neonatal 

decrease in intestinal vascular resistance at birth, and as a modulator of both gastric motility 

and protection. Studies utilizing already-established animal models of neonatal GI disease 

would likely make an important contribution to understanding the role of H2S in the 

neonatal GI tract.

Metabolism of CO in the GI tract.—Unlike its role in NO generation, the GI tract does 

not seem to be a significant source of bacteria-facilitated CO production. There are however 

a few reports about some enteric bacteria, specifically some strains of E. coli, which express 

a protein (chuS) with heme oxygenase-like activity [268,269], and might contribute to heme 

degradation, in vivo CO generation, and to the modulation of the host immune response 

when added to the GI tract of the adult mouse [270]. This study showed that endogenous 

production of CO by gut bacteria is feasible, especially in the context of probiotic 

supplementation, but the relevance of this phenomenon to the human adult and neonate still 

needs to be studied. Metabolism of CO by the colonic flora has been observed in the adult 

human, where bacteria play a role in regulating CO levels within the GI tract [271], but the 

physiological relevance of this potential CO sink and source of CO for the circulation is 

uncertain. The adult gut lumen is also known to have increased CO due to the action of 

mucosal heme oxygenases on luminal heme after its uptake into the intestinal mucosa [272]. 

In the adult, ingestion of meat has been reported to increase intestinal CO levels since the 

mucosal heme oxygenases can also act on exogenous, meat-derived heme [273]. Since the 

normal neonate diet does not contain appreciable heme, meat-derived heme is not a feasible 

source of CO production in the neonate. The differential postnatal changes in intestinal 

mucosa HO-1/2 expression from the fetal to neonatal to the adult age have also not been 

characterized, therefore it is not clear how much endogenous CO levels would increase in 

the event of heme supplied by gastrointestinal bleeding, a common neonatal and pediatric 

disorder with an incidence of about 6.4% [274]. In neonatal rats, however, enteral heme 

administration increases CO levels [275].

The emerging contributions of CO to the adult gastrointestinal physiology are covered in a 

number of in-depth reviews [276,277]. Most of the actions of CO parallel those of NO in the 

GI tract. HO-2 is constitutively expressed in various cells of the GI tract of animals and 

humans, especially the myenteric interstitial cells of Cajal, and myenteric neuronal cells, 

both of which are the gut pacemaker cells and mediate gut motility [278–281]. HO-1 tends 
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to only be induced under injury or inflammation, and can help in gastroprotection [282]. 

Endogenous CO has been shown to contribute to mesenteric vasodilation since an HO-

substrate was shown to vasodilate endothelium-intact, isolated rat mesenteric arteries in the 

presence of a NOS inhibitor [283]. HO-2-derived CO is also a critical mediator of gastric 

motility by acting as a hyperpolarizing factor [281,284,285], and by acting as a critical 

determinant of the membrane potential across myenteric smooth muscle cells [286]. The 

studies of CO involvement in gastroprotection are of a more pharmacological nature, but do 

suggest that CO may play a role in the protection of the gut from injury or inflammation 

[287,288]. Interestingly, HO-2 expression often co-localizes with NOS expression 

[15,280,289], and in myenteric NANC neurons, is more highly expressed than nNOS [290]. 

Accordingly, the effects of CO on both gut motility and protection of the gastric barrier are 

co-mediated by NO [288,291].

Carbon monoxide also seems to play a significant role in the neonatal GI tract, although 

there are only a few comparative studies between neonates and adults, or in neonates alone. 

In the neonatal suckling rat, the production of CO by isolated small intestine is not inhibited 

by tin-protoporphyrin, a competitive inhibitor of HO-1 and HO-2, while the CO production 

is significantly decreased in the adult rat, suggesting a possible alternative means of CO 

production in the neonatal intestine. In the same model, gradients of CO production across 

the intestinal length (duodenum to ileum) have an opposite pattern in the neonatal (ileum > 

duodenum) vs. adult intestine (duodenum > ileum) [292]. Postnatal changes in HO-2 and 

nNOS expression in myenteric neurons have also been reported in the pig at fetal, 1 to 2-

day-old, and 5 to 6-week-old stages of development. These studies reveal that HO-2 

expression increases with age in the neonatal period, and has an opposite pattern to nNOS 

expression, which decreases with developmental stage [293]. The physiological importance 

of these differential developmental changes are not yet clear.

VENTILATORY CONTROL

Pulmonary ventilation is an automatic process that begins at birth and usually proceeds 

without conscious intervention [294]. The control of ventilation is performed by a complex, 

highly integrative system that maintains the homeostasis of blood O2, CO2, and pH within 

narrow limits by modulating ventilatory rate. This complex system involves the sensing of 

blood PO2 or PCO2/pH by peripheral (aortic and carotid body) and central (medullary) 

chemoreceptors, as well as input from pulmonary stretch receptors. Gasotransmitters are 

found to be involved in many aspects of ventilatory control in studies of adults, and likely 

also play an important role in the initiation and maintenance of ventilation in the neonate, as 

described in the following sections.

