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Abstract

When a scanner is installed and begins to be used operationally, its actual performance may 

deviate somewhat from the predictions made at the design stage. Thus it is recommended that 

routine quality assurance (QA) measurements be used to provide an operational understanding of 

scanning properties. While QA data are primarily used to evaluate sensitivity and bias patterns, 

there is a possibility to also make use of such data sets for a more refined understanding of the 3-D 

scanning properties. Building on some recent work on analysis of the distributional characteristics 

of iteratively reconstructed PET data, we construct an auto-regression model for analysis of the 3-

D spatial auto-covariance structure of iteratively reconstructed data, after normalization. 

Appropriate likelihood-based statistical techniques for estimation of the auto-regression model 

coefficients are described. The fitted model leads to a simple process for approximate simulation 

of scanner performance—one that is readily implemented in an R script. The analysis provides a 

practical mechanism for evaluating the operational error characteristics of iteratively reconstructed 

PET images. Simulation studies are used for validation. The approach is illustrated on QA data 

from an operational clinical scanner and numerical phantom data. We also demonstrate the 

potential for use of these techniques, as a form of model-based bootstrapping, to provide 

assessments of measurement uncertainties in variables derived from clinical FDG-PET scans. This 

is illustrated using data from a clinical scan in a lung cancer patient, after a 3-minute acquisition 

has been re-binned into three consecutive 1-minute time-frames. An uncertainty measure for the 

tumor SUVmax value is obtained. The methodology is seen to be practical and could be a useful 

support for quantitative decision making based on PET data.
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I. INTRODUCTION

IN many institutions, positron emission tomography (PET) imaging plays a key role in the 

routine clinical management of cancer patients, as well as with some important cardiac and 

neurologic conditions. With the growing reliance on PET imaging information for clinical 

decision making, there is an ongoing need to have more detailed quantitative understanding 

of the operational characteristics of reconstructed PET images. This can facilitate consistent 

clinical decision-making based on the PET at a given institution and may also enable the 

conduct of multi-institution clinical trials involving PET imaging biomarkers [22]. Going 

back to the 1980s [13], routine quality assurance (QA) is a well established part of nuclear 

medicine practice and in particular of PET. The standard approach to QA with PET is to 

image a known source—physical phantom scans—and use the results to assess bias and 

sensitivity patterns. Sensitivity plays a key role in understanding local variance 

characteristics. There is a significant literature on methods for assessment of the statistical 

variation of PET data. Most of this has focused on approximating standard errors for 

regional averages of reconstructed data using a combination of analytic and empirical 

formulae [1, 2, 5, 11, 12, 15, 19, 24, 27]. The potential use of bootstrap methodologies in 

this context is appealing but for iterative reconstructions the computation requirements of the 

approach have limited its use in an operational settings, especially for dynamic studies.

Recently we presented a novel approach to the analysis of bias and sensitivity in a PET 

scanner based on QA data derived from a uniform source phantom [18]. Results showed that 

iteratively reconstructed PET image data were well described by Gamma statistics. Within 

the Gamma framework, characterization of bias and sensitivity can be efficiently carried out 

in terms of a multiplicative model analysis [18]. As part of our study it was found that, 

through a standard probability transform which adjusts for bias and sensitivity, raw 

reconstructed PET image data can be converted into a normalized Gaussian scale. This 

analysis methodology was implemented in an R [25] script.

The goal of the present work is to extend the previous analysis in order to obtain a practical 

representation of the full covariance characteristics of iteratively reconstructed PET data. We 

propose spatial autoregressive (SAR) models for representation of the 3-D spatial correlation 

structure of appropriately normalized data. The SAR approach involves relating the behavior 

of each voxel to the behavior on its neighbors. The first and second order neighbors are 

considered. Estimation of the SAR model cannot be accomplished by straightforward 

adaptation of the Yule-Walker process used for estimation of 1-D AR models [3]. Indeed 

such an approach can sometimes be inconsistent. The phenomenon is illustrated in section 

II-B. To resolve this estimation problem, we adapt a general likelihood based methodology 

for SAR model estimation.

The implementation makes use of the fast Fourier transform (FFT). The proposed approach 

leads to a consistent estimation process which provides a simple and practical approach for 

data analysis. Combining our previous work with this new development leads to a simplified 

approach to simulating PET images with noise characteristics that are matched to the 

operational scanner. Thus routine QA data can provide a mechanism for empirically 

representing the uncertainties in PET scan measurements.

