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Introduction
RNA sequencing technology has revolutionized basic and 
translational science research for more than a decade. New 
sequencing platforms emerged over recent years have made 
widespread RNA-seq applications possible.1,2 As each sequenc-
ing platform and protocol generates unique measurement 
errors, understanding similarities and differences between plat-
forms and between laboratories is crucial for the success of 
many studies, where RNA-seq data are generated from cross 
platforms or multisites. To date, there are limited publications 
for comparing RNA-seq data across platforms or laboratories. 
The Sequencing Quality Control (SEQC) project is the large-
scale community effort to date to allow such comparisons by 
generating >100 billion reads of 2758 libraries in total from 
well-characterized reference RNA samples.3

The SEQC consortium analyzed the reproducibility, accu-
racy, and information content of expression profiling and junc-
tion detection. It also tested the agreement among RNA-seq, 
qPCR, and microarrays. The agreement of expression levels 
between different platforms is observed, but there are system-
atic deviations for a large number of individual transcripts due 
to the nature of protocols. It also found that reproducibility 
across platforms and sites are acceptable if specific filters are 
used. However, their approach to evaluate reproducibility is very 
basic by simply calculating percent agreement for inter-site 
reproducibility and correlation coefficients for inter-platform 
reproducibility. In addition, they did not provide assessment for 
all sources of variation (ie, samples, platforms, sites, replicates, 
FlowCells, lanes), which is the key to achieve a complete view of 
RNA-seq reproducibility for the SEQC project. Toward this 
end, we provide a broader and deeper assessment of reproduc-
ibility by employing a variety of statistical methods, such as 

hierarchical clustering, Pearson correlation coefficient (PCC), 
analysis of variance (ANOVA) models, and locally estimated 
scatterplot smoothing (LOESS). Our approach can evaluate 
reproducibility at every expression level without the need of 
specific filters and provide a complete assessment of all sources 
of variation.

In summary, the main purpose of this article is to provide a 
complete reproducibility assessment of RNA-seq technology 
to provide technical insights for researchers who may work 
with multiple RNA-seq data sets. To accomplish this goal, we 
employed a systematic approach (including data visualization, 
statistical modeling, and data interpretation) on analyzing the 
SEQC RNA-seq data.

Materials and Methods
RNA-seq library of the SEQC project
The SEQC consortium used 6 RNA samples that were 
sequenced at 12 sites. Reference samples A and B were derived 
from Agilent’s Universal Human Reference RNA (UHRR) 
and Life Technologies’ Human Brain Reference RNA (HBRR) 
cell lines, respectively. Samples C and D were generated by 
mixing samples A and B at a ratio of 3:1 and 1:3, respectively. 
Sample E and F are spike-ins. Each of samples A, B, C, and D 
has 5 replicates, while each of sample E and F has only 2 repli-
cates. Three RNA-seq platforms were used, namely, Illumina 
HiSeq 2000 (ILM), Life Technologies SOLiD 5500 (LIF), 
and Roche 454 GS FLX (ROC). For each platform, a different 
number of sites, sample replicates, FlowCells, and sequencing 
lanes were used, which leads to a total of 2758 libraries 
sequenced. In this study, the libraries of spike-in samples E and 
F were excluded. And, the libraries for ROC platform were 
also excluded because only 1 library was generated at each site. 
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The libraries that were considered in this study are summa-
rized in Table 1.

Analysis of RNA-seq data

SEQC RNA-seq data have a total of 25 794 genes sequenced, 
among which 327 genes that have zero count in all samples 
were removed before analysis. The trimmed mean of M-values 
(TMM) normalization method was performed to normalize 
reads of all libraries.4 Heat maps with hierarchical clustering 
were used for data visualization. The PCCs and fold changes 
were calculated for comparisons among libraries.