Nitric oxide

The control of ventilation is carefully integrated, mainly in the medullary and pontine 

portions of the brainstem, into a modulated transmission to effector organs via the 

involvement of many afferent and efferent neurons, and motor output by respiratory muscles, 

facial structures and airway effectors [295]. Gasotransmitters, especially NO, have been 
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implicated in these complex networks of ventilatory control, especially in the observed 

reflex increase in ventilatory responses to hypoxia and hypercapnia.

These inputs are carefully integrated, mainly in the medullary and pontine portions of the 

brainstem, into a modulated transmission to effector organs via the involvement of many 

afferent and efferent neurons, and motor output by respiratory muscles, facial structures and 

airway effectors [295]. Gasotransmitters, especially NO, have been implicated in these 

complex networks of ventilatory control especially in the observed reflex increase in 

ventilation following acute hypoxia (hypoxic ventilatory response, HVR), or the time-

dependent increase in ventilation and ventilatory response following chronic hypoxia 

(ventilatory acclimatization to hypoxia, VAH), and also the increase in ventilation following 

a rise in PaCO2 (hypercapnic ventilatory response).

NOS has been localized in both the peripheral and central regions associated with the control 

of breathing. NOS expression has been reported within the nerve fibers innervating the 

glomus tissue of the carotid bodies, which are the primary peripheral chemoreceptors, in 

which NO plays an inhibitory role. Accordingly, NOS inhibition results in an increase in the 

hypoxic ventilatory response [296–298]. The carotid body response, however, may depend 

on the specific NOS isoform, as nNOS inhibition augments the hypoxic ventilatory 

response, while eNOS inhibition attenuates it [297]. NOS has also been localized to the 

areas of the brainstem that are involved in ventilatory control such as the nucleus tractus 

solitarius — where carotid body efferents terminate [299,300]. Here, NO plays an excitatory 

role which can be blunted by NOS inhibition resulting in a depression of the hypoxic 

ventilatory response. NOS also plays an excitatory role in the rostral ventrolateral medulla, 

where the central chemoreceptors sensitive to low pH are located, and in the nucleus raphe 

magnus, in which NOS inhibition attenuates the hypoxic ventilatory response [301,302]. 

NOS has also been localized to the locus coeruleus, which has been reported to have an 

inhibitory effect on the ventilatory response but can be inhibited by NO, giving NO an 

overall stimulatory effect towards the ventilatory response [303–305]. NO has also been 

suggested to play a role in the ventilatory acclimatization to hypoxia (VAH), in which 

ventilation and ventilatory-oxygen sensitivity is time-dependently increased following 

chronic hypoxia [306], but a few studies in rats have mostly yielded null results, showing no 

effect of NOS inhibition on VAH [307–309]. It is important to note that systemic 

administration of NOS inhibitors might yield confounding results due to opposing effects on 

the peripheral and central chemoreceptors [310].

The role of NO in ventilatory control is understudied in neonatal subjects. The few studies 

that exist indicate that NO plays a similar role as in adults. NO is suggested to have an 

inhibitory role on the carotid body-mediated ventilatory response to hypoxia following 

endotoxin administration in a newborn piglet model [310,311]. The role of NO has also been 

explored in the biphasic hypoxic ventilatory response characteristic of newborn mammals, in 

which the initial increase in ventilation is quickly followed by a depression of the ventilatory 

rate to levels less than or equal to baseline. The ventilatory depression decreases with 

increasing developmental age to yield a sustained ventilatory increase with hypoxia. In 

neonatal rats the transition from biphasic to sustained hypoxic ventilatory response 

correlates with increased NOS protein expression, and is reversed by NOS inhibition [312]. 
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At least one study, however, has yielded a null result since NOS inhibition did not promote 

ventilatory depression following hypoxia in hyperoxia-reared neonatal rats [313]. There is 

the limitation that this study used systemic NOS inhibition, which can confound results due 

to opposing effects on carotid body and central hypoxic response.

Overall, there is a need for more studies about the role of NO in neonatal ventilatory control, 

and in both adult and neonatal groups there is still a dearth of knowledge about the 

molecular pathways through which NO modulates ventilatory control, and also little 

information about the possible contributions of the metabolites of nitric oxide such as nitrite, 

nitrosothiols and dinitrosyl iron complexes to the control of ventilation. Nitrosothiols, 

especially ones with low molecular weight, have however been reported to increase the basal 

ventilatory rate upon direct administration to the nucleus tractus solitarius, and are a possible 

candidate for the molecular effector of NOS-mediated ventilatory increase during hypoxia 

[314,315].

