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Abstract

Non-invasive, contrast-free imaging of small vessel blood flow is diagnostically invaluable for 

detection, diagnosis and monitoring of disease. Recent advances in ultrafast imaging and tissue 

clutter-filtering have considerably improved the sensitivity of power Doppler (PD) imaging in 

detecting small vessel blood flow. However, suppression of tissue clutter exposes the depth-

dependent time-gain compensated noise bias that noticeably degrades the PD image. We 

hypothesized that background suppression of PD images based on noise bias estimated from the 

entire clutter-filtered singular value spectrum can considerably improve flow signal visualization 

compared to currently existing techniques.

To test our hypothesis, in vivo experiments were conducted on suspicious breast lesions in 10 

subjects and deep-seated hepatic and renal microvasculatures in 4 healthy volunteers. Ultrasound 

PD images were acquired using a clinical ultrasound scanner, implemented with compounded 

plane wave imaging. The time gain compensated noise field was computed from the clutter-filtered 

Doppler ensemble (CFDE) based on its local spatio-temporal correlation, combined with low-rank 

signal estimation. Subsequently, the background bias in the PD images was suppressed by 

subtracting the estimated noise field.

Background-suppressed PD images obtained using the proposed technique substantially improved 

visualization of the blood flow signal. The background bias in the noise suppressed PD images 

varied <0.6 dB, independent of depth, which otherwise increased up to 13.8 dB. Further, the 

results demonstrated that the proposed technique efficaciously suppressed the background noise 

bias associated with smaller Doppler ensembles, which are challenging due to increased overlap 

between blood flow and noise components in the singular value spectrum.
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These preliminary results demonstrate the utility of the proposed technique to improve the 

visualization of small vessel blood flow in contrast-free PD images. The results of this feasibility 

study were encouraging, and warrant further development and additional in vivo validation.

1. Introduction

Imaging of vascular pathways can be clinically invaluable in detection and diagnosis of 

diseases [1]. Metastasis of cancerous masses, which is dependent on angiogenesis could be 

characterized and monitored using a reliable blood flow imaging technique [2, 3]. Several 

imaging modalities are currently available in the clinic for vascular imaging, such as 

computed tomography, magnetic resonance imaging, and positron emission tomography; 

however, they lack the resolution or contrast (or both), for imaging microvascular blood flow 

[4, 5, 6, 7, 8]. Contrast-free microvascular blood flow imaging is very challenging [9, 10, 

11]. Non-invasive power Doppler (PD) ultrasound [12] is commonly used in the clinic for 

detecting blood flow, since it is a contrast-free imaging technique, however, it lacks 

sensitivity in detecting flow in small vessels [13].

In a recent study [14], Demene et. al. demonstrated that ultrafast imaging combined with 

spatio-temporal clutter-filtering can substantially improve the sensitivity of PD imaging in 

visualizing blood flow signal in small vessels [15]. The advantage with this new technique 

over conventional spectral clutter filtering is that given a large synchronous Doppler 

ensemble, it can exploit spatio-temporal differences between tissue and blood flow signals to 

effectively separate them [16]. This is achieved using singular value decomposition (SVD) 

of the Doppler ensemble, allowing tissue clutter to be suppressed by rejecting the lower 

order singular components. However, the signal-to-noise ratio (SNR) of the blood flow 

signal in the CFDE is considerably low, which is significantly improved upon coherent 

temporal integration [17]. In the presence of motion, incoherency in the Doppler ensemble 

can lead to motion artifacts and loss of flow signal visualization [18, 19, 20]. Accordingly, in 

a recent study focused on thyroid lesions, which are typically affected by carotid pulsations 

[21], we demonstrated that motion correction substantially improved visualization of blood 

flow signals [18, 22].

In [23], Song et. al. demonstrated that time-gain compensation (TGC) plays an important 

role in ultrafast PD imaging. Ultrasound signal is increasingly attenuated with depth. 

Accordingly, TGC based depth-dependent amplification allows equally echogenic tissues 

signal to be displayed with similar intensity. Amplification of the received signal also 

corresponds with consequent amplification of the inherent channel noise. Rejection of tissue 

clutter exposes the elevated noise bias, which saturates the dynamic range and impacts the 

visualization of flow signal, especially at increased depth. Song et. al. [23] demonstrated that 

reducing TGC gain to circumvent this issue led to poor SNR, and adversely affected 

visualization of blood flow in PD images.

One approach to address this issue is to reject the higher order singular vectors [24, 25]; 

however, this also leads to consequent rejection of overlapping blood flow signal [23]. 

Alternatively, Song. et. al. proposed using a homogeneous reference phantom to estimate the 

TGC noise bias [25], which may not be practical in the clinic since any changes in imaging 
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parameters (transmit frequency, imaging depth, TGC, etc.) will correspondingly need new 

phantom reference data. In a subsequent correspondence [23], Song et. al. proposed that the 

TGC noise bias could be suppressed by specifically rejecting the highest singular order. 

Presence of noise, though is not limited to the highest order of the singular value (SV) 

spectrum [24, 16]. To completely suppress the background bias, noise contributions should 

be rejected from the entire clutter-filtered SV spectrum. This could be acutely useful in 

developing techniques for quantification of morphological features in contrast-free 

ultrasound microvascular imaging, in which a 0 dB background is useful for robust 

automatic vessel segmentation [26]. The hypothesis of this study is that background 

suppression of PD images by attributing noise bias from the entire post-clutter SV spectrum 

can substantially reduce background noise bias in PD images, and considerably improve the 

blood flow visualization. The major challenge with this approach lies in separating noise and 

flow components, since they overlap in the SV spectrum [23]. To address this issue, we 

developed a spatio-temporal correlation (STC) filter that can separate noise and flow 

components based on a normalized correlation factor [22].

The approach proposed in this paper is distinctly different from the morphological filtering 

based technique of Bayat et. al. [26] for TGC noise bias suppression. Although simple to use 

and easy to implement, top-hat based noise bias suppression requires additional processing 

such as Hessian based filtering or non-localized mean based denoising to effectively 

suppress background noise [27]. Additionally, top-hat based filtering may impact the 

morphological features of blood vessels, hampering their quantitative assessment [28, 29, 

30]. Further, in perfusion imaging or functional ultrasound imaging, the flow signal is not 

limited to structures of specific shape and morphology; thus the choice of top-hat based 

background noise bias suppression may not be feasible [24].

In this study, we tested our hypothesis and evaluated the efficacy of the proposed technique 

using a clinical ultrasound scanner. Specifically, in vivo imaging was performed on breast 

lesions suspected of malignancy using a linear array transducer. Further, we examined the 

feasibility of imaging microvessels in deeper organs (6-10 cm, kidney and liver), which is 

more challenging since the depth-dependent noise bias substantially increases. We also 

analyzed the effectiveness of the above mentioned technique on microvasculature imaging 

involving curved arrays.

2. Methods

The proceeding subsections describe the methods used for in vivo data acquisition, 

processing and analysis.

