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Abstract

Intrinsically disordered proteins (IDPs) constitute a significant fraction of eukaryotic proteomes. 

High-resolution characterization of IDP conformational ensembles can help elucidate their roles in 

a wide range of biological processes but remains challenging both experimentally and 

computationally. Here, we present a generic algorithm to improve the accuracy of coarse-grained 

IDP models using a diverse set of experimental measurements. It combines maximum entropy 

optimization and least squares regression to systematically adjust model parameters and improve 

the agreement between simulation and experiment. We successfully applied the algorithm to 

derive a transferable force field, which we term as MOFF, for de novo prediction of IDP 

structures. Statistical analysis of force field parameters reveals features of amino acid interactions 

not captured by potentials designed to work well for folded proteins. We anticipate its combination 

of efficiency and accuracy will make MOFF useful for studying the phase separation of IDPs, 

which drives the formation of various biological compartments.
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Introduction

The classical structure-function paradigm suggests that proteins must fold into unique three-

dimensional conformations to perform their functions within the cell.1,2 It has helped 

establish conceptual frameworks that are instrumental in understanding crucial biological 

features such as the enzymatic activity3 and protein evolution.4 However, recent evidence 

suggests that 30 to 40% of eukaryotic proteomes contain disordered regions that do not fold 

into defined tertiary structures.5 These so-called intrinsically disordered proteins (IDPs), 

instead, function with an ensemble of different conformations. They can promote liquid-

liquid phase separation via multivalent interactions and are critical for the formation of 

cellular compartments such as stress granules, P granules, super-enhancers, and 

heterochromatin.6–10 It has been argued that disorderness and multivalent interactions are 

indeed evolutionarily advantageous for performing increasingly more complicated tasks in 

higher-order organism.11 An appreciation of this emerging disorder-function relationship for 

IDPs requires a detailed characterization of their structures and the set of physicochemical 

interactions that dictate their organization.12–18

Though significant progress has been made, high-resolution structural characterization 

remains challenging for IDPs. In particular, traditional experimental techniques that found 

great success with folded proteins, such as X-Ray scattering and Cryo-electron microscopy, 

face difficulty in resolving the fuzzy conformation of IDPs.19–21 The two popular techniques 

that are often used for studying IDPs are small-angle X-ray scattering (SAXS) and Förster 

resonance energy transfer (FRET).22–25 Both are low-resolution approaches that fall short at 

providing detailed atomic structures. Recent developments in atomistic force fields have 

significantly improved the accuracy of all-atom computer simulations, rendering in silico 

prediction a promising approach to characterize the ensemble of IDP structures.26–28 The 

computational cost associated with atomistic simulations, however, limits their application to 

single and small proteins.

For more efficient simulations of IDPs, numerous groups have developed coarse-grained 

protein models.29–37 For example, the hydrophobicity scale model, introduced by Mittal and 

coworkers,29–31 treats each residue as a single particle. Non-bonded interactions between the 

coarse-grained particles were parameterized based on amino acid hydrophobicity to 

reproduce protein radius of gyrations. The Thirumalai group adopted a self-organized 

polymer to model IDPs with two beads per amino acid.34 Using the rescaled Betancourt-

Thirumalai statistical potential38 for amino acid interactions, they showed that the model can 

delineate the complex interplay between protein sequence and structure. Additionally, 

Papoian and coworkers generalized the associative memory, water-mediated, structure and 

energy model (AWSEM) model developed by the Wolynes group36,39,40 for IDPs by 

reweighting the strength of secondary structure potentials and introducing a novel functional 

form to control protein size.33 Finally, in the model, ABSINTH, introduced Pappu and 

coworkers, interactions between amino acids are modeled with atomistic detail and solvent 

effect is accounted for implicitly with a novel mean-field scheme.41 The expanded range of 

accessible timescales in these models is valuable for an exhaustive sampling of protein 

conformation and computing thermodynamic quantities.
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Algorithms that can systematically parameterize coarse-grained models are of great interest 

and can further improve the accuracy of existing IDP models. Optimization methods based 

on the energy landscape theory,42–46 which worked well for deriving force fields of globular 

proteins by maximizing the energy gap between folded and unfolded configurations,47,48 are 

not applicable because IDPs, by definition, lack a unique folded structure. An alternative 

approach to further refine the accuracy of computational models for a specific protein is to 

incorporate additional experimental measurements.49–51 For example, in Ref. 52, we 

demonstrated that a maximum entropy based algorithm can significantly improve the 

agreement between simulated and experimental small-angle X-ray scattering profiles by 

adding a linear biasing term to the model’s energy function. An obvious drawback of this 

algorithm is that it cannot be applied to proteins for which no experimental data is available.