Huang et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The basic theory and methodology is developed in section II. Studies with real and 

simulated data are described in section III. Included in our analysis are data from a clinical 

PET-FDG scan. This is used to demonstrate the potential of the methodology to create 

practical assessments of uncertainty, via model-based bootstrapping [7]. Section IV presents 

the results for both EM reconstructed data and simulated data. The paper concludes with 

discussion.

II. METHODOLOGICAL DEVELOPMENT

The data structure arising from a physical phantom study is a set of reconstructed PET 

measurements z n = z n1, n2, n3 , n = n1, n2, n3 ∈ N0  corresponding to a collection of N 

voxels consisting of I1 × I2 phantom-voxels recorded on each of I3 transverse slices in the 

field of view of the scanner. These data correspond to a particular acquisition time-frame 

during which the phantom is measured in the scanner field of view. In a dynamic PET study 

there will be multiple time-frames, but, as data from distinct time-frames can be considered 

to arise as a processed version of a thinned 4-D Poisson process, these can be considered as 

independent of each other. Our focus is on PET data that has been iteratively reconstructed 

using some variation on the EM algorithm [26].

A. Spatial Autoregressive Model

In previous work, we demonstrated that iteratively reconstructed PET data could be 

represented using the Gamma distribution [18]. So

z n = z n1, n2, n3 Γ τμ n /ϕ n , ϕ n /τ

where (n1, n2) are transverse plane co-ordinates and n3 indexes the slice. μ(n) is the activity 

of the target source activity per unit mass (scaled by dose), ϕ(n) models scanner and object-

specific factors (most notably attenuation) that contribute to extra-Poisson variation, τ is 

proportional to the injected dose per unit mass of the object. The Gamma model allows us to 

normalize PET data to a Gaussian scale via the probability transform [18]:

u n = Φ−1 F z n τ, μ n , ϕ n (1)

where F ⋅ τ, μ n , ϕ n  is the Gamma cumulative distribution function with mean μ n  and 

variance μ n ϕ n /τ. Both μ n  and ϕ n  can be estimated from phantom data measurements 

[18]. Φ is the standard normal cumulative distribution function.

Here we propose to analyze the 3-D covariance of the normalized data using spatial 

autoregressive (SAR) models. A SAR model specifies a linear relation between a collection 

of appropriately defined neighbors

u n = ∑
k

θku n − k + ϵ n (2)

where u(n) = u(n1, n2, n3) and the summation is made over a set of negative and positive 

indices, k = (k1, k2, k3), such that voxels (n − k) belong to an appropriate neighborhood of 
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the voxel n—this will be detailed below. ϵ(n) is a Gaussian white noise process with 

variance σ2. θk is the coefficient of the corresponding neighbor (n − k). By introducing a 

linear difference operator Pθ = I − ∑kθkBk the model can be expressed as

Pθu n = ϵ n (3)

where u(n) and ϵ(n) represent the data and the innovation white noise process evaluated at 

the n’th voxel and Bku(n) = u(n − k) = u(n1 − k1, n2 − k2, n3 − k3). In practice only a small 

number of θk coefficients are non-zero. A first order model will only involve terms where all 

components of k are zero, except one being 1 in absolute value; an s’th order model only has 

non-zero terms for k = (k1, k2, k3)’s in which |k1| + |k2| + |k3| ≤ s. Models of order 2 seem 

adequate according to the empirical analysis of phantom data and simulated data in IV. SAR 

models are generalizations of simple auto-regressive (AR) models used in classical time 

series analysis [3, 4]. See Yao and Brockwell [29] for discussion of spatial generalizations of 

classical ARMA time series models. SARs have been proposed for analysis of spatial 

processes [9, 16, 21, 28], but to our knowledge, they have not been applied to nuclear 

medicine imaging data. The SAR models used in spatial statistics are sometimes specified so 

that the θ-coefficients are known up to some scale factor determined from available data [8]. 

In our case we are interested in SAR models in which the full set of non-zero θ-coefficients 

must be estimated from the available data.