Decomposition of variability

ANOVA methods are a common tool to analyze the sources of 
differences in outcomes of many comparative experiments.5 In 
the analysis of an ANOVA model, total variability is parti-
tioned into its component parts, then mean squares are chosen 
to estimate the variability of each component part. In this 
study, a variance stabilizing transformation implemented in 
DESeq2 package6 is first employed on the TMM normalized 
expression values to stabilize variation over expression levels, 
then an ANOVA model is applied to estimate the variability in 
all sources (ie, Sample, Platform, Site, Replicate, FlowCell, 
Lane) at each transcript. The square root of mean squares 
(RMS) for each source of variability are then smoothed over 
the range of expression levels of all transcripts using the 
LOESS method.7,8 The fitted LOESS curve of each source is 
plotted altogether against the range of expression levels. 
Comparison between all sources of variability are made based 
on the fitted LOESS curves, and inferences on reproducibility 
of RNA-seq are drawn in relative to between-lane random 
errors.

An ANOVA model for a transcript g  is defined as

Y S P R F~µ + + + + +

where Y  represents a vector of expression levels of the tran-
script g ; µ represents the overall mean expression; S  repre-
sents the effect of samples A, B, C, and D; P  represents the 
effect of platforms; R  represents the effect of sample repli-
cates; F  represents the effect of FlowCells; and   represents 
between-lane random errors with a normal distribution 
N ( , )0 2σ .

Results
For the SEQC RNA-seq libraries listed in Table 1, the heat 
map of transcript expression averaged over sequencing lanes is 
shown in Figure 1. Two-way hierarchical clustering was per-
formed on both transcripts (in rows) and libraries (in columns). 
As shown in clustering patterns, libraries from the same sam-
ple tend to be clustered together, so does libraries from the 
same platform. However, libraries from the same sample repli-
cate and as well libraries from the same FlowCell are not con-
sistently clustered together.

PCCs of expression levels were calculated between plat-
forms, between sites, between sample replicates, and between 
FlowCells within samples A, B, C, and D, and were also calcu-
lated between each pair of reference samples. The boxplots in 
Figure 2 show that the PCCs between sites (median = 0.9975), 
between sample replicates (median = 0.9980), and between 
FlowCells (median = 0.9984) are very close to 1 for most tran-
scripts, and higher than the PCCs between platforms 
(median = 0.9768) in general. But the PCCs between platforms 
is at the similar range of the PCCs between samples A and C 
(median = 0.9706), B and D (median = 0.9697), or C and D 
(median = 0.9776).

ANOVA model was implemented on the variance-stabilizing-
transformed expression data and RMSs for all sources of vari-
ability were obtained for each transcript. Figure 3 shows the 

Table 1.  The SEQC library distribution for samples A, B, C, and D.

Platform Site Replicate FlowCell Lane Total libraries

Illumina
HiSeq 2000

AGR 4 2 8 256

  BGI 5 2 8 320

  CNL 5 2 8 300

  COH 4 1 8 128

  MAY 5 2 8 320

  NVS 4 2 8 256

Life Technologies
SOLiD 5500

LIV 2 1 5 40

  NWU 5 2 6 240

  PSU 5 2 6 240

  SQW 5 2 6 240

Abbreviation: SEQC, Sequencing Quality Control.
Three official sites for each platform are denoted in italics.
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Figure 1.  Heat map of expression values of all RNA-seq libraries. Expression values are in log2 scale. The color bar indicates log2 expression values 

with red color representing higher expression levels, green color representing lower expression levels, and black color representing medium expression 

levels. The hierarchical clustering dendrograms are on the sides of the heat map over transcripts and libraries. Legends show detailed library information.

Figure 2.  PCCs within samples and between samples. Left panel is the boxplots of PCCs between platforms, between sites, between sample replicates, 

and between FlowCells within samples A, B, C, and D. Right panel is the boxplots of PCCs between each pair of samples A, B, C, and D. PCC indicates 