2.1. Data acquisition

The ultrasound in-phase and quadrature (IQ) data for the in vivo experiments were acquired 

using an Alpinion E-Cube 12R ultrasound scanner (Alpinion Medical Systems Co., Seoul, 

South Korea), equipped with L12-3H linear and SC1-4H curved array probes, operating at 

11 MHz and 3.5 MHz center frequency, respectively. The plane wave IQ data was acquired 

for 7 angular insonifications (−3°, −2°, −1°, 0°, 1°, 2°, 3°), which were coherently 

compounded after delay-and-sum beamforming to produce a single IQ frame, dynamically 
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focused on both transmit and receive, as proposed by Montaldo and colleagues in [31], and 

further elaborated in [32, 33, 34]. The scanner transmitted and received using 128 and 64 

elements, respectively. Accordingly, each angular plane wave transmission was repeated 

twice and the received data was interleaved for each half of the transducer to emulate a 128 

element receive aperture. The pulse length of a two cycle excitation signal was 67 μm, and 

the received signal was sampled at 40 MHz. The Doppler ensemble was acquired over 3 

seconds, and the frame-rate (FR) and pulse repetition frequency (PRF) varied according to 

depth of imaging. The TGC settings for imaging were determined by the sonographer for 

best B-mode visualization. The speed of sound was assumed to be 1540 m/s for the 

calculation of beam-forming delays. Data acquired from the curved array probe was scan-

converted after beamforming. The axial and lateral size of each pixel in the beamformed 

image of the linear array transducer data were 38.5 × 200 μm, respectively. Correspondingly, 

in the scan-converted image for the curved array data, they were interpolated to a square of 

size 96 μm.

2.2. Patient study

The ultrasound data was obtained from 10 female patients with at least one suspicious breast 

nodule, recommended for US-guided fine needle aspiration biopsy. For abdominal 

microvasculature imaging in liver and kidney, four healthy volunteers were recruited. The 

abdominal in vivo studies were considered helpful in: (1) assessing the feasibility of using 

the proposed technique to visualize blood flow signals at increased depths (6-10 cm), 

compared to breast lesion studies that are relatively superficial in depth (<3.5 cm), (2) 

assessing its performance in imaging microvasculature with considerably varying vascular 

morphology, density, distribution and flow intensity, and (3) evaluating the feasibility of 

applying this new technique on data acquired using a curved array that requires scan 

conversion. These studies were performed in accordance with the relevant guidelines and 

regulations of the Mayo Clinic Institutional Review Board and an approved, written 

informed consent was obtained from the subjections prior to their participation. The 

ultrasound data was acquired by an experienced sonographer. To minimize motion artifacts 

due to breathing, subjects were asked to hold their breath for the 3 seconds duration of data 

acquisition.

2.3. Singular value decomposition based spatio-temporal clutter filtering

The high frame-rate compounded plane wave ultrasound images were rearranged in a spatio-

temporal matrix (i.e Casorati Matrix), and the tissue clutter was suppressed using SVD [14] 

as follows:

Sblood = S(x, z, t, ) − ∑
r = 1

r = tℎ
UrλrSr

∗, (1)

where the matrices S and Sb1ood represent pre- and post-CFDE. The matrices U and V 
consist of left and right singular orthonormal vectors, respectively. The corresponding SVs 

and their orders are denoted by λr and r, respectively, and * represents conjugate transpose. 

A global SV threshold (th) for separation of tissue clutter from blood signal was selected 
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based on the decay of the double derivative of the SV orders (i.e. when the double derivative 

approached zero).

2.4. Power Doppler imaging

The PD image is estimated through coherent integration of the CFDE as follows:

PD(x, z, ) = ∑
t = 1

Nt
Sblood(x, z, t, )

2

, (2)

where PD denotes the estimated power Doppler image, and Nt denotes the ensemble length.

2.5. Noise bias suppression

The background noise field used for the suppression of the PD image was estimated from 

the CFDE. This was achieved in two steps: (1) estimation of the synthetic noise image from 

the CFDE, followed by (2) estimation of the background noise field from the synthetic noise 

image based on low-rank approximation.

2.5.1. Estimation of the synthetic noise image: A STC filter was used to identify 

the flow pixels in the CFDE, which were replaced by randomly selected noise pixels from 

the local neighborhood, to generate the synthetic noise image. Specifically, STC based 

filtering of the CFDE was performed in locally overlapping kernels of dimensions m × n × t 
pixels in axial, lateral and temporal direction, respectively. The pixels within the 3D kernel 

were arranged in the space-time Casorati form of dimension s × t, where s = m × n, and its 

normalized correlation matrices M of dimension t × t were computed:

Mi, j =
∑n = 1

N Ci(n) × Cj(n)

∑n = 1
N Ci(n)2 × ∑n = 1

N Cj(n)2
, (3)

where (i, j) corresponds to each entry in M. Further, Ci and Cj are the (i, j) columns of the 

Casorati matrix, respectively, and N denotes the number of rows in the Casorati matrix. The 

correlation matrix M quantifies the similarity of the pixels in the 3D kernel. Highly 

dissimilar pixels corresponding to noise yielded a low correlation value (~0), whereas those 

associated with flow pixels yielded relatively higher values (~>0.4). This is information is 

used in synthesizing a purely noise image from which the inherent noise bias can be 

deduced. The mean of the estimated local correlation matrices M, which inherently ranged 

between 0-1, constituted the intensity of the pixels in the STC image, which was 

subsequently thresholded to identify the pixels associated with noise and flow. Specifically, 

the pixel intensity at location {x, z} in the STC image was estimated by computing the mean 

of the correlation matrix M associated with the local kernel centered at {x, z} of the CFDE. 

The correlation values associated with the flow pixels were relatively higher compared to 

noise. Accordingly, they could be separated based on gray-scale thresholding of the STC 

image (Figure 1).
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Since noise is expected to be statistically uniform across all columns and frames of the 

Doppler ensemble, the identified blood flow pixels were replaced by noise pixels randomly 

selected from the lateral neighborhood, across multiple frames of the CFDE. Further, since 

the amplification due to TGC varies gradually across depth, the replacement noise pixels 

could be selected from over a range of depth (rows), without affecting the performance of 

the technique. For all in vivo cases, the dimension of the local 3D kernel (m, n, t) were 

assigned as (3, 3, 30), respectively. The gray scale threshold was empirically chosen as 0.30; 

pixels with higher or lower STC were identified as blood vessel or noise, respectively. The 

local noise neighborhood was limited to (30,192, 30) pixels, across rows, columns and 

frames, respectively.

2.5.2. Estimation of the low-rank noise field: The background noise field is 

characterized by a smooth depth-increasing signal that is replicated across all columns of the 

image, consistent with the notion that TGC is applied uniformly across all receive channels. 