Hydrogen sulfide and carbon monoxide

Endogenous H2S has also been shown to play a role in the central regulation of respiratory 

rhythm and in both the central and peripheral response to hypoxia. Both CBS and CSE are 

expressed in the glomus cells of the carotid body, where H2S levels are increased by 

hypoxia, and the H2S has been suggested to augment sensory excitation by low oxygen 

[316], although the exact mechanism is still debated [78]. The physiological role of 

endogenous H2S in O2-sensing in the carotid body has also been challenged, since most of 

the in vitro work depends on exogenous H2S at concentrations higher than those generated 

endogenously [317]. None of the research on the role of H2S on oxygen-sensing in the 

carotid body appears to have been conducted in a neonatal population for any animal model, 

which presents an avenue for continued research.

Within the brain, CBS and 3-MST are the predominant H2S-producing enzymes, and have 

both been implicated in ventilatory control with specific effects that seem to be dependent 

on the exact brainstem region. CBS expression has been reported in the rat nucleus tractus 

solitarius (NTS), where exogenous and endogenous H2S has been reported to have an 

excitatory effect on isolated neurons [318,319]. Increased H2S production has also been 

reported following hypercapnia in the rat NTS, along with the observation that CBS 

blockade attenuates the ventilatory response to hypercapnia, further demonstrating the 

excitatory role of H2S [319]. CBS expression has also been observed in the rostral 

ventrolateral medulla, where H2S has been reported to have a down-modulatory role in the 

response to hypoxia, a role that is also reported in the anteroventral preoptic region 

[320,321]. Endogenous H2S, in contrast, has an excitatory role in both the adult and neonatal 

pre-Bötzinger complex where it has been suggested to modulate inspiratory rhythm since 

CBS-inhibition reduces inspiratory burst frequency of brainstem spinal cord (BSSC) and 

medullary slice preparations from both newborn and adult rats, and also decreases basal 

inspiratory rhythm of anaesthetized adult rats [322]. Exogenous H2S and L-cysteine were 

also shown to increase the burst frequency of neonatal rat medullary brain slices containing 

the pre-Bötzinger complex after a brief depression, and the L-cysteine activity was abolished 

by CBS inhibition, and enhanced by S-adenosyl-L-methionine, an allosteric activator of 
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CBS. In this study, the biphasic effects of H2S in the neonatal rat medulla were shown to be 

mediated through KATP channels and cAMP [323], in different region of the neonatal 

medulla [323,324]. 3-MST expression has been reported in the adult rat medulla oblongata, 

and has been shown to be increased with chronic intermittent hypoxia [325], but similar 

studies have not been reported in the neonate. Overall, there is need for more studies of the 

contributions of the CBS/3-MST-H2S pathway in neonatal ventilatory control, and in general 

more mechanistic studies on the molecular pathways of demonstrated H2S-mediated 

modulation in both adults and neonates.

Similar to H2S, most studies have historically focused on the toxic effect of CO on 

ventilation, as CO exposure is frequently employed to model hypoxia [326,327]. However, 

similar to H2S, endogenous CO production by constitutive HO-2 expression, has been 

shown in the brain medullary centers such as the NTS [328–330]. Though studies are fewer, 

a physiological role for HO/CO and ventilatory control has also been suggested mainly due 

to proposed crosstalk between CO and H2S in carotid body O2-sensing; an inverse 

relationship has been observed between HO-2/CO and H2S levels in the carotid body during 

hypoxia. This relationship involves a reduction in CO levels which allows an increase in H2S 

levels leading to stimulation of the carotid body of adult rats [331–334]. 

Electrophysiological experiments using medullary slices from neonatal rats with and without 

HO-2 inhibition or HO-2 substrate (hemin) supplementation suggest that endogenous CO 

has a role in maintaining respiratory frequency, expiratory duration, and respiratory 

magnitude [335]. These effects are partially mediated by nNOS [336], and can be partially 

abolished by BKCA channel inhibition [337]. However, more research is needed to 

persuasively implicate the HO/CO pathway in central ventilatory control, which can be done 

by using in vivo models, and also studying differences in CO response by different 

brainstem regions responsible for respiratory control, as has been documented for both NO 

and H2S.

