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	 Background:	 High-throughput sequencing of the pathological tissue of 59 patients with thyroid cancer was compared with 
the normal population. It was found that the mutation frequency of the Nebulin gene (NEB) at amino acid 
1133 locus of thyroid cancer patients was much higher than that of the normal population, suggesting that 
NEB mutation may be related to thyroid cancer. Therefore, we constructed the NEB mutant mice for further 
investigation.

	 Material/Methods:	 The RNA extracted from the thyroid of wild-type and NEB mutant mice was analyzed by high-throughput se-
quencing, and the differential expression was analyzed by edgeR software. Several differentially expressed 
genes were selected for quantitative real-time PCR (qRT-PCR) verification, and these genes were analyzed with 
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.

	 Results:	 A total of 624 genes were significantly enriched. Analysis of GO function and pathway significant enrichment 
showed that differentially expressed genes were enriched in thyroid cancer, myocardial contraction, and auto-
immune thyroid disease. The qRT-PCR results were consistent with the high-throughput sequencing results.

	 Conclusions:	 Our data indicate that the expression of some cancer-driving genes and cancer suppressor genes are signifi-
cantly changed in NEB mutant mice compared to wild-type mice, which suggests that NEB function plays an 
important role in regulating the expression of cancer-related genes in the thyroid gland.
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Background

Nebulin, encoded by NEB, is abundantly expressed in the 
myocardium and is the basic component of striated sarco-
mere filaments. It is one of the largest proteins in vertebrates 
(600–900 kDa). NEB contains 183 exons and covers 249 kb 
in chromosomal region 2q23(NM_001271208.1). Its trans-
lation starts from exon 3 and continues until the last exon 
183 [1,2]. The smallest NEB exon is 42 bp (exon 4), the larg-
est is 596 bp (exon 183), and most of the exons are between 
93 and 312 bp [2,3]. Comparison of NEB sequences between 
mice and humans reveals highly conserved regions with the 
same phosphorylation motif and SH3 domain [4].

NEB mutations are a common cause of nemaline myopathy 
(NM). In addition, core-rod myopathy and distal myopathy are 
also related to NEB mutations [1,5–7]. About 50% of nemaline 
myopathy (NM) cases are associated with mutations in NEB, 
and NEB is one of the largest and most complex genes asso-
ciated with neuromuscular diseases [8]. Currently, the largest 
mutation described in the NEB mutation is a 2.5 kb deletion 
in exon 55 in the Ashkenazi Jewish population [9]. NEB muta-
tions can cause a variety of different phenotypes, manifested 
in the distribution and severity of muscle weakness [10]. To 
study the mechanism of muscle weakness caused by NEB mu-
tations, a mouse model with NEB exon 55 deletion was con-
structed. This model has important phenotypic characteristics 
of patients and has severe muscle weakness caused by fila-
ment dysfunction [9,11]. In patients with NEB-associated my-
opathy, there are significant differences in the distribution and 
severity of their disease weaknesses, which may be related to 
the type of NEB mutation and its expression of nebulin [12,13].

We performed high-throughput sequencing of the pathologi-
cal tissues of 59 patients with thyroid cancer. Compared with 
the normal population, we found that the NEB was mutated 
at amino acid 1133. The mutation frequency of the normal 
population is 0.1053, while the somatic mutation frequency 
of thyroid cancer patients is 0.2373. NEB mutation frequen-
cy of tumor samples is relative higher than that of the normal 
population, suggesting that the mutation site is involved in 
tumorigenesis. To detect the function of NEB in thyroid can-
cer, we constructed a NEB mutation mouse model. We per-
formed high-throughput sequencing and qRT-PCR validation to 
investigate the effects of NEB mutation in the mouse thyroid.