Accordingly, to derive the noise field that is repetitive across all columns of the synthetic 

noise image, a SVD based low-rank matrix approximation was performed. Specifically, the 

noise field was reconstructed using the lowest singular order component that also 

corresponded to the highest SV. Since the low-rank noise field was estimated from a single 

synthetic noise image, it was subsequently smoothed using a 2-dimensional (2D) least 

square method that fitted a 2D plane in locally overlapping kernels across the depth of the 

image. The axial and lateral widths of the kernels were 100 and 192 pixels, respectively. The 

kernels overlapped by 1 pixel, and they were constrained to have zero-slope in the lateral 

direction.

The background-suppressed PD image was computed by normalizing the original PD image 

with the estimated noise field. This corresponded to subtraction of the estimated noise field 

from the original PD image in the log scale that is used for image display. Accordingly, total 

suppression of noise bias should theoretically lead to a 0 dB background signal.

An illustrative example is shown in Figure 1 to outline the different steps involved in 

estimation of the synthetic noise image from the Doppler ensemble. (a, b) display the 

acquired Doppler ensemble and its corresponding CFDE, respectively. The LSTC image (d) 
is computed from the CFDE (c) from local estimation of spatiotemporal correlation in 3D 

kernels (red), as defined in Eqn. 3. (e,g) displays the binary mask generated by greyscale 

thresholding of the LSTC image. Accordingly, the binary black and white regions 

corresponds to the location of the flow and noise pixels, respectively. A single clutter filtered 

image from (b) is converted in to a synthetic noise image (h) by replacing the vessel pixels 

by noise. The noise pixels are sampled from the entire CFDE, however, from the local 

neighborhood, representatively indicated by the red 3D kernel in (f). (i,j) display the low-

rank approximation of the synthetic noise image, and the corresponding 2D smoothened 

noise bias image, respectively. The final PD image (l) is obtained by suppressing the 

estimated noise field (j) in the original PD image (k).
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3. Results

Figure 2 (a) displays a representative example of in vivo breast PD images associated with a 

hypo-echoic lesion in patient # 4. The background noise bias (a) progressively increased 

with depth and severely impacted the visualization of blood vessels, consistent with previous 

observations [23, 25, 26]. Specifically, the large dynamic range of the background noise 

field saturated the display, preventing blood flow visualization since the later has a relatively 

smaller dynamic range. (b) displays the B-mode sonogram of the breast lesion obtained 

from the envelope signal of the IQ data. Specifically, the B-mode image is computed from 

the IQ data using the standard Hilbert function in MATLAB. The top-hat filtered PD image 

(c) suppressed the noise field, but introduced irregularities in vessel structures. This also 

corresponded with the lateral in-homogeneity in its respective noise field (d). The top-hat 

filtering parameters were directly used from [26], given the similarity of the acquired data. 

Further, the top-hat filtered PD image was observed to be noisy (c), consistent with [26, 27]. 

Background-suppressed PD images obtained using the proposed technique (e) displayed 

improved noise suppression, which allowed better visualization of blood flow, with the 

vascular features preserved. The suppressed noise field (f) was uniform across columns, 

consistent with the notion that noise is statistically the same across all receive channels. 

Zoomed insets of the green and blue regions of interest (ROIs) indicated in (a) were 

displayed in (g-j) and (k-n), respectively. Specifically, (g, k) correspond to the original PD 

image (a). (h, l) display the PD information in (g, k), using a locally optimized dynamic 

range to alleviate the effect of the noise bias in that limited segment for reference. 

Correspondingly, the top-hat filtered PD images (i, m) displayed effective suppression of the 

noise bias; however, the image was observed to be noisy, with noticeable changes in vessel 

morphological features between (l) and (m). Comparatively, the proposed technique 

suppressed the background noise bias more effectively (j,n), without affecting vessel 

morphology (l, n).

Figure 3 underscores the value of suppressing background noise corresponding to the entire 

clutter-filtered SV spectrum. (a) displays the SV spectrum associated with the Doppler 

ensemble of patient # 2. The Doppler ensemble consisted of 2322 frames, and the tissue 

clutter was suppressed with a SV threshold of 336. (b) compares noise fields estimated from 

different singular orders: 337 - 2321, 700 - 2321, 1000 - 2321, 1300 - 2321, and 1500 - 

2321. The noise field associated with the highest singular order (2322) was rejected in all 

instances in (b) to show the difference. There are two important observations: (1) despite 

rejecting the highest singular vector, noise bias was visibly present in the PD image, and (2) 

the magnitude of the estimated noise bias progressively increased as noise was attributed 

from a broader range of SV orders. (c-h) display the b-mode signal associated with 

individual IQ frames corresponding to singular orders 1, 50, 337, 1300, 1500 and 2322 in 

(a), respectively. Specifically, (e-g) displays considerable presence of noise in lower singular 

orders, beyond the highest singular order, which is taken in to account by the proposed 

technique for noise field estimation and subsequent background bias suppression of the PD 

images (i, j).

Figure 4 compares the performance of STC based filter and top-hat filter for noise bias 

suppression in high frame-rate PD images. (a) displays the sonogram of the breast tumor. (b) 
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displays the respective PD image; no background suppression was performed, as evident 

from the poor contrast of the image. (c) displays the power Doppler image in (b) cropped 

with respect to the blue ROI; no background suppression was performed, as evident from the 

poor contrast of the PD image. (d) displays the PD image in (c) using an optimized dynamic 

range [−8 −3] that is specific for the cropped region. The appropriateness of setting the 

limits of the dynamic range as [−8 −3] dB can be gauged from the signal profile of (c) 
displayed in (i). In (d), the vascular signal can be clearly observed without any background 

suppression since the noise profile due to TGC is relatively flat over the small depth, thus it 

could be suppressed by adjusting the local dynamic range of the image display. The PD 

signal in (d) serves as reference data for comparison with those obtained using the 

background suppression techniques (STC filter and top-hat filter). (e) displays (c, d) after 

background suppression using STC filter, which looks similar to (d) but with a 0dB 

background. Specifically, the background noise bias can be observed to be fully suppressed 

in (e), and the microvascular signal (contrast and morphology) are visually identical to that 

in the reference image (d). (f) displays (c, d) after applying top-hat based morphological 

filter. Although the background noise is suppressed, visible differences in vascular 

morphology are evident in (f) relative to the reference image (d). Specifically, the vessels 

look more cylindrical in shape, given the disc-shaped structuring element used for top-hat 

filtering. (g) displays the background signal corresponding to the STC filter that was applied 

on (c, d) to obtain (e). The noise field is uniform laterally, and increases with depth (not 

explicitly noticeable in this small ROI), which is also the reason why it could be clipped to a 

lower threshold of −8 dB in (c) to obtained (d). The lateral homogeneity of the background 

signal is consistent with the nature of the TGC noise bias that is expected to be statistically 

uniform across all receive channels. Such an observation was also reported from related 

independent studies [23]. Specifically, this is important because it highlights that no local 

vessel signals were inadvertently classified as noise bias, which would otherwise be 

suppressed. (h) displays the estimated noise bias corresponding to the top-hat filter that was 

applied on (c, d) to obtained (f). The top-hat estimated background noise bias displayed 

laterally inhomogeneity, sharply deviating from the inherent characteristic of the TGC based 

noise bias, which is expected to be uniform across all channels. Further, the residual signal 

in (h) complements the large blood vessels in (c), which were inadvertently suppressed in 

(f). Consequently, the resultant image (f) may create an artificial impression that top-hat 

filter improves the resolution of blood vessel imaging, however, with respect to the reference 

image in (d) that involves no background suppression, the morphological interpretation of 

the vessels is inconsistent. This aspect is further analyzed in detail in (i, j). (i) displays the 

lateral profile of the background noise corresponding to the row indicated in (c), for the 

original PD image (c) in black, and for the STC (e) and top-hat (f) filtered images in red and 

blue, respectively. The noise field for STC based filter is laterally constant at −8.5 dB, 

specifically such that upon equalization, the background can be reduced to 0 dB. 