B. Estimation of SAR Model Coefficients

While the method of least squares is a standard (and asymptotically optimal) approach for 

estimation of familiar AR model coefficients [3, 4], it runs into problems for more general 

auto-regressions. This was highlighted by Whittle [28]. To illustrate this, consider a SAR 

model in time

yt = θ1 yt − 1 + yt + 1 + θ2 yt − 2 + yt + 2 + ϵt

for t = 0, ±1, ±2, ..., T and ϵt white noise, where yt±1, yt±2 are the 1- and 2-order neighbors 

of yt. The least squares estimates of θ = (θ1, θ2) minimize

RSS θ y t , t ∈ N/N0 = ∑
t ∈ N0

Pθy t 2

where Pθ = I − θ1 B + B−1 − θ2 B2 + B−2  with B is the backshift and 

N0 = 0, ± 1, ± 2, …, T  is the set of data indices and N/N0 = −T − 2, − T − 1, T + 1, T + 2
are the indices of unobserved y-values which are needed in order to reconstruct the 

innovations ϵ(t) at the sampled points. For large T, the impact of unobserved data is 

negligible. Least squares coefficients satisfy the normal equations. Derived from the Yule-

Walker equations for an AR(2) process ∑k = 1
2 θkγl − k, where γl is the auto-covariance 

function of yt, the AR parameters are determined by the first p + 1 elements ρ(l) of the auto-
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correlation function ρl = ∑k = 1
2 θkρl − k. In the present situation for large T, these coefficients 

(denoted as θ) for k = −2, −1, 1, 2 are identified by

1 + ρ2 ρ1 + ρ3
ρ1 + ρ3 1 + ρ4

θ1

θ2
=

ρ1
ρ2

(4)

where ρl is the auto-correlation at lag l for l = 1, 2, 3, 4. It is not hard to find a situation 

where the estimates are inconsistent. For example, if θ = (0.30, 0.02) then θ −0.54, − 0.15 . 

In light of this, least-squares auto-regression may not be relied on for estimation of SAR 

models parameters.

Likelihood-based approaches to the estimation of SAR and ARMA models are well 

established and have the familiar behavior of regular maximum likelihood procedures [16, 

29]. In the case of an SAR it is well known, see e.g. Mohalp [16], that the appropriate 

(conditional) likelihood-based objective function can be expressed as

l θ u n , n ∈ N/N0 = ∑
n ∈ N0

Pθu n 2

σ2 + Nlog σ2

+ N
2π 3∫−π, π 3log Pθ λ −2 dλ

(5)

where N is the number of voxels in N0, λ = (λ1, λ2, λ3) and σ2

2π 3 Pθ λ −2 is the 3-d 

spectral density of the SAR process.Pθ λ = ∑k θkeiλ ⋅ k, with λ ⋅ k = λ1k1 + λ2k2 + λ3k3, is 

the 3-D discrete Fourier transform of the SAR coefficients. Differentiating equation (5) with 

respect to θ and setting the derivative to zero we obtain a pseudo-linear (score) equation for 

the unknown components of θ

1
N ∑

n ∈ N0
Pθu n u n − l = ∫ fθ λ Pθ λ e−iλ ⋅ ldλ (6)

where l = l1, l2, l3 ∈ ℒP indexes the relevant components of non-zero θ’s, 

fθ λ = σ2

2π 3 Pθ λ −2 is the spectral density. Using Parseval’s relation, the above equation 

can be expressed as a requirement that the maximum likelihood estimators ensure that select 

sample auto-covariances, at lags corresponding to the non-zero θ, match the model-

predicted covariances

∑
l′ ∈ ℒP

cN l′ − l θl′ = ∑
l′ ∈ ℒP

c l′ − l θ θl′ (7)

for l ∈ ℒP. Here cN l − l′ = 1
N ∑n ∈ N0 u n − l u n − l′  is a sample estimate of the auto-

covariance and the inverse Fourier transform of the spectral density fθ(λ) gives the 3-D 

model auto-covariance,c l − l′ θ = ∫ e−iλ ⋅ l − l′ fθ λ dλ. Equation (7) might be compared to 
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the score equation that would arise in the minimization of the non-linear least-squares 

objective function

W RSS θ = ∑
m = 1

K
wm cN m − c m θ 2

(8)

where K = max l′ − l ; l ∈ ℒP and l′ ∈ ℒP , wm is the number of l′ − l such that |l′ − l| = m 

and l ∈ ℒP and l′ ∈ ℒP. Estimation of θ can be expected to produce estimates of the auto-

covariance that are in close agreement with sample auto-covariance values.