In this paper, we generalize the maximum entropy algorithm introduced by us52 to 

parameterize a transferable force field for IDPs, which we term as maximum entropy 

optimized force field or MOFF. Instead of optimizing the energy gap as in folded proteins, 

the algorithm strives to reproduce the energy distribution for an ensemble of IDP 

configurations obtained from maximum entropy biasing. It involves iterations of maximum 

entropy optimization to derive biasing energies that reproduce experimental inputs, and 

least-squares fitting that converts the biasing energies into force field corrections. We 

demonstrate that MOFF is transferable and can be applied to predict protein structures de 
novo. Analysis of this force field further reveals amino acid interaction patterns not captured 

by statistical potentials that work well for folded proteins, explaining their lack of 

transferability for studying IDPs. As its quality can be continuously improved with the 

incorporation of more proteins and experimental measurements during parameterization, we 

anticipate MOFF to be useful for studying a wide range of problems related to IDPs.

Methods

Algorithm for force field parameterization

Numerous computational models and force fields have been proposed for IDPs, and they 

have provided molecular insight into a wide range of biological processes.29–37 Parameters 

in these models were often derived with phenomenological approaches based on some 

biophysical properties and statistics of amino acids derived from folded proteins. 

Systematically improving upon them to provide a better characterization of IDPs remains 

non-trivial. In the following, we present an algorithm to refine IDP force fields for better 

agreement with experimental measurements. The hydrophobic scale (HPS) model 

introduced by Mittal and coworkers30 was used as an example for illustration purposes, but 

the algorithm is general and can be directly applied to other force fields as well.

Our goal is to fine-tune force field parameters to improve the agreement between the 

simulated and experimental radius of gyrations (Rg) of IDPs. Here, we focus on Rg due to its 

availability for a broad set of proteins, but other experimental measurements can be 

incorporated as well. A promising approach for improving the agreement between 

simulation and experiment is to introduce maximum entropy biases to computational 

models.49–51,53 The maximum entropy approach has gained wide popularity and been 

applied to a variety of problems due to its simplicity and fundamental connection to the 
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information theory.52,54–58 It suggests that for a given protein, to ensure that the Rg of 

simulated structures matches the experimental value, a linear bias should be added to the 

model Hamiltonian

UME(r) = UHPS(r) + αRg(r), (1)

where r represents protein configurations and UHPS(r) is the energy function defined by the 

hydrophobicity scale model.30

The maximum entropy approach can be applied to any protein and is guaranteed to 

reproduce experimental measurements. Its main drawback is that the resulting energy 

function is not transferable and a unique biasing energy αRg(r) needs to be determined for 

every protein of interest. Such repeated parameterization can be cumbersome and becomes 

impractical for proteins with no experimental input. We introduce the maximum entropy 

optimized force field (MOFF) for transferable modeling of IDPs

UMOFF(r) = UHPS(r) + ∑
I, J

ϵIJCIJ(r) (2)

where I and J indexes over different amino acid types. CIJ(r) = ∑i ∈ I, j ∈ J C rij  counts the 

number of contacts between amino acid types I and J within a protein configuration r. The 

contact function between a pair of amino acids i and j separated at a distance rij is defined as

C rij = 1
2 1 + tanh η ro − rij (3)

with ro = 8 Å and η = 0.7 Å−1. ϵIJ corresponds to the energetic cost for contact formation 

and their values will be derived from maximum entropy biases defined in Eq. 1 by solving 

the following set of linear equations

∑
I, J

ϵIJCIJ rm ≡ αRg rm for m = 1, ⋯, M . (4)

A total of M structures for a given protein can be used to provide a large set of variation of 

contacts for an efficient determination of the parameters.

To derive a transferable force field, however, several technical aspects need to be addressed. 

First, Eq. 4 needs to be generalized to include multiple proteins to ensure the transferability 

of ϵIJ. Second, there is an inherent conflict in Eq. 4, as the left and right side reaches 0 at 

different points. By definition, when there are no contacts, the left side of the equation is 0. 

However, in this limit, Rg is maximized, and the right side of the equation is at an extremum. 