Independently, this value is also consistent with the clipped dynamic range of (c) to obtain 

(d). On the contrary, the noise field for the top-hat filter displays large contribution from the 

vessel signals that will be inadvertently suppressed with the noise bias. (j) displays the 

signal profile from the background suppressed image (blue STC, red top-hat). The lateral 

morphological profile of the STC filtered vessels is identical to the reference in (i). Whereas, 
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for the top-hat filtered vessels, due to inaccuracies in noise bias estimation, the vessel signal 

is observably altered.

These observations are also consistent with the results observed in Figure 5 of kidney 

vasculature. (a) displays the original PD image. (b, d) displays the STC filtered noise bias 

image and the corresponding noise field, respectively. (c, e) displays the top-hat filtered 

noise bias image and the corresponding noise field. The large renal blood vessels that 

supplies the cortical vessels were inadvertently suppressed upon using top-hat filter. In the 

two examples [Figs. 4 and 5], it is evident that the proposed STC filter specifically 

suppresses the noise field without affecting the morphology, relative intensity or the 

dynamic range of the flow signal, which are relevant diagnostic features in the clinic.

The intensity of the power Doppler signal in the microvascular image is directly proportional 

to the concentration of the red blood cells passing through the blood vessel. Accordingly, a 

large vessel with increased blood flow displays high PD intensity relative to a small vessel. 

This can lead to a large dynamic range of flow signal depending on the size distribution of 

the blood vessels. An issue with the large dynamic range is low intensity flow signal that are 

typical for small vessels may not be easily visible. Their visibility can be improved by 

compressing the dynamic range, but will saturate the intensity of the flow signal in the large 

vessels. The subplots (f-h) of renal microvasculature serve as an excellent example to 

comprehend this further.

Figure 6 displays the B-mode signal associated with individual clutter filtered IQ images (a, 
d, g, j), the respective synthetic noise images (b, e, h, k) and the corresponding spatio-

temporal coherence images (c, f, i, l), for breast lesions corresponding to patients 4, 5, 2 and 

1, respectively. The intensity of the flow signal in the clutter-filtered IQ frames was 

observably low compared to the noise floor, and varied across subjects. Specifically, (a, d) 
displayed relatively higher flow intensity compared to (g, j). To robustly visualize the blood 

flow in weak vessels, coherent integration of CFDE is important [18, 22]. The spatio-

temporal correlation maps depict correlation value computed from the clutter-filtered 

ensemble, and are in the range of 0-1. Whereas, the PD images depicts the coherently 

integrated backscattered ultrasound signal from the blood flow. Coincidentally, both images 

associate flow pixels with higher intensity compared to background noise. However, spatio-

temporal correlation maps have lower resolution compared to the PD images since they are 

computed using a 3×3 spatial window, and thus may not be advantageous specifically for 

flow visualization. The synthetic noise bias images (b, e, h, k) were computed from the 

individual clutter filtered images (a, d, g, j), by filtering the vessel flow signals using local 

STC filter (c, f, i, l). In the STC images, the flow signal displayed higher local correlation (c, 
f, i, l) than noise as expected, which were segmented using a simple threshold operator 

(>0.3). Subsequently, the synthetic noise images were used for background noise field 

estimation.

Figure 7 illustrates the framework used to estimate the background noise bias from the 

synthetic noise images. The data correspond to the breast lesion imaged in patient # 2, and 

the synthetic noise image (d) was generated as displayed in Figures 6 (g–i). The left singular 

vectors (a), SV spectrum b and the right singular vectors (c), were derived from SVD of the 
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2D synthetic noise image. The SV spectrum (b) displayed with an abruptly large singular 

value at the lowest singular order. Single-rank matrix (e) reconstruction using the lowest 

singular order displayed the inherent noise bias in (d), which was smoothed using a 2D least 

square operator to obtain (f). Subsequently, the background suppressed PD image (h) was 

derived from (g) upon subtraction of the estimated noise bias. Besides the low-rank 

approximation method, another approach for deriving the noise field from the synthetic 

noise image is by: (1) computing multiple iteration of the synthetic noise image from the 

CFDE, and (2) subsequently averaging them to generate a smoothed version of the noise 

field. However, in this approach, any presence of residual flow signal in the synthetic noise 

image can coherently cumulate in the second step, subsequently leading to inadvertent flow 

suppression.

To display the effectiveness of the proposed technique on a larger pool of in vivo breast 

cases, Figures 8 (a–d) display microvascular PD images corresponding to patients 10, 9, 1 

and 2, respectively. A noticeably strong noise field hampered the visualization of flow 

signals in the original PD images (a-h), especially at increased depth. The top-hat filter 

suppressed the noise bias in the PD images (e-h), however, the corresponding background 

noise field (i-l) displayed residual flow signal. The top-hat filtering parameters were directly 

used from [26], given the similarity of the acquired data. (m-p) displays the background-

suppressed PD images obtained using the proposed technique, with the corresponding noise 

field in (q-t). The morphologically filtered PD images (e-h) displayed effective suppression 

of the depth-dependent background noise; however, top-hat based filtering affected the shape 

and structure of the microvascular network (e, f), which corresponded with the spatial 

irregularities observed in the estimated noise fields (i, l). In addition, the top-hat filtered PD 

images were observably noisy, consistent with findings reported previously [26, 27]. The PD 

images obtained using the proposed technique (m-p) displayed a substantial improvement in 

suppression of the background noise bias, independent of the morphology, distribution or 

density of the vessels. Further, the residual noise in (m-p) was observably low compared to 

that obtained using morphological filtering (e-h). The estimated noise fields (q-t) were 

uniform across all columns, and devoid of residual blood vessels, which is important for 

unbiased suppression of the background in PD images. Further, the horizontal and vertical 

ROIs indicated in (a-d) of size 1 × 50 and 50 × 1 pixels, respectively, indicate the data points 

sampled for quantitative assessments in Figures 11 and 12. To compare the estimated noise 

fields (q-t) with the actual (a-d), the ROIs were specifically located in regions devoid of any 

flow or residual tissue signal, which otherwise may be representative of background of ~0 

dB intensity.