C. Neighborhood Structure

Model (2) is based on specification of the neighborhood structure of each voxel. Image data 

has a regular structure and there are several intuitive strategies for defining the neighborhood 

structure of a voxel [6]. We define the s’th order neighborhood of (i, j, k) as

Ns = i′, j′, k′ ; 0 < i − i′ + j − j′ + k − k′ ≤ s ;
for s = 1, 2, …

The first (s = 1) and second (s = 2) neighborhood structures are sketched in Fig. 1. The first 

order neighborhood is also known as the 3-D Rook neighborhood [30].

D. ACF Computation

This section describes a fast and simple computation of ACF. The hyper-rectangular volume 

of the normalized data—u(n) can be processed using the 3-D FFT to obtain the periodogram, 

fN(λ). The inverse FFT of the periodogram provides a set of sample auto-covariances cN(m). 

For a specified θ we sample 1
2π 3 Pθ λ −2 at the same discrete Fourier frequencies as the 

periodogram and apply the inverse FFT, followed by normalization to ensure c(0|θ) = cN(0), 

this provides the model auto-covariances, c(m|θ). These are used to evaluate (8). Note the 

auto-correlations of the data and the model are obtained as

ρN m = cN m /cN 0 and ρ m θ = c m θ /c 0 θ .

E. Simulation of PET Data

The Cramer representation theorem, see e.g. Mohalp [16], provides a mechanism to simulate 

normalized PET data and by inverting the Gamma model probability transform in equation 

(1), these data can be converted into simulated PET image values for z(n). The process is as 

follows: First generate ϵ(n) as an iid N (0, σ2) process; transform ϵ(n) using the FFT and 

scale by the Pθ(λ). Next apply the inverse FFT to generate the normalized data u(n). These 

steps are summarized by the formula.

u n = ℱ−1 ℱ ϵ λ
Pθ λ n
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where ℱ represents the FFT. Finally simulated PET values are obtained as

z n = F−1 Φ u n τ, μ n , ϕ n

The analysis method and simulation step is summarized graphically in Fig. 2.

III. EXPERIMENTAL METHODS

A. Normalized Physical Phantom Data Analysis

Routine quality assurance monitoring of the performance of installed scanners involves a 

range of phantom tests matched to operational clinical practice. We consider the data of this 

type collected at a PET imaging facility at a local hospital— the Cork University Hospital 

(CUH). The scanner is a GE Discovery VCT PET/CT and used clinically for imaging of 

cancer patients. The reconstruction process used is an OSEM technique with 3 iterations and 

28 subsets. This is approximately equivalent to 120 iterations of a standard EM algorithm 

[17]. In our study, the scanning procedure was in line with a standard dynamic PET-FDG 

brain imaging protocol developed by the American College of Radiology Imaging Network 

(ACRIN) [22]. The cylindrical phantom is 189 mm in length and 195 mm in diameter, filled 

with a mixed solution of F-18 radiotracer and water and placed centrally in the field of view 

(FOV). Routine clinical image reconstruction is performed with the iterative OSEM 

reconstruction technique (3D-IR). A dynamic sequence of 45 time-frames is acquired for 55 

minutes. For each time-frame, the reconstructed image has 128×128 pixels in 47 slices, with 

pixel size of 5.46875× 5.46875 mm2 and slice thickness of 3.27 mm. Region of interest 

(ROI) data for the interior cross-sectional circular volume of the phantom, acquired for each 

axial slice (except two extreme slices), k, and for each time-frame, t, are available for 

analysis. The data for the set of all K slices and T time-frames structured as {zikt, i = 1, 2, ..., 

N, k = 1, 2, ..., K, t = 1, 2, ..., T}. In general, PET images from different time-frames are 

independent, here we just focus on the data from a single time-frame—the t = 24 frame.

Based our previous work [18], measurements have been normalized based on the 

multiplicative Gamma model. The normalized data are well described by the Gaussian 

distribution (c.f. Fig. 3). Based on the analysis of 3-D autocorrelation of the phantom data 

(Fig. 4), there is little rotational variation in row and column directions within each slice. 

Hence we consider all voxels within the ROI where both 1- and 2-order neighbors are 

available. Reasonably assuming that the data on each direction (row, column and axial) are 

symmetric, we denote the regression coefficients as shown in Fig. 1. We apply the 

methodology developed in the previous section to fit to SAR models to the normalized data. 