We can resolve this apparent conflict by subtracting a reference point energy αRg
exp—the 

biasing energy at the experimental value—from both sides of the equation. This subtraction 

is justified by the realization that only energy differences are needed to reproduce the 

structural ensemble and the mean Rg, while the absolute energies are of no particular 

significance. Following Eq. 4, on the left hand side, we further converted the biasing energy 

into a linear combination of pair-wise contacts ϵIJCIJ
n, exp. CIJ

exp can be estimated using 
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simulated protein structures with Rg values that are within 0.5 Å of the experimental 

measurement. The small deviation 0.5 Å was introduced to account for experimental error 

and to ensure statistical convergence with enough protein structures. Third, the quality of the 

force field depends on the assumption used in deriving Eq. 4 that the biasing energies can be 

approximated with a linear combination of pairwise contacts. The validity of this assumption 

may be poor, especially at large biasing energies. Accuracy of the linear approximation can 

be systematically improved by an iterative procedure in which we find maximum entropy 

biasing energies to the newly derived MOFF and use them to update force field parameters 

further. As the difference between model predictions and experimental measurements drops, 

the strength of the biasing energies will decrease, and the quality of the linear approximation 

will improve.

With all these factors accounted for, we solve the following equations iteratively to derive 

parameters for MOFF

∑
I, J

ϵIJ CIJ rmn − CIJ
n, exp ≡ αn Rg rmn − Rg

n, exp , form = 1, ⋯, M andn = 1,

⋯, N .
(5)

where n and m indexes over different proteins and the structures for a given protein. An 

illustration of the algorithm is provided in Figure 1.

Solution to Eq. 5 can be found with least squares regression by recasting the equation in 

matrix form as

ϵC ≡ Rg, (6)

where ϵ, C, and Rg are matrix versions of the contact energy, contact number, and bias 

energy respectively. We then solve for using least squares as

ϵ = CTC −1CTRg . (7)

To reduce statistical noise that originates from a finite sample of protein sequences and 

structures, we reconstructed CT C with the largest 60% eigenvalues before calculating its 

inverse.

Hydrophobic scale model of IDP

As aforementioned, we used the hydrophobicity scale model as the starting point for our 

force field refinement.29–31 Protein molecules in this model are described at the residue 

level, with one bead for each α-carbon. Interactions between amino acids were 

parameterized based on their hydrophobicity with a multiplicative scaling factor.

The energy function of this model consists of three terms and

UHPS(r) = Ub(r) + Ue(r) + Unb(r) . (8)
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Ub(r) is the bonding energy between adjacent amino acids and is modeled using a harmonic 

potential with a spring constant of 10 kJ/mol/Å2 and a bond length of 3.8 Å. Ue(r) 

corresponds to electrostatic interactions between charged residues modeled at the Debye-

Hückle level. We used = 80 for the dielectric constant of water, and the ionic strength was 

set individually for each protein to match the corresponding experimental values (see Tables 

1 and 2). Masses and charges of the amino acids can be found in Table S1.

Unb(r) describes nonbonded energies, and is the sum of the contact energies between all 

pairs of amino acids i and j separated at a distance rij, given by Unb(r) = ∑ijV nb rij . Instead 

of the Ashbaugh-Hatch functional,30 we utilized a dampened step function with the 

following form

V nb rij = ϵ0
rij12 + ϵIJ

HPSC rij . (9)

The first term with ϵ0 = 1.67772 × 107 kJ/mol Å12 accounts for excluded volume. ϵIJ
HPS

measures the strength of the pairwise contact energies and I and J correspond to the amino 

acid types of residue i and j. Parameters in C rij  (Eq. 3) were chosen such that Vnb(rij) 

approximates the shape of the Lennard-Jones potential (see Figure S1). This new potential 

form separates out the repulsive core from specific amino acid interactions such that the 

model contact energies can be directly compared with the correction terms introduced in Eq. 

2.

Details on computer simulations

At each iteration of the force field optimization algorithm (Figure 1), we carried out two set 

of replica exchange molecular dynamics simulations for each protein using UMOFF(r) and 

UME(r), respectively. The amino acid contact energies in UMOFF(r) were set as zero in the 

first iteration. We note that, except for the first iteration, UME(r) is defined differently from 

Eq. 1 and refers to the energy function that corrects the current version of MOFF, and

UME(r) = UMOFF(r) + αRg(r) . (10)

The biasing strength α was fine tuned manually for each protein to ensure that the average 

Rg for simulated protein structures is within 0.5 Å of the experimental value.