Pearson correlation coefficient.
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fitted LOESS smoothing curves of RMSs over the range of 
expression levels for all sources of variability. The fitted LOESS 
curve of RMSs for samples is the largest among all curves 

except at the very low expression levels. The fitted LOESS 
curve of RMSs for platforms is larger than that for sites, sample 
replicates, FlowCells, and between-lane residual errors. The 
fitted LOESS curve of RMSs for FlowCells is basically identi-
cal to that for between-lane residual errors. To quantify relative 
differences between these sources of variation, the median of 
ratios between the LOESS curve of a specific source (ie, sam-
ples, platforms, sites, sample replicates, FlowCells) and the 
LOESS curve of residual errors was calculated, which is 50.74 
for samples, 30.06 for platforms, 6.14 for sites, 2.37 for sample 
replicates, and 1.11 for FlowCells, respectively, in relative to 
residual errors. These results demonstrate that differences 
between platforms and between sequencing sites are not ignor-
able regardless of expression levels (low or high), while differ-
ences between sample replicates and between FlowCells are 
acceptable at all expression levels given the 50.74-fold ratio of 
variability between samples and residual errors.

Discussion
We employed a systematic approach to assess RNA-seq repro-
ducibility across platforms and laboratories using the SEQC 
RNA-seq data. The heat map along with 2-way hierarchical 
clustering dendrograms demonstrates that there are systematic 
differences between the 2 RNA sequencing platforms, namely, 
Illumina HiSeq 2000 and Life Technologies SOLiD 5500. 
Furthermore, it is observed from the boxplots of PCCs that 
such systematic differences are at the same level of differences 

Figure 4.  Plot of deviations of log2 fold change from its average within platforms against the averaged log2 expression levels. Each sequencing site is plotted 

separately, and each dot represents a single transcript in each plot. The red lines represent 2-fold deviation and the black lines represent zero deviation.

Figure 3. F itted LOESS curves of RMSs against the averaged log2 

expression levels. RMSs from ANOVA models were smoothed over the 

averaged log2 expression levels through LOESS fit. The red curve 

represents the level of variability in samples, the yellow curve represents 

the level of variability in platforms, the blue curve represents the level of 

variability in sites, the green curve represents the level of variability in 

sample replicates, the purple curve represents the level of variability in 

FlowCell, and the black curve represents the level of variability in between-

lane random errors. ANOVA indicates analysis of variance; LOESS, locally 

estimated scatterplot smoothing; RMS, root of mean squares.
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Figure 5.  Plot of deviations of log2 fold change from its average across platforms against the averaged log2 expression levels. Each sequencing site is 

plotted separately, and each dot represents a single transcript in each plot. The red lines represent 2-fold deviation and the black lines represent zero 

deviation.

between samples A and C, or B and D, or C and D. To quantify 
and compare differences among libraries, we applied ANOVA 
models to decompose the sources of variability and used mean 
squares as an unbiased variance estimator for each source of 
variability. After the ANOVA model was fitted for each tran-
script, the RMSs of all transcripts were smoothed by the 
LOESS method over the range of expression levels. This 
approach enables us to compare differences at all expression 
levels without the need of filtering. The smoothed RMS curves 
show that the deviations between the sources of variability for 
samples and platforms are equivalent at low expression levels, 
stay constant at medium expression levels, and get larger at 
high expression levels. However, the deviations between the 
sources of variability for sites, sample replicates, FlowCells, and 
between-lane random errors are relatively stable over the range 
of expression levels. Although the SEQC paper claims that 
reproducibility across platforms and sites is acceptable if spe-
cific filters are used,3 our systemic analysis supports a distinc-
tive conclusion that reproducibility across platforms and sites 
are not acceptable regardless of expression levels (low or high), 
but reproducibility across sample replicates and FlowCells are 
acceptable at all expression levels.

To investigate whether the differences between platforms 
(ie, ILM vs LIF) has any impact on comparative analyses 
between samples (ie, A vs B), we calculated fold changes 
between samples A and B at each site and compared them 
with their averages within platforms (Figure 4) or with their 

averages across platforms (Figure 5). We found that propor-
tions of transcripts with less than 2-fold deviation from their 
averages within platforms range from 99.43% to 100% for all 
sites, but these proportions of transcripts with less than 2-fold 
deviation from their averages across platforms drops to 94.92% 
through 98.27%.
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