The order of neighborhood, s, is selected based on the significance of regression coefficients 

and diagnostic analysis of residuals—primarily the residual auto-correlation characteristic 

[3].

B. SAR Model Simulation

To illustrate the performance of the proposed method in estimating SAR model coefficients, 

we simulate 3-D data according to the following model
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u n = ∑
k

θku n − k + ϵ n ,

for n ∈ N0 and θk matched to typical values estimated from the CUH phantom. Mean 

squared errors (MSE) for the θ parameter estimation, defined as 1
Nθ

∑k θk − θk
2 where Nθ 

is the number of the θ parameters, are evaluated as function of ROI size for the noise level 

matched to the one in the CUH Phantom data.

C. Numerical Phantom Simulation

The uniform elliptical phantom as well as two versions, a symmetric and non-symmetric 

form, of the 2-D VSK phantom [26] were used. A sinogram source g was evaluated using a 

simple analytic Radon projection. Sinograms generated from the VSK and uniform phantom 

were attenuated using the same attenuation matrix that assumed uniform density in the 

phantom region. Poisson data in the sinogram domain were simulated in R [25] using the 

function rpois. Data were reconstructed using the Expectation-Maximization (EM) 

algorithm. The EM algorithm, initialized with the true uniform image, is iterated 200 times. 

For each count rate, 200 replicate runs were conducted to produce 200 replicate images. At 

each pixel, 200 replicate values were used to estimate Gamma model parameters and 

probability transformation [18] was performed on each replicate image. Methods developed 

in Section II were then used to analyze the 2-D autocorrelation of these normalized image 

data. To investigate effects of the noise level and smoothing on performance of the proposed 

ACF method, count rates of 105 and 106 were used in simulation of sinograms. Post-

reconstruction smoothing with Full Width Half Maximum (FWHM) of 2, 4, 8 pixels was 

performed. Using 200 replicates, we can calculate the pixel-wise correlation coefficients of 

reconstructed image data and compare them to ACFs calculated by the proposed method.

D. Model-Based Bootstrapping of a Lung Tumor SUVmax

We consider data selected from clinical PET-FDG scans of a lung tumor patient acquired 

over a 15-minute time-period, 60 minutes after tracer injection. The full acquisition 

consisted of 5 bed-positions, each image for a period of 3 minutes. The 3- minute scan data 

from the bed-position corresponding to the primary tumor, located in the hilar region of the 

left lung, was re-binned into three consecutive 1-minute frames and iteratively reconstructed 

using the standard process—e.g. the same as that used in the physical phantom studies 

conducted on the same scanner (above). Given the metabolism of FDG, it is reasonable to 

expect that there will be little or no voxel-level temporal variation in the FDG profile in 3 

consecutive minutes 60+ minutes after injection. Thus, we may approximately regard the 

measurements as rough replicates and proceed to evaluate the voxel-by-voxel mean μx and 

variance σx2 and, based on these, recover corresponding voxel-level Gamma model 

parameters—μ and ϕ. Given the Gamma model parameters, we use the probability transform 

and analyze the 3-D auto-covariance with the SAR modelling approach. We then apply the 

scheme in section II-E, see schematic in Fig. 2, to simulate PET scan data and use those 

simulations to recover assessments of uncertainty in SUV values. The process is an example 

of a model-based bootstrapping procedure [7] for assessment of uncertainties (standard 
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errors) in measurements. It is of interest here because direct bootstrapping of raw list-mode 

data [10] is not practically feasible, for routine application. We apply the approach to 

develop an approximate standard error for the tumor SUVmax.

IV. RESULTS

We begin by presenting results of analysis of physical phantom data, this is followed by 

numerical simulation studies including SAR model simulation and VSK and uniform 

phantom simulation. Finally, we present results of analysis of patient data.

A. Physical Phantom Data

Fig. 3 shows uniform cylindrical phantom data OSEM reconstructed at a PET imaging 

facility at a local hospital before (the top) and after (the bottom) normalizing based on the 

Gamma distribution [18]. Histogram at the bottom right indicates that the normalized data 

can be modelled using the Gaussian distribution. Fig. 4 shows 1-D horizontal, vertical and 

axial profiles through the center of the 3-D ACF image of the ROI data shown in the top of 

Fig. 3. We fit a SAR model with the second order neighborhood to the normalized data. The 

3-D auto-correlation function (ACF) of the fitted SAR model is plotted as three 1-D profiles 

in Fig. 5, in comparison with 3-D ACF of the normalized physical phantom data, was 

calculated as the inverse Fourier transform of the data periodogram as described in II-D. 