All simulations were carried out using the GROMACS software package,60 with the 

PLUMED plugin to incorporate biasing energies.61 Simulations were initialized from 

protein structures predicted by I-TASSER62 using the corresponding amino acid sequences. 

Each simulation trajectory consists of a total of six replicas with temperatures at 300K, 

320K, 340K, 360K, 380K, and 400K, and swaps between replicas were attempted at every 

100 steps. Langevin dynamics were used to control the temperature with a coupling constant 

of 1 ps. Proteins were placed inside cubic boxes with sides five times the maximum length 

of the protein. The trajectories lasted for 4 × 107 steps with a timestep of 10 fs. The first 107 

steps were discarded as equilibration. We collected protein configurations at every 2000 

steps for a total of 15,000 structures. Combining the two trajectories simulated with the two 
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energy functions results in a total of 30,000 structures for each protein. To validate the 

convergence of our simulations, we repeated the simulations with UMOFF(r) five times in the 

first and final iteration and did not observe statistically significant changes in the predicted 

Rg.

Results and Discussion

Illustration of force field parameterization with a single protein

To illustrate key concepts in the algorithm for force field optimization, we applied it to a 

single protein, R15. As shown in Figure 2A (blue line), UHPS(r) overpredicts Rg with a 

mean of 2.23 nm compared to 1.72 nm determined by FRET.63 We then carried out the 

maximum entropy optimization to derive UME(r), which succeeded in reproducing Rg as 

shown by the orange line. Finally, we derived a force field for this individual protein, 

UR15(r), by solving Eq. 5 with 30,000 structures collected from the two simulations for 

UHPS(r) and UME(r). As shown in green, the new force field predicts a mean Rg of 1.66 nm, 

which is in much better agreement with the experimental value than that predicted by 

UHPS(r). Its variance also closely matches that from UME(r).

We then examined the accuracy of the linear approximation used in Eq. 5 by plotting the 

contact energies ∑I, J ϵIJ CIJ rm − CIJ
exp  against the bias energies α Rg rm − Rg

exp  for all 

the 30,000 structures in Figure 2B. Though the two energies are correlated, it is evident that 

the linear fit is not perfect, supporting the use of an iterative algorithm for further 

improvement. The observed oblong shape results from different physical limits on protein 

size and contacts. For example, fully collapsed structures have a well defined Rg value that 

further gives rise to a lower bound on the biasing energy (−6 kJ/mol). On the other hand, 

physical contacts between residues can vary substantially without changing protein size, 

leading to large variations in contact energies. Similarly, for expanded configurations, the 

contacts will disappear first before proteins become fully stretched to reach a maximum in 

Rg, resulting in the heterogeneity in biasing energies at a relatively constant contact energy 

of 10 kJ/mol.

We further applied UR15(r) to other proteins as a test of its transferability. As shown in 

Figure S2, it performs worse than UHPS(r) and tends to overcollapse the proteins. This is not 

too surprising as the interaction energies determined for a single protein are not guaranteed 

to provide a good description of IDPs in general.

Parameterization and validation of MOFF for IDPs

To parameterize a transferable force field capable of modeling IDP structures, we carried out 

the iterative optimization algorithm over a total of twelve disordered proteins studied in Ref. 

30 (Table 1). As a quantitative evaluation of the force field performance, we define

χ2 = ∑
i

Rg, i
sim − Rg, i

exp

σi

2
(11)
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to measure the differences between simulated and experimental Rg. σi is the experimental 

standard deviation of Rg for protein i, and the sum is taken over all proteins from the training 

set.

A total of 15 iterations was performed to determine the final set of parameters for MOFF. As 

the iterations progress, χ2 declined rapidly, starting at 23.67 and reaching 3.50 by the end 

(Figure 3A). Rg values predicted by the converged MOFF are shown in Figure 3B, along 

with the results from UHPS(r). The significant improvement of MOFF over the hydrophobic 

scale model is encouraging and supports the usefulness of our iterative algorithm in 

developing more accurate protein force fields. Next, we evaluated the performance of MOFF 

on six additional proteins not included in our training set to test its transferability. These 

proteins were studied by Thirumalai and coworkers with a different model (Table 2).34