Material and Methods

NEB point mutant mouse construction

The mouse NEB is located on mouse chromosome 2 and has a 
total of 157 exons. We created a C577BL/6 mouse model with 

point mutation at mouse NEB. We selected the 1133rd locus 
on exon 33 as a target, and a homologous directed point mu-
tation was performed to mutate the A at the point to G, thus 
its encoded amino acid is mutated from Asparagine (Asn) to 
Aspartic acid (Asp). At the same time, we introduced a silent 
mutation (CAC to CAT) downstream to prevent the binding 
and re-cleavage of guide RNA to sequences following homolo-
gous directed mutagenesis (Figure 1A). NEB mutant mice were 
provided by Cyagen Biosciences (GenBank accession number: 
NM_ 010889.1; Ensembl: ENSMUSG00000026950). The mice 
were reared at the Animal Experiment Center of the Beijing 
Institute of Biotechnology. Animal experiments were approved 
by the Animal Care and Use Committee of the Beijing Institute 
of Biotechnology.

RNA extraction and sequencing

Two-month-old mice were sacrificed and total RNA of the thy-
roid glands was extracted using an RNA extraction kit (RNeasy 
Mini Kit 250, QIAGEN, Valencia, CA) and DNA was digested 
(FSQ-301, TOYOBO, Osaka, Japan). To ensure the accuracy of 
data interpretation and analysis, 3 groups of biological rep-
licates were established in mutant mice and wild-type mice. 
The extraction was carried out in strict accordance with the 
standard operating procedure manual provided by the kit man-
ufacturer and the total sample was extracted.

Total RNA was assayed for quality using an Agilent Bioanalyzer 
2100 (Agilent Technologies, Santa Clara, CA) and total RNA 
was quantified using a Qubit® 3.0 Fluorometer (Invitrogen, 
CA) and a NanoDrop One spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA).

The reagents were prepared for sequencing as shown in the 
Illumina NovaSeq 6000 User Guide manual and the flow cell 
of the cluster was carried. Double-ended (PE) sequencing was 
performed using the paired-end program. The sequencing pro-
cess was completely controlled by the data collection software 
provided by Illumina (Illumina, San Diego, CA) and the sequenc-
ing result data were analyzed in real time. The sequencing 
was completed by Shanghai Whale Boat Gene Technology Co.

Screening of differentially expressed genes

We use the concept of FPKM (Fragments Per Kilobase Million, 
or Fragments Per Kilobase of exon model per Million mapped 
fragments) to characterize the expression levels of different 
genes. In the application, StringTie [14,15] software was first 
used to compare the fragments in each gene segment; this 
was normalized using the trimmed mean of M values algo-
rithm, and the FPKM of each gene was calculated. The obtained 
FPKM value was regarded as the expression level of each gene. 
For each sample, FPKM was used to calculate the expression 
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Figure 1. �Construction of NEB point mutant mouse model. (A) Mutation site of NEB mutant mouse model. (B) Frequency of NEB 
mutations in exon sequencing of thyroid cancer patients and normal population. (C) The differential gene heatmap. Rows 
represent different genes and columns represent different samples; red indicates upregulation of gene expression and green 
indicates downregulation.
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level of each gene, and this value was used for comparisons 
between different samples.

Based on the comparison results, the differential expression 
of genes in NEB mutant mice and wild-type mice was analyzed 
using edgeR software. The differential expression multiple was 
calculated according to the FPKM value. The Log2 fold Change 
(log2FC) was calculated. The fold change (FC) was greater than 
or less than 2 times the differential gene.

Functional analysis of differentially expressed genes

To clarify the biological functions and involved signaling path-
ways of genes in vivo and in cells, we annotated each gene 
based on the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases. GO enrichment analy-
sis was performed on differential genes, and a hypergeometric 
test was used to discover the significant enrichment of GO en-
tries in differentially expressed genes to determine the main 
biological functions.

Validation of differentially expressed genes

The mice were sacrificed with carbon dioxide and the RNA of 
the thyroid glands was extracted and purified using an RNA 
extraction kit (RNeasy Mini Kit 250, QIAGEN, Valencia, CA) and 
cDNA was inverted (FSQ-301, TOYOBO, Osaka, Japan). The dif-
ferentially expressed genes were verified by qPCR using a Real-
Time Quantitative Analyzer (QuantStudio 6 Flex Real-Time 
PCR System) and the results were analyzed by 2–DDCT. Primers 
used are shown in Table 1. The data were analyzed by one-
way ANOVA using GraphPad Prism5 software. The data are 
expressed as mean±SEM. Comparisons of 2 sets of data were 

performed using the t test, and P<0.05 was considered sta-
tistically significant.