The proposed method can also be used to suppress the background noise of PD images from 

deep organs that are normally scanned with a curved array. Figures 9 and 10 display the 

efficacy of the proposed technique in imaging deep-seated hepatic and renal 

microvasculatures, respectively. The images were acquired from four healthy volunteers 

[Figs. 9 (a–h), (i–p) and 10 (a–h), (i–p)], respectively, using an abdominal curved array 

probe. Figures 9 (a, i) display the original PD images corresponding to the B-mode images 

(b, j); (c, k) display the top-hat filtered PD images; (d, l) display the background-suppressed 

PD images obtained using the proposed technique. The top-hat filtering parameters were 
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directly used from [26], given the similarity of the acquired data. The flow signal in the 

individual clutter filtered frame (e, m) were successfully filtered in the corresponding 

synthetic noise images (f, n), based on STC (g, o). The noise fields (h, p) estimated from (f, 
n) were used for background noise bias suppression (a, i), respectively. (a-d, i-l) and (e-g, 
m-o) are displayed before and after scan conversion, respectively. As observed for breast 

lesion PD images obtained using a linear array transducer in Figures 8 (a–d), the hepatic and 

renal microvasculature PD images (a-d) displayed a strong depth dependent noise bias that 

severely impacted the visualization of blood flow, especially at increased depth. The results 

obtained using top-hat based morphological filtering effectively suppressed the background 

noise bias; however, vascular features such as vessel diameter and shape were affected (i, k), 
which could hinder quantitative assessment of morphological parameters. Further, the results 

obtained using top-hat based morphological filtering were observed to be noisy, consistent 

with results reported in previous studies [26, 27]. In comparison, results obtained using the 

proposed technique based on STC demonstrated substantial improvement in background 

noise bias suppression, without any impact on the shape, orientation or sparsity of the flow 

signal. This can be corroborated from the estimated noise fields (h, p) that were observed to 

be uniform laterally. The STC images (f, n) identified the pixels associated with flow and 

residual tissue signal, which were subsequently filtered to compute the synthetic noise 

images. The estimated noise fields (h, p) were used for background suppression of the PD 

images (a, i) to produce (c, k). Further, data-points from the horizontal (1 × 50 pixels) and 

vertical (50 × 1 pixels) ROIs in (a, i) were sampled for quantitative assessments [Figs. 11 

and 12]. To compare the estimated noise fields (h, p) with the actual (a, i), the ROIs were 

located in regions devoid of any flow or residual tissue signal.

Box-and-whisker plots in Figure 11 from vertical and horizontal ROIs displayed in (a, b) 
revealed no notable differences between the actual (red) and estimated (blue) noise fields. In 
vivo examples obtained from subjects # (1 - 10), (11, 12) and (13, 14) corresponded to 

breast, liver and kidney studies, respectively. The noise field estimated from vertical and 

horizontal ROIs displayed low and high variance, respectively. The low variance in the 

lateral direction was consistent with the expected low-rank characteristic of the noise field. 

The high variance is axial direction was expected due to the depth-dependent nature of the 

TGC noise bias. In breast microvascular PD images, the dynamic range of the noise field 

varied by up to 8.7 dB, where as in hepatic and renal microvascular PD images, the dynamic 

range of the noise field varied by up to 13.8 dB.

Box-and-whisker plots in Figure 12 from vertical (blue) and horizontal (red) ROIs revealed 

no notable differences in the data, suggesting isotropic noise distribution in background-

suppressed PD images. The locations of the ROIs were the same as used in Figure 11, 

varying across depths and data-type; however, post noise bias suppression, the background 

noise level was ~0 (0.6 dB), suggesting considerable suppression of the background noise 

bias, which initially varied by up to 13.8 dB. Figure 12 shows that the proposed technique 

can effectively suppress the background noise bias signal regardless of vessel morphology, 

intensity or transducer type (linear array/curved).

Figure 13 displays the impact of ensemble size on the efficacy of suppressing the 

background noise bias using the proposed technique. (a-d) displays the PD images obtained 
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using an ensemble size of 2064 (full), 1500, 1000 and 500 frames, respectively. The 

background-suppressed PD images (e-h) and the respective noise fields (i-l) were visually 

invariant across the difference ensemble sizes. The PD data corresponds to breast lesion 

images acquired from patient # 7. The horizontal and vertical ROIs indicated in (a) of size 1 

× 50 and 50 × 1 pixels, respectively, indicate the data points sampled for quantitative 

assessments in Figures 14 and 16. To compare the estimated noise fields (i-l) with the actual 

(a-d), the ROIs were located in regions devoid of any flow or residual tissue signal.

Figures 14 and 15 compares the noise fields associated with different ensembles sizes [Fig. 

13]. Specifically, plots in Figures 14 and 15 corresponds to column # 71 in the subplots of 

Figure 13. i.e. the original PD images (a-d), noise suppressed PD images (e-h), and the 

estimated noise field images (i-l), as a function of ensemble size (500, 1000, 1500, 2064). 

Further, column # 71, which is indicated with a blue arrow in Figure 13 (a), was chosen 

based on its lack of any perceptible flow or residual tissue signal, to accurately compare the 

actual and estimated noise fields in (a-h). The line-plots show a depth-dependent noise 

profile from the original PD image (a-d), which gradually increased from −9.2 dB to −4.2 

dB, displaying a dynamic range of 5 dB over a depth of 2 cm. The estimated noise fields 

were consistent with the reference data, and demonstrated a good match across all ensemble 

sizes. In comparison, the corresponding noise profile from the background-suppressed PD 

images demonstrated a ~ 0 dB background signal that was relatively flat across all depths. 

(b-d) display three zoomed insets corresponding to the blue ROIs in (a), in the same left-

right order. (e-g) displayed three zoomed insets of the plots in (a) corresponding to the 

original PD and the estimated noise fields, which increased with depth. Further, (b-d) show 

that reducing the ensemble size from 2064 to 500 did not affect the efficacy of the proposed 

technique in reliably estimating the background noise field.

Box-and-whisker plots in Figure 16 corroborates the qualitative observations in Figures 13 

and 14. (a, b) shows that even upon reducing the ensemble size from 2064 to 250 frames, 

there were no notable differences between the actual (red) and estimated (blue) noise fields 

obtained from vertical and horizontal ROIs, respectively. Box-and-whisker plots of the noise 

suppressed PD images (c) from vertical (red) and horizontal (blue) ROIs were similar. 

Further, it is noteworthy that in (a, b), the variances of the estimated noise fields (blue) were 

similar across all instances, where as that of the actual (red) increased with reduction in 

ensemble length. In (c), the variance of the data from vertical (red) and horizontal (blue) 

ROIs were similar, and it progressively increased with reduction in ensemble size.