As shown in Figure 4, MOFF significantly improves the prediction accuracy for these new 

proteins as well. The total sum of absolute difference ∑i Rg
sim − Rg

exp  drops from 5.51 to 

2.30 nm when compared with predictions by the hydrophobic scale model. The monotonic 

decrease of this difference along MOFF optimization (see Figure S3) supports the absence 

of overfitting for force field parameterization. It’s worth noting that the improvement 

exhibits heterogeneity and the result on ERM TADn is the least satisfying, as highlighted by 

the arrow in Figure 4. Analysis of the underlying protein sequence shows that ERM TADn 

lacks polar, uncharged amino acids that are prevalent in most IDPs (Figure S4A). These 

amino acids constitute a much higher fraction of the training set and more successful 

portions of the test set. Similarly, large, apolar amino acids are less frequent in the training 

set than in ERM TADn. The increased levels of hydrophobic residues coupled with the 

decreased levels of hydrophilic ones likely explains the more collapsed configuration of 

ERM TADn. Therefore, MOFF is transferable, but performance can potentially be further 

improved with a larger training set.

Classification of amino acids based on MOFF interactions

Given the success of MOFF in predicting the size of IDPs, we wondered whether the derived 

interaction energies ϵIJ + ϵIJ
HPS  could provide physical insight into protein folding. When 

compared with the hydrophobic scale model, we found that MOFF significantly increases 

the contact energy between hydrophilic residues (Figure 5 and Figure S5), and even makes 

some of these interactions purely repulsive. A more repulsive force field is necessary to 

rescue the overcollapse of protein configurations observed in the hydrophobic scale model. 

As hydrophilic residues are over-represented in IDPs and our training set (Figure S4B),64–66 

destabilizing the contacts among them is effective at expanding the configurations for most 

proteins.

To further untangle the complexity of the MOFF interaction matrix, we performed a 

hierarchical clustering to group together amino acids that share similar interaction patterns. 

Towards that end, we assigned each amino acid with a 20-element vector that represents its 

interaction energy with other residues. Distances between amino acids were then defined 

using the correlation coefficients of corresponding vectors. After computing the proximity 

between amino acids, we grouped them into four clusters using the linkage function 
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implemented in MATLAB.67 As shown in Figure 5, hydrophilic and hydrophobic residues 

are generally separated from each other, partitioned into cluster 1–4 (orange and blue) and 

cluster 2–3 (red and green), respectively. We note that these four clusters differ from the 

amino acid groups derived from the analysis of the Miyazwa-Jernigan (MJ) potential that 

has been widely used for studying folded proteins.68–70 As shown in Table 3, MJ groups 

clearly separate amino acids based on hydrophobicity, but the charged residues (GLU, ARG, 

and LYS) are assigned into the two primarily hydrophobic clusters 2–3 by MOFF. A 

possible explanation for the more scattered distribution of residues in MOFF clusters is that 

IDPs lack a well-defined hydrophobic core and adopt more extended conformations than 

well-folded proteins. The hydrophobic effect “learned” from IDP sequences, therefore, may 

be less prominent.

Next, we investigated whether this difference in amino acid clustering reflects a robust 

feature of IDPs or a result of statistical noise in parameterization. Towards that end, we 

introduced two new force fields denoted as UMOFF4(r) and UMJ5(r), respectively. These two 

force fields share the same mathematical expression as in Eq. 2, and they only differ in the 

amino acid clusters used in defining the second correction term. For UMOFF4, we partitioned 

the 20 amino acids into the four MOFF clusters shown in Figure 5 and restricted corrections 

in contact energies (ϵIJ) to be identical for amino acids within the same cluster. Similarly, for 

UMJ5, amino acids that fall into the same MJ group share the same force field corrections. 

We then followed the iterative procedure as before to derive force field parameters from the 

twelve training proteins. If the difference between the two amino acid groups is not 

significant but an artifact of the current optimization algorithm, we shall anticipate 

comparable performance from the two simplified models in simulating IDPs.

Remarkably, we found that UMOFF4(r) essentially reproduces the success of the full model, 

despite its use of a much smaller number of parameters (10 compared to 210). As shown in 

Figures 6A and S6, UMOFF4(r) describes the size of training proteins well, and the 

normalized difference between simulated and experimental Rg (χ2) decreases to 7.12 after 

15 iterations. Furthermore, this new force field appears to be more transferable than our 

original one, and the absolute Rg difference for test proteins is 2.03 nm, smaller than 2.30 

from UMOFF(r) (Figure 6B). On the other hand, UMJ5(r) performs significantly worse for 

both training and test proteins. The χ2 plateaus around 15.64 after 15 iterations (Figures 6C 

and S6), and the Rg difference for test proteins is 4.03 nm (Figure 6D). Close examination of 

the simulated results for training proteins suggests that this force field loses the specificity 

required to adjust the size of individual proteins. Instead, it generally increases the size of 

each protein, regardless of how the initial force field performs.