Results

Exon sequencing

We performed whole-exome sequencing on the pathological 
tissue samples of 59 patients with thyroid cancer, and found 
that there was a mutation at the amino acid 1133, from A to G, 
causing the amino acid mutation to change from asparagine to 
aspartic acid. The frequency of NEB mutation in patients with 
thyroid cancer is 0.2373, which is much higher than the fre-
quency of 0.1053 in the normal Chinese population (Figure 1B).

Sequencing data analysis

Sequencing obtained 36 GB of raw data and 35.3 GB of pre-
processed, effective transcriptome data. The knockout mouse 
sequence data was compared to the wild-type mouse genome 
(Figure 1C).

Gene function annotation and classification

By GO function classification, the number of all genes in the bi-
ological process, the molecular function, and the cellular com-
ponent were 3460, 716, and 2439, respectively (Figure 2A). 
Based on sequence homology, annotations were made using 
the National Center for Biotechnology Information Clusters 
of Orthologous Groups of proteins database for a total of 53 
classifications. Among them, Cell had the largest number of 
genes (412), followed by Cell Part and Cellular Process, with 

Primer 5’-3’ sequence

Actin-f GAGACCTTCAACACCCCAGC

Actin-r ATGTCACGCACGATTTCCC

NCOA4-f ACCAACCCACAGGACTGGCT

NCOA4-r TTGCCCCAGGCATCGCTGAA

ETV5-f ACAAACATTTGCGGTCCCCCG

ETV5-r ATGGGCTCTGACATCTGCCGGT

GPX3-f ATGTTCGACCAGGTGGGGGCTT

GPX3-r ATGGGTTCCCAAAAGAGGCGGC

TXNIP-f TCAGGGACTTGCGCATCGTG

TXNIP-r ATGCTGGATGTCCGGCTGCT

MYC-f GCCAGCCCTGAGCCCCTAGT

Table 1. Primers used for the quantitative real-time polymerase chain reaction (qRT-PCR).

Primer 5’-3’ sequence

MYC-r GCGGAGGTTTGCTGTGGCCT

Gadd45b-f CCGCTGTGGAGTGTGACTGCAT

Gadd45b-r TCATCAGTTTGGCCGCCTCGT

CACNA1S-f CCGCGAGTGGAAGAAGTACGAGT

CACNA1S-r AGGGAAACACTACAAAGTACACCACG

ATP1B2-f ACTGGCCACACCAGGCTTGA

ATP1B2-r TATCGCCCTGGACGGCAGACAT

MLF1-f CCGGATGCTGAGCAGCTTT

MLF1-r TCGCCATCATCACGTTCTCGACG

UTY-f TTGCAACCAACCCCAGGATGCC

UTY-r GCTCTGCGGGTATTGGTAGGCT

e922953-4
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Wang H. et al.: 
NEB mutant mice and high-throughput sequencing

© Med Sci Monit, 2020; 26: e922953
ANIMAL STUDY

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



411 and 386, respectively. By KEGG functional classification, 
there were more differentially expressed genes in signal trans-
duction, immune system, and endocrine system (Figure 2B).

GO analysis of differentially expressed genes

The differentially expressed genes were subjected to GO sig-
nificant enrichment. The calculated P value was corrected by 
a multiple hypothesis test and Q value £0.05 was used as the 
threshold. The GO term satisfying this condition was defined 

as significantly enriched in differentially expressed genes. 
Correlation analysis showed that the specific gene expression 
levels of wild-type mice and NEB point mutated mice were well 
correlated (r=0.964), indicating that the RNASeq data was highly 
reproducible (Figure 2C). A total of 624 GO entry differential 
genes were significantly enriched, of which 343 genes were 
upregulated and 281 genes were downregulated (Figure 2D). 
Table 2 shows the data of 20 genes that were significantly 
downregulated or upregulated in NEB point mutant mice.
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Figure 2. �Distribution of differentially expressed genes. (A) Differential gene-related GO function distribution map. (B) Functional 
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Differentially expressed genes were mainly enriched in myo-
fibril assembly and response to interferon-alpha in biologi-
cal process components (Figure 3A). Immunoglobulin recep-
tor binding, antigen binding, T cell receptor binding, and titin 
binding were significant enrichment terms in the molecular 
functional component (Figure 3B). Contractile fiber and myo-
fibril were a type of significant enrichment in cellular compo-
nent components (Figure 3C).