Figures 17 (d–f) and 18 (d–f) show the inherent weakness in estimating the noise field from 

the first singular component of the PD image. Specifically, the presence of large renal and 

hepatic vessels dominates the single rank approximation (d), leading to overestimation of 

the noise field (e). PD background suppression using this noise field leads to inadvertent 

suppression of the blood flow signal, which results in poor visualization (f). Figures 17 (g–i) 

and 18 (g–i) demonstrate the limitation of estimating noise bias from the clutter-filtered 

image (g) without first generating the synthetic noise image. The presence of large vessels 

leads to overestimation of the noise field (h), which negatively impacts the visualization of 

the blood flow signal (i). These simplistic approaches may only work on a subset of cases 

limited to low flow intensities. However, such techniques will be inadequate for reliable 
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clinical use. In comparison, the noise suppressed blood flow images obtained using the 

proposed technique (b, c) were considerably superior than those obtained using simplistic 

means.

4. Discussion

Spatio-temporal clutter filtering of large, high frame-rate Doppler ensembles can allow 

contrast-free blood flow imaging of small vessels [14, 16, 18]. However, the large dynamic 

range of the TGC elevated noise bias can saturate the display, preventing effective 

visualization of blood flow signal [23, 25]. In this paper, we demonstrated that background 

suppression of PD images with noise field estimated from the entire post-clutter SV 

spectrum can considerably improve blood flow visualization.

Impact of TGC based noise bias on visualization of blood flow signal can be observed in 

Figures 8 – 10. The proposed technique suppresses the noise bias [Figs. 12 and 14], which 

substantially improves the visualization of the blood flow signal. The improvement in image 

quality upon background bias suppression was evident for all 14 patients, both qualitatively 

[Figs. 2, 8 – 10] and quantitatively [Figs. 11–16]. Specifically, the dynamic range of the 

background noise signal varied with depth up to 13.8 dB, which was compressed to 0.6 dB 

[Figs. 11 and 12]. The noise fields estimated from the full SV spectrum were consistent with 

the actual noise bias in the PD images [Fig. 11], which is important for total noise bias 

suppression [Fig. 12]. The variances in data from the horizontal and vertical ROIs were 

similar, suggesting that the noise bias was effectively suppressed, which would otherwise 

lead to larger variance along axial as opposed to lateral direction, as observed in Figures 11 

(a, b). Further, the background-suppressed PD images obtained using the proposed technique 

[Figs. 2 (j, n)] demonstrated that the vascular features were consistently preserved with 

reference to the actual PD images [Figs. 2 (h, l), 4 and 5].

The rationale behind displaying Figures 11 and 12 was to demonstrate the efficacy of the 

proposed background suppression technique by (1) quantitatively comparing the actual and 

estimated noise fields [Fig. 11], (2) check for 0dB noise level in the background suppressed 

PD image that was expected a priori [Fig. 12]. The quantitative analysis of the in vivo 
examples was performed using two overlapping ROIs with axial and later orientations, 

positioned at the same depth. The rationale for orienting the two ROIs in perpendicular 

directions was to analyze and comment on the anisotropy of the noise fields, and its absence 

upon effective background suppression. Specifically, the laterally oriented ROIs are expected 

to show minimum variation in the box-plot, whereas, the axially oriented ROIs are expected 

to show a relatively large variation, as observed in Figure 11. Accordingly, the box-plots 

obtained from the axially and laterally oriented ROIs from back-ground suppressed PD 

images are expected to show similar distribution, indicating absence of the characteristically 

anisotropic noise field, as displayed in Fig. Figure 12. Specifically, in the context of this 

analysis, the choice of depth of the ROI has minimal impact. However, combining ROIs 

from multiple depths would artificially create variation in the lateral samples, and thus both 

axial and lateral ROIs would show similar variation before and after the noise suppression. 

Therefore, choosing ROIs from different depth would need a different goal and thus will be 

a separate analysis, which was not pursued here. Further, an important criterion for the 
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selection of ROI was that the PD image should have no additional residual tissue or flow 

signal, which could otherwise lead to an artificial bias in the comparison of the actual and 

estimated noise field, and lead to a non-zero background upon noise bias suppression.

The noise field in the PD image depends on multiple imaging parameters (e.g. TGC, 

imaging frequency, transmit waveform, etc.). Previous studies on phantoms have 

demonstrated that the noise fields estimated across multiple acquisitions are same, if the 

above imaging parameters are same. Accordingly, the authors proposed a reference phantom 

based approach to estimate the noise field separately, which was subsequently used to 

suppress the noise bias in the in vivo PD image [25]. However, in practice, such a technique 

is not adaptive, and new reference phantom data is required every time an imaging parameter 

is changed [23]. The background noise bias is characteristically a laterally uniform single-

rank signal [Figs. 7 – 10]; accordingly, its suppression doesn’t change the resolution of the 

blood vessels or its signal-to-noise and contrast-to-noise ratios. Specifically, suppression of 

the noise field leads to cancellation of the DC offset that is constant laterally but increases 

with depth [Figs. 11 and 12]. Accordingly, suppression of the noise bias using the proposed 

technique doesn’t change the morphological features of the vasculature or the relative 

intensity of the flow signal with respect to the background [Figs. 2 (h, l), 4 and 5]. 

Preserving vascular morphological features is important since (1) they carry important 

information about disease condition and (2) for robust quantitative assessment of the 

vasculature [28, 29, 30].

Top-hat filtered PD images successfully suppressed the depth-dependent noise bias, but the 

resultant images were relatively noisy. This was consistent with previous reports in which 

additional processing enabled complete suppression of background noise. In [26], a Hessian 

based vessel enhancement filter was used to suppress the residual background noise by 

enforcing tubular structure constraints. In another study [27], a non-localized mean filter was 

used to reduce the presence of residual noise in top-hat filtered PD images. However, the 

primary underlying issue with top-hat based background suppression was its impact on 

vessel morphology (diameter, shape, tortuosity, distribution etc). The microvascular features 

observed in top-hat filtered PD images [Fig. 2 (m)] were noticeably different from the 

ground truth reference [Fig. 2 (l)], affecting blood vessel diameter, shape and intensity [Figs. 

2, 4 and 5]. These observations were consistent across multiple examples [Figs. 8 – 10]. 

Depending on the size and shape of the structuring element, the morphology of the top-hat 

filtered vessels may vary. Using a bigger structuring element shrinks the vessels to create an 

appearance of finer vessel structure, on the contrary using a larger structuring element can 

lead to poor noise bias suppression. Optimization of the trade-offs associated with shape and 

size of the structuring element for the top-hat based filtering was beyond the scope of this 

study. Given the similarity of the data and imaging parameters in both the manuscripts [26], 

we used the top-hat filtering parameters that was proposed by the author for the breast, liver 

and kidney microvascular imaging.