The vast difference in the performance of the two simplified models strongly supports the 

biological importance of the four groups defined by the MOFF energies. It also highlights 

the challenge for transferring models that work well with folded proteins to IDPs. We note 

that the presence of two different amino acid clustering schemes does not necessarily 

suggest the existence of two separate folding codes for disordered and globular proteins. 

Instead, it may indicate that the protein sequences used in parameterization are not broad 

enough to cover the whole spectrum of biological diversity. As the size of a protein is 

dictated by the subtle balance of several factors, including hydrophobic effect, water-
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mediated interactions, etc., a limited coverage of the sequence space may result in over- or 

under-emphasis of one mechanism versus the other. Optimizing parameters using both 

disordered and ordered sequences will be crucial to ensure the consistency and 

transferability of computational models across protein families.

Conclusions

We presented an algorithm for parameterizing the force field of coarse-grained models. It is 

most effective at refining existing force fields while other top-down71,72 and bottom-up73,74 

approaches are potentially more appropriate for deriving new force fields from the scratch.

Our algorithm improves force field quality by introducing additional correction terms to 

reproduce experimental data. It, therefore, differs from many approaches that directly adjust 

force field parameters.75,76 In particular, existing approaches often involve iterations of 

molecular dynamics simulations to compute ensemble averages and parameter fine tuning to 

improve the agreement between model and experiment. Modern force fields for protein 

molecules, especially those with atomistic details,26–28 often involve more than hundreds of 

parameters. Fine tuning them is, therefore, a challenging numerical problem in a high-

dimensional space, and many iterations will be needed to reach convergence. Our algorithm 

breaks this difficult parameter search problem into two steps consisting of maximum entropy 

optimization and least squares regression. Instead of directly adjusting parameters of the 

original force field, we introduce correction terms that can be defined independently from 

these parameters, effectively reducing the complexity of the optimization. For example, 

parameters in the maximum entropy optimization step share the same number as 

experimental constraints, which is often much smaller than those involved in defining the 

force field, and can be determined very efficiently. The second step does not involve 

molecular dynamics simulations and can be solved with negligible computational cost. In its 

current version, we used linear regression to fit maximum entropy biases for its simplicity of 

implementation. Non-linear fitting, however, can be adopted straightforwardly to improve 

the accuracy of the second step. A more accurate regression can potentially abolish the need 

of iteration used in the current algorithm, further reducing its computational cost.

We applied the algorithm to parameterize an IDP model using the radius of gyration for a set 

of proteins. The resulting force field, which we term as MOFF, succeeded in de novo 
structural prediction for disordered proteins. Further analysis of interaction energies from 

MOFF suggested a classification of amino acids that differs significantly from the five types 

defined by the MJ potential, a model that has found great success for studying folded 

proteins. We demonstrated that this difference is not a result of statistical noise in parameters 

and is critical for the success of MOFF in modeling IDPs. Given its accuracy and efficiency, 

we anticipate MOFF to be useful for elucidating sequence-specific features of IDPs that 

drive their phase separation and improving our understanding of the emerging disorder-

function paradigm.

We note that the quality of the force field introduced here can be continuously improved. For 

example, due to the limited availability of experimental data, the number of proteins 

included in the training and test set is small. Increasing the size of the training set will, in 
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general, lead to better force field accuracy and transferability. Furthermore, though we 

mainly used the radius of gyration derived from SAXS and FRET as constraints, the general 

framework for maximum entropy biasing makes the incorporation of data from other types 

of experiments such as nuclear magnetic resonance straightforward. Finally, experimental 

data are noisy and their interpretation is not always straightforward. Using more rigorous 

protocols to process experimental measurements77–79 and accounting for errors in these data 

with a Bayesian optimization approach80–82 are important future directions to further 

improve force field quality.

It is worth pointing out that while we restricted the discussion to disordered proteins, one 

can incorporate well-folded proteins into the training set for parameter optimization as well. 