KEGG analysis of differentially expressed genes

Pathway significant enrichment analysis was performed based 
on the differentially expressed KEGG functional annotation 
results. Five significant enrichment pathways were obtained, 
involving thyroid cancer, oxytocin signaling pathway, cardio-
myocyte adrenergic signaling pathway, mitogen-activated pro-
tein kinase (MAPK) signaling pathway, and autoimmune thy-
roid disease (Figure 3D). Among them, MAPK signaling pathway 
plays an important role in cellular physiology and pathologi-
cal processes, which was significantly convergent with the GO 
function of differentially expressed genes in the immune sys-
tem, development, and other biological processes.

Validation of differentially expressed genes

The thyroid gland is an important endocrine organ in the 
body. When it is cancerous, it not only changes the cancer-
driving and tumor-suppressing genes, but also hormone syn-
thesis. Therefore, we selected relevant differentially expressed 
genes for real-time PCR (ABI 7500 Real-time PCR instrument, 
Life Technologies, US), including MYC, TXNIP, and CACNA1S 
for cancer-driven genes (Figure 4A); Gadd45b and NCOA4 for 
thyroid cancer(Figure 4B); MLF1, UTY, and ETV5 for transcrip-
tional disorders in cancer (Figure 4C); and GPX3 and ATP1B2 

for thyroid hormone synthesis (Figure 4D). The results showed 
that the expression of Gadd45b, GPX3, MYC, TXNIP, CACNA1S, 
NCOA4, and ETV5 in mutant mice was decreased and the ex-
pression of MLF1, UTY, and ATP1B2 was increased compared 
to wild mice, which was consistent with the results of tran-
scriptome analysis.

Discussion

It has long been recognized that NEB mutations are linked to 
a variety of muscle disorders [12,13]. Our study indicated that 
the frequency of NEB mutations in patients with thyroid can-
cer was much higher than that in the normal population, sug-
gesting that NEB mutation may be related to thyroid cancer. 
We constructed a NEB mutant mouse model to investigate 
whether there was an association between NEB and thyroid.

High-throughput sequencing analysis was used to compare 
the differentially expressed genes of wild-type mice and NEB 
mutant mice. The expressions of 624 genes were significantly 
changed in mutant thyroid. GO and KEGG analysis showed 
that the upregulated genes are mainly enriched in dilated 
cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), 
and myocardial contraction. These pathways are mainly relat-
ed to nebulin in muscle-related functions. The downregulated 
genes are mainly enriched in thyroid cancer, autoimmune thy-
roid disease, iron death, and PPAR signaling pathways, which 
are mainly related to the immune system and endocrine sys-
tem. For example, Gadd45b can limit tumor growth and par-
ticipate in DNA repair, cell survival, and aging or death [16]. 
Research in Gadd45b knockout mice proved that it was im-
portant for tumor immunity [17]. The genetically engineered 
mouse breast cancer model showed that most genes inhibiting 