CONCLUSION

The revelation four decades ago that NO is produced endogenously and leads to vasodilation 

sparked a field of study that has now established that NO plays a role in cell signaling 

throughout the body. While NO production by NOS enzymes and sGC-mediated signaling 

pathways have been relatively well-characterized, much remains to be learned regarding how 

NO bioactivity is preserved and regulated in the form of its many metabolites. The same 

appears to be true for the bioactivity of H2S and its metabolites. In both cases, progress in 

the field is hindered by a lack of reliable assay methods capable of distinguishing between 

specific metabolites, particularly in living tissues where the more important adducts may 

also be the least stable and challenging to measure. The development of novel tools for 

determining levels of the specific NO and H2S adducts in living tissues is critical to gaining 

a better understanding of this important aspect of gasotransmitter signaling.

As we have highlighted throughout this review, the biological roles of all three of the 

gasotransmitters are intimately linked to O2 concentrations, whether it be by the effects of 

O2 on their production and metabolism, or by virtue of the fact that they often compete with 

O2 for the same heme targets that are critical to the O2-mediated functions. The physiology 
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of the neonate provides a unique model for studying the effects of gasotransmitters in 

various organ systems under broad range of O2 tensions. Previous advances in understanding 

the effects of NO on vascular tone, and the role that it plays in the fetus-to-neonate transition 

led to significant improvements in neonatal care, such as the use of inhaled NO gas for 

treating pulmonary hypertension. It is likely that as the complexities of modes of storage and 

action of these gasotransmitters are further characterized, particularly with respect to the 

influence of changes in O2 concentrations on these pathways, additional novel modes of 

therapy will appear.
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ABBREVIATIONS

CSE cystathionine-γ-lyase

CBS cystathionine-β-lyase

3-MST 3-mercaptopyruvate sulfurtransferase

sGC soluble guanylate cyclase

cGMP cycling guanosine monophosphate

NANC non-adrenergic non-cholinergic
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Figure 1. Major pathways of NO synthesis, metabolism, and clearance.
De novo NO is produced from L-arginine by NO synthases (NOS), a reaction that requires 

O2. If oxidized, NO free radical (NO·) can form nitrosothiols (RSNO), which are capable of 

transferring the NO moiety from one thiol to another (blue arrows). NO· and nitrosothiols 

can also react with heme and nonheme iron to produce heme iron nitrosyl compounds (R-

heme-NO) and dinitrosyl iron complexes (DNIC) (green arrows). Finally, NO· can react with 

superoxide (O2
−) to produce peroxynitrite (ONOO−), or with O2 to produce nitrite (NO2

−) 

or nitrate (NO3
−), both of which are excreted in the urine (red arrows). Note that NO3

− can 

also be reduced back into NO2
− by oral bacterial reductases, and that NO2

− can be reduced 

back into NO under hypoxic and acidic conditions as described in the text.
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Figure 2. Comparison of the birth-related change in O2 tensions and dissolved O2 concentrations 
(x-axis) with various measures of the O2-dependence of gasotransmitter concentration.
Blue markers indicate oxygen tensions in utero, red markers indicate oxygen tensions in the 

newborn and adult. Heme oxygenase (HO) Km for O2 from [96]. P50 and P100 for H2S 

oxidation from [78]. NO tissue half lives (T1/2) from [338]. NO synthase (NOS) Kms for O2 

from [46].
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Figure 3. Pathways of H2S synthesis, metabolism, and clearance.
H2S is produced from L-cysteine by cystathionine β-synthase (CBS), cystathionine γ-lyase 

(CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). Oxidation reactions with reactive 

oxygen species (ROS) are shown in the blue box. Reactions with heme- and nonheme-iron 

are shown in the green box. Reactions with thiol groups are shown in the red box. Oxidation 

reactions with O2 to produce sulfite, sulfate, and thiosulfate are shown in the grey box. The 

latter constitute the major pool eliminated in the urine. Note that the many of the metabolic 

pathways shown are not yet well characterized in biological matrices.

Liu et al. Page 43

Nitric Oxide. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Pathways of CO synthesis, metabolism, and clearance.
CO is formed from heme by heme oxygenases 1 and 2 (HO-1, HO-2) in a reaction that 

requires O2 and produces Fe2+ and biliverdin. Biliverdin is further reduced to bilirubin. CO 

can bind to various protein-bound heme moieties such as cytochrome oxidase c in tissues 

and deoxyhemoglobin in blood. CO is carried to the alveoli in the form of 

carboxyhemoglobin, where it can be exhaled.
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Figure 5. Effect of nitrite on hypotensive response to intravenous infusion of nitrosoglutathione 
(GSNO) in anesthetized one-day-old lambs.
An intravenous bolus of sodium nitrite to achieve ~2 μM in the blood, which alone does not 

cause vasodilation [50,165], resulted in a significant potentiation of the hypotensive 

response to GSNO compared to lambs that received a saline bolus instead of nitrite. These 

results are consistent with previous observations in adult sheep and rats [164]. (P < 0.05 for 

nitrite vs controls, 2-way ANOVA with Dunnett’s post hoc test.)
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