Rejection of the highest singular order can enable suppression of the largest noise 

component [23]. However, presence of noise is not limited to the highest singular order [24, 

16, 25]; accordingly, its rejection may only allow for partial suppression of the background 

bias. Figure 3 demonstrated that for complete suppression of noise bias, its contribution 
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must be attributed from the entire clutter-filtered SV spectrum; allowing the background 

floor to be reduced to 0 dB, which is acutely important for robust segmentation and 

quantification of vascular features. However, a major challenge with attributing noise from 

the entire clutter-filtered SV spectrum is in separating the overlapping components of flow 

and noise signals [16, 25]. Although, flow signals are expected to demonstrate higher spatio-

temporal coherence than noise, however, its separability in the SV spectrum largely depends 

on the size of the Doppler ensemble [14, 16, 25]. Specifically, a small Doppler ensemble can 

lead to increased overlap between flow and noise components, and thus rejecting the highest 

singular order may concurrently suppress the fast flow components, leading to an 

inadvertent reduction in flow intensity. Further, determination of an optimal ensemble size to 

successfully separate flow and noise components in the SV spectrum, and subsequently 

achieving it in the clinic may not be feasible. Accordingly, the STC filter developed in the 

paper can be valuable for adaptive noise bias suppression, independent of depth of imaging 

[Figs. 8 – 10] and the size of the ensemble [Figs. 13 – 16]. The STC filter was sensitive in 

detecting low intensity blood flow signal [Figs. 6 (i, l)], and was unaffected by variations in 

vascular morphology, density or the depth of imaging [Fig. 6]. Accordingly, the proposed 

STC based technique can also be used for noise suppression in functional ultrasound 

imaging [24, 35] and non-contrast perfusion imaging [36, 37], in which the capillary flow 

intensity is typically weak, and is characterized by diffused flow in the organ instead of 

typical vessel-like branched flow patterns. The efficacy of the proposed approach was 

demonstrated on various examples of microvascular PD images [Figs. 8 – 10]. Further, we 

also evaluated its efficacy in reduced Doppler ensembles – from 2064 (full) up to 250 

frames. The qualitative [Fig. 13] and quantitative [Figs. 14–16] results demonstrated that 

even in small Doppler ensembles of 250 frames, the adaptive STC filter successfully 

separated flow and noise signal, which is quintessential for unbiased estimation of noise 

field from the Doppler ensemble. The noise suppressed PD image obtained from an 

ensemble of 2064 frames were visibly similar to that obtained using 250 frames. The median 

of the background pixels in the noise suppressed PD images were ~ 0 dB [Fig. 14], and the 

variance increased with decreased ensemble size [Fig. 16 (c)], which was expected due to 

reduction in temporal samples. With respect to background noise suppression, the 

quantitative analysis [Fig. 16] corroborated the qualitative assessment. These results suggest 

that the STC filter was effective in separating flow and noise signal in the CFDE, even in 

smaller Doppler ensembles. Synthetic noise bias estimated using STC filtering of the 

Doppler ensemble, alternatively can also be computed a priori by transmitting a zero duty 

cycle excitation signal such that the receive channels are predominantly saturated with noise. 

Subsequently, a low-rank approximation technique, as described in Figure 7, can be used for 

estimating the noise bias in the received beam-formed images. However, this approach 

would need custom transmit sequences, and would only be applicable for data acquired with 

respective zero duty-cycle transmits. Further, based on the analysis presented in this study 

[Fig. 7], another simple approach for estimating the noise field could be through low-rank 

approximation of the original PD image, followed by 2D least square fitting. However, such 

an approach would be highly sensitive to the presence of any vessel or superficial residual 

tissue signal that may be continuous across all columns, which could prevent effective 

estimation and suppression of the background noise bias [Fig. 17 and 18].
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This study has three main limitations. First, residual tissue signal, invariably visible in all in 
vivo examples, could not be filtered based on STC, since they demonstrated similar 

correlation as that of the flow signal. Even though the efficacy of the proposed technique 

was not affected by the presence of any residual tissue signal, its suppression is important 

for unambiguous detection of blood flow signal. Second, we did not study the impact of 

large motion on the efficacy of proposed noise bias suppression technique. This is important 

in the case of thyroid nodules [18], as an example, which incur large motion due to their 

proximity to the pulsating carotid artery [21, 38, 39, 40]. We expect that motion correction 

[18] can address ensemble incoherency arising from frame misregistration. This will be 

investigated in future work, with respect to global and local motion correction approaches. 

Third, we did not attempt to corroborate our expectation that the background-suppressed PD 

images obtained using the proposed technique would improve the robustness of quantifying 

vascular features, which was beyond the scope of this work.

5. Conclusion

In this paper, we presented a novel technique for power Doppler noise bias suppression 

using the entire clutter-filtered SV spectrum, and demonstrated its in vivo efficacy on 

microvascular PD images obtained from breast lesions, livers and kidneys. The results 

demonstrated that the dynamic range of the depth-dependent background noise bias was 

effectively suppressed from 13.8 dB to 0.6 dB, substantially improving the flow signal 

visualization in the in vivo power Doppler images. The efficacy of the proposed technique 

was also demonstrated on reduced Doppler ensembles. These preliminary results suggest 

that the proposed technique performs sufficiently well to warrant further in vivo validation.
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Figure 1: 
An illustration of the different steps of the noise-bias suppression algorithm. (a, b) display 

the acquired Doppler ensemble, and the corresponding clutter-filtered Doppler ensemble 

(CFDE), respectively. The corresponding LSTC image (d) is computed from the CFDE (c) 

by estimating spatiotemporal correlation in local 3D kernels (red) as defined in Eqn. 3. (e,g) 

displays the binary mask computed by greyscale thresholding of the LSTC image, which is 

inherently normalized between 0-1. The black and white regions corresponds to the location 

of the flow and noise pixels, respectively. The synthetic noise image (h) is generated from a 

single clutter filtered image, by replacing its vessel pixels by randomly selected noise from 

its local 3D neighborhood in the corresponding CFDE (f). (i) displays the low-rank 
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approximation of the synthetic noise image (h), which is subsequently smoothened using a 

2D least-square based plane-fit algorithm to generate the final noise field (j). The final PD 

image (l) is obtained by suppressing the estimated noise field (j) in the original PD image 

(k).
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Figure 2: 
Example of in vivo power Doppler (PD) (a) and B-mode (b) images from patient # 4. 

Background-suppressed PD image (c) and its corresponding noise field (d), obtained using 

top-hat based morphological filtering. Background-suppressed PD image (e) and its 

corresponding noise field (f), obtained using the proposed technique. For closer observation, 

the zoomed insets from green and blue regions of interest (ROIs) in (a) are displayed in (g-j) 

and (k-n), respectively. (g, k) display the PD data in (a). (h, l) display the PD data in (g, k), 

respectively, in a locally optimized color range to minimize the impact of the depth-

dependent noise bias. (i, m) corresponds to zoomed insets from (c), and (j, n) correspond to 

zoomed insets from (e).
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Figure 3: 
(a) singular value spectrum of a Doppler ensemble with 2322 IQ frames obtained from a 

breast lesion. The markers indicate the singular orders chosen for noise bias estimation (337, 

700, 1000, 1300, 1500 and 2322). A singular value threshold (Th) of 336 was chosen for 

tissue clutter suppression, with corresponding power Doppler images without and with noise 

bias suppression displayed in (i, j), respectively. (b) displays the 1D noise field estimated 

with noise thresholds of 337-2321, 700-2321, 1000-2321, 1300-2321 and 1500-2321. 