Down regualted Up regualted

Gene Log2FC P-value Gene Log2FC P-value

UTY –8.85 4.15E-51 GPR83 8.17 1.72E-21

LRRC30 –6.91 6.99E-07 IFI44L 6.91 3.80E-20

ODF3L2 –5.36 1.27E-04 IGLC2 5.49 3E-04

MYOD1 –5.18 2.25E-04 IGHG2B 5.35 3.21E-04

MSS51 –4.98 1.19E-07 NR1D2 1.92 3.33E-09

KCNJ4 –4.90 4.44E-14 PER3 1.61 2.13E-07

GM12240 –4.57 4.35E-04 MYC 1.57 2.34E-04

CMYA5 –4.10 3.21E-04 NCOA4 1.50 1.76E-07

MLF1 –3.04 3.15E-04 GPX3 1.05 2.61E-04

NEXN –2.85 2.42E-0.5 ETV5 1.04 0.0387

Table 2. Top 20 down/upregulated genes between mutant mice and wild mice.
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cell proliferation, including Gadd45b, were decreased [18]. MYC 
is a cancer-driven gene and plays a vital role in tumor trans-
formation [19]. It has been reported that MYC regulates the 
expression of 2 immune checkpoint proteins on the surface 
of tumor cells, and its downregulation can enhance the anti-
tumor immune response [20–22]. Our data showed that the 
expressions of Gadd45b and MYC in NEB mutant mice were 
decreased, which may indicate the occurrence and develop-
ment of tumors.

Ferroptosis genes were also enriched in our data. Ferroptosis is 
a new form of programmed cell necrosis discovered in recent 
years. When iron death occurs, intracellular lipid reactive ox-
ygen species (ROS) are generated [23,24]. Glutathione peroxi-
dase (GPXs) can remove ROS. GPX3 is significantly downregu-
lated in differentially expressed genes. GPX3 is an antioxidant 
enzyme distributed in glandular epithelial cells, such as kid-
neys and thyroid glands. It can use glutathione as a reducing 
matrix to remove H2O2, soluble lipid hydroperoxides, phospho-
lipids, and hydroperoxide to protect kidneys, thyroid glands, 
and other glands from oxidative damage. It has been report-
ed that GPX3 expression is reduced in prostate cancer model 
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Figure 3. �Enrichment results of differentially expressed genes. (A) GO domain: Biological process. (B) GO domain: Molecular functions. 
(C) GO domain: Cellular components. (D) KEGG enrichment results of differentially expressed genes. The ordinate is 
the specific path name. The color of the point indicates the significance of the path (Q value) and the size of the point 
characterizes the number of genes mapped to the pathway. Gene ontology (GO). Kyoto Encyclopedia of Genes and Genomes 
(KEGG).

mice and that the risk of cancer is increased in GPX3 knockout 
mice [25]. This suggests that a significant decrease of GPX3 in 
NEB mutant mice leads to an imbalance of lipid reactive oxy-
gen species in the glands, which then leads to tumorigenesis.

In addition, thioredoxin interacting protein (TXNIP) can increase 
the production of ROS and oxidative stress induced apoptosis, 
and has been identified as a tumor suppressor gene [26]. It has 
been reported that TXNIP has strong growth inhibition, metas-
tasis inhibition, and pro-apoptotic effects [27,28]. Defects in 
TXNIP were found to cause cancer in Txnip-deficient mice [29]. 
The significant reduction of TXNIP in NEB mutant mice sug-
gests that our mice have an increased risk of cancer. Recent 
studies found that TXNIP also plays a key role in type 1 and 
type 2 diabetes [28]. This suggests that NEB mutations affect 
not only the immune system, but also the endocrine system.

Our study may only show the tip of the iceberg in NEB relat-
ed to thyroid function, and functional research is also needed. 
More experiments and analysis are necessary to further con-
firm our conclusions.
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Conclusions

In this study, NEB mutant model mice were constructed and 
compared with wild-type mice by high-throughput sequencing 
analysis. Differentially expressed genes are mainly concentrat-
ed in thyroid cancer, autoimmune thyroid disease, iron death, 
and myocardial contraction. Our qRT-PCR validation is consis-
tent with our sequencing results. Our data suggest that the 
mouse NEB mutation has an effect on the mouse thyroid gland.
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Figure 4. �The quantitative real-time polymerase chain reaction (qRT-PCR) validation of the differentially expressed genes using 
RNA extracted from wild mice and NEB mutant mice. (A) Cancer-driven genes. (B) Genes involved in thyroid cancer. 
(C) Transcriptional disorders in cancer. (D) Genes involved in thyroid hormone synthesis. P<0.05 was considered statistically 
significant in all statistical analyses. The t test was used to compare 2 sets of data. *, **, *** in the graph indicate P<0.05, 
P<0.01, and P<0.001, respectively.
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