Deriving a consistent force field for both disordered and globular proteins has been 

challenging. A simultaneous optimization for both folded and disordered proteins using the 

algorithm outlined here would be an exciting future direction. It may shed light on general 

principles of protein folding by resolving the difference in amino acid clustering derived 

from MOFF and MJ potential.
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Figure 1: 
Illustration of the iterative algorithm for coarse grained force field optimization.
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Figure 2: 
Illustration of the force field parameterization algorithm on a single protein, R15. (A) 

Comparison between the mean experimental value (black, dashed) for Rg and probability 

distributions obtained from simulating the hydrophobic scale model (UHPS(r), blue), the 

maximum entropy optimized model (UME(r), orange), and MOFF for this specific protein 

(UR15(r), green). (B) Correlation between contact energies obtained from linear fitting 

∑I, J ϵIJ CIJ rm − CIJ
exp  and the original maximum entropy biasing energy 

α Rg rm − Rg
exp . The diagonal line (orange) is provided as a guide to the eye.

Latham and Zhang Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2020 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
MOFF improves the prediction of Rg for proteins includes in the training set. (A) χ2 that 

measures the normalized difference between simulated and experimental Rg values as a 

function of the number of iterations for force field optimization. (B) Comparison between 

experimental Rg and those predicted by the hydrophobic scale model (UHPS(r), blue) and 

MOFF (UMOFF(r), orange). Error bars represent experimental standard deviations. 

Simulation errors are comparable to the symbol size.
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Figure 4: 
MOFF (orange) significantly improves over the hydrophobic scale model (blue) in 

predicting Rg for a test set of proteins not included in force field parameterization. The 

arrow highlights ERM TADn, which is discussed in the main text as a case where the 

improvement is less pronounced. Simulation errors are comparable to the symbol size.
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Figure 5: 
Hierarchical clustering of MOFF contact energies reveals the presence of four amino acid 

groups. The contact energies correspond to the sum of ϵIJ and ϵIJ
HPS defined in Eqs. 2 and 9 

respectively. The energies between residues are shown from red (most repulsive) to blue 

(most attractive). The four groups are displayed as orange (GLN, CYS, SER, ASP, ALA, 

ASN), red (GLU, THR, GLY, LEU, VAL), green (PHE, LYS, TYR, ARG, MET, ILE), and 

blue (HIS, PRO, TRP), respectively.
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Figure 6: 
Comparison between the performance of two reduced models parameterized using amino 

acid clusters defined by MOFF (UMOFF4) or MJ potential (UMJ5). Simulated Rg on training 

and test proteins using UMOFF4 are compared with experimental values in parts A and B, 

respectively. The corresponding results for UMJ5 are shown in C and D. We also presented 

results from UHPS in blue for reference. Simulation errors are comparable to the symbol 

size.
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Table 1:

List of proteins used for force field parameterization.

Protein Sequence length Ionic Strength (mM) Rg
exp nm a Experimental Method

CspTm83 67 42 1.37 (0.07) FRET

IN83 60 50 2.25 (0.11) FRET

ProTα-N83 112 42 2.87 (0.14) FRET

ProTα-C83 129 42 3.70 (0.19) FRET

R1563 114 128 1.72 (0.09) FRET

R1763 100 128 2.29 (0.11) FRET

hCyp63 167 85 2.00 (0.10) FRET

Protein-L84 64 128 1.65 (0.10) FRET

ACTR85 71 199 2.51 (0.13) SAXS

hNHElcdt85 131 199 3.63 (0.18) SAXS

sNase86 136 117 2.12 (0.10) SAXS

α-synuclein87 140 156 3.3 (0.3) FRET

a
Values in parentheses correspond to standard deviations.
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Table 2:

List of proteins used for testing force field transferability.

Protein Sequence length Ionic Strength (mM) Rg
exp nm Experimental Method

An1688 185 0 4.44 SAXS

ERM TADn89 122 239 3.96 SAXS

Histatin-590 24 150 1.38 SAXS

Nucleoporin 15391 81 162 2.4 FRET

p5392 93 208 2.87 SAXS

SH4-UD93 85 217 2.9 SAXS
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Table 3:

The five groups of amino acids derived from the Miyazwa-Jernigan potential.70

Group Amino Acids

Group 1 CYS MET PHE ILE LEU VAL TRP TYR

Group 2 ALA THR HIS

Group 3 GLY PRO

Group 4 ASP GLU

Group 5 SER ASN GLN ARG LYS
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