Contribution from the highest singular order (2322) was rejected in (b) to show the 

difference. (c-h) depict B-modes derived from individual IQ frames corresponding to 

singular orders 1, 50, 337, 1300, 1500 and 2322, respectively.

Nayak et al. Page 22

Phys Med Biol. Author manuscript; available in PMC 2020 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Representative image of breast tumor microvasculature, visualized with STC and top-hat 

based filter. (a) B-mode image, (b) power Doppler image without any background 

suppression, (c) cropped PD image, corresponding to the ROI in (b). (d) image in (c) 

displayed with a clipped dynamic range of [−8 −3]. (e) background suppressed PD image 

using STC filter. (f) background suppressed PD image using top-hat filter. (g) noise 

estimated using STC filter. (h) noise field estimated using top-hat filter.
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Figure 5: 
Representative image of renal microvasculature visualized using STC and top-hat based 

noise bias filter. (a) power Doppler image without background suppression. (b) STC filtered 

power Doppler image, and its corresponding estimated noise field (c). (d) top-hat filtered 

power Doppler image, and its corresponding estimated noise field (e). (f-h) STC filtered 

power Doppler image in (b) displayed with dynamic ranges [0 10], [0 20] and [0 30], 

respectively.
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Figure 6: 
Montage of B-mode images obtained from the clutter-filtered Doppler ensemble (a, d, g, j), 

synthetic noise images (b, e, h, k) and the local spatio-temporal coherence images (a,d,g,j), 

for four breast lesions.
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Figure 7: 
Pictorial description of noise field estimation from a synthetic noise image. (a-c) left 

singular vectors, singular value spectrum and the right singular vectors, respectively, derived 

from singular value decomposition of the synthetic noise image (d). (e) low-rank 

approximation of the synthetic noise image, corresponding to the lowest singular order with 

the highest singular value. (f) the smoothed noise bias image obtained after 2D least square 

plane-fitting. (g, f) the corresponding power Doppler images before and after noise bias 

suppression, respectively.
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Figure 8: 
Montage of in vivo power Doppler (PD) images of four breast lesions (a-d), background-

suppressed PD images (e-h), their respective noise bias images (i-l) obtained using 

morphology-based filtering, background-suppressed PD images obtained using the proposed 

technique (m-p), and the respective noise bias images (q-t). Blue horizontal and vertical 

regions of interest (ROIs) in (a-d) indicate the data points sampled for quantitative 

assessments in Figures 11 and 12. To compare the estimated noise field with the actual, the 

ROIs were located in a region devoid of any flow or residual tissue signal.
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Figure 9: 
Montage of hepatic microvascular power Doppler (PD) images (a, i), B-mode sonograms (b, 

j), top-hat filtered PD images (c, k), background-suppressed PD images (d, l) and the 

corresponding noise field (h, p) obtained using the proposed technique, clutter-filtered IQ 

images (e, m), synthetic noise images (f, n), and the local spatio-temporal correlation images 

(g, o), from two healthy volunteers. Blue horizontal and vertical regions of interest (ROIs) in 

(a, i) indicate the data points sampled for quantitative assessments in Figures 11 and 12. To 

compare the estimated noise field with the actual, the ROIs were located in a region devoid 

of any flow or residual tissue signal.

Nayak et al. Page 28

Phys Med Biol. Author manuscript; available in PMC 2020 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10: 
Montage of renal microvascular power Doppler (PD) images (a, i), B-mode sonograms (b, j), 

top-hat filtered PD images (c, k), background-suppressed PD images (d, l) and the 

corresponding noise field (h, p) obtained using the proposed technique, clutter-filtered IQ 

images (e, m), synthetic noise images (f, n), and the local spatio-temporal correlation images 

(g, o), from two healthy volunteers. Blue horizontal and vertical regions of interest (ROIs) in 

(a, i) indicate the data points sampled for quantitative assessments in Figures 11 and 12. To 

compare the estimated noise field with the actual, the ROIs were located in a region devoid 

of any flow or residual tissue signal.
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Figure 11: 
Box-and-whisker plots of actual (red) and estimated (blue) noise fields, obtained from 

vertically and horizontally oriented regions of interest, across the 14 in vivo cases (a, b), 

with lines indicating the lower, median, and upper quartiles. The plot reveals no significant 

differences in actual and estimated background noise field.
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Figure 12: 
Box-and-whisker plots of background data obtained from vertical (red) and horizontal (blue) 

regions of interest in background-suppressed power Doppler images of 14 in vivo cases, 

with lines indicating the lower, median, and upper quartiles.
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Figure 13: 
Montage of power Doppler images before (a-d) and after (e-h) background suppression, and 

the corresponding noise fields (i, l) with ensemble size 2064, 1500, 1000 and 500 IQ frames, 

going left to right. The horizontal and vertical regions of interest (ROIs) in (a) indicate the 

data points sampled for quantitative assessments in Figures 14 and 16. The blue arrow in (a) 

indicates column # 71 in reference to Figure 14. The ROIs and the column were specifically 

positioned in a region devoid of any flow or residual tissue to achieve a fair comparison of 

the estimated noise field with the actual.
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Figure 14: 
Background profiles corresponding to column # 71 of noise suppressed power Doppler 

images in Figure 13 (e–h) for ensemble sizes 2064, 1500, 1000 and 500 IQ images.
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Figure 15: 
Background profiles corresponding to column # 71 of the power Doppler images in Figure 

13 (a–d) and the estimated noise fields in Figure 13 (a–d) for ensemble sizes 2064, 1500, 

1000 and 500 IQ images.
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Figure 16: 
Box-and-whisker plots of actual (red) and estimated (blue) noise field from vertical (a) and 

horizontal (b) regions of interest (ROIs), for different ensemble sizes. (c) Box-and-whisker 

plots of the noise-suppressed power Doppler data from vertical (red) and horizontal (blue) 

ROIs, for different ensemble sizes.
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Figure 17: 
(a) original power Doppler image of renal vasculature, (b) noise field estimated using STC 

filter and the corresponding background suppressed power Doppler image (c). (d) Estimated 

first-rank approximation of the original power Doppler image of (a), smoothened using the 

2D least square technique (e), followed by noise bias suppression (f). (g) Single clutter-

filtered image, with least square based background smoothening (h), and the corresponding 

noise bias suppressed power Doppler image (i).
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Figure 18: 
(a) original power Doppler image of hepatic vasculature, (b) noise field estimated using STC 

filter and the corresponding background suppressed power Doppler image (c). (d) Estimated 

first-rank approximation of the original power Doppler image of (a), smoothened using the 

2D least square technique (e), followed by noise bias suppression (f). (g) Single clutter-

filtered image, with least square based background smoothening (h), and the corresponding 

noise bias suppressed power Doppler image (i).
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