Also shown in Fig. 5 is the 3-D ACF of the fitted SAR model residuals. The 3-D ACF of the 

normalized data is well described by the model. The model residuals shows no significant 

autocorrelation present in transaxial directions, but some significant autocorrelation present 

in axial direction. However, the amplitude of autocorrelation is greatly reduced (in 

comparison to the normalized data). This may indicate that there is non-stationary axial 

autocorrelation present in the data. The estimated model coefficients are presented in Table 

I, where ai, bi, ci are representing the coefficients along vertical, horizontal and axial 

directions respectively, and di is for diagonal direction as shown in Fig. 1.

B. SAR Model Simulation

Using the θ parameters estimated from and the same data size as the CUH ROI data for one 

time frame (sample size N0 = 30 × 30 × 45), Fig. 6 shows that the ACF structure in the CUH 

ROI data can be well captured and simulated by the simulation model. The R-squared values 

of the estimated ACFs based on the CUH ROI data and simulated data are 99.86%, 99.51% 

and 99.56% in the horizontal, vertical and axial direction, respectively. At lag 1 the relative 

differences between these ACFs are 2.38%, 7.41% and 4.33%, respectively.

To demonstrate estimation accuracy of the proposed method, data with varying size were 

generated. The considered data sizes are created by scaling each dimension of the CUH ROI 

using the same scale factor τ , that is τ N0 for τ = 0.5, 1, 2, 4, . . . , 64. Then the proposed 

method was applied to the simulated data. This process is repeated 20 times for each data 

size. Note that the data size in this experiment is referred to the number of pixels used in 

simulation. Using different data sizes is aimed to investigate convergence of estimators as 

sample size increases. Fig. 7 shows the log mean square error (MSE) of the θ estimation, 
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defined as 
∑k θk − θk

2

number of θ′s , as function of the log sample size τN0. This figure seems to indicate 

that log MSE decreases linearly in the log sample size, especially after ignoring the first box. 

The slope-coefficient is estimated as (−1.04 ± 0.06), consistent with asymptotic theory [16].

C. Numerical Phantom Simulation

Row 1 of Fig. 8 shows the three phantom images used in the simulation study. 

Corresponding sample reconstructions are shown in Row 2. Row 3 shows the mean images 

of 200 replicate reconstructions. ϕ’s computed pixel-wisely by fitting the Gamma 

distribution to 200 replicate values are shown in Row 4. We applied normalization (1) to 

each reconstruction using the corresponding ϕ’s and μ’s (means). Samples of normalized 

reconstruction are shown in Row 1 of Fig. 9. The 1-D horizontal (short-axis of ellipse) and 

vertical (long-axis of ellipse) profiles through the center of ACF image of normalized 

reconstruction data are shown in Row 2 & 3. Comparing the ACFs results in Fig. 5 for the 

cylindrical phantom to the profiles in Fig. 9, we see that while horizontal and vertical 

profiles are very similar in the cylindrical case, there is evidence of greater persistence in the 

ACF in the vertical/long-axis profile versus the horizontal/short-axis profiles in the elliptical 

case. This is consistent with the work of Razifar et. al. [20] who demonstrated a similar 

effect. Normalized VSK, MVSK and uniform phantom reconstructions exhibit very similar 

autocorrelation structures, and these auto-correlation structures can be well described by the 

SAR model. There is no autocorrelation left in the residual image (as shown in Row 2–3 of 

Fig. 9, residual derviations between the data and SAR model ACFs are all close to zero). To 

make more reliable comparison between uniform and non-uniform sources, we fitted the 

SAR model to 100 normalized reconstructions of each phantom. Estimates of the SAR 

model coefficients are presented in Table II. As shown in the table, there is no significant 

difference in auto-correlation of normalized reconstructions of different phantoms. This 

suggests that the autocorrelation pattern may be mostly determined by the attenuation 

structure and perhaps less influenced by the source configuration within the volume where 

the source is concentrated.

To further validate the ability of the methodology to capture correlation in images with 

uniform and non-uniform source distributions, Fig. 10 presents the average ACFs of 200 

normalized VSK and Uniform reconstructions across a range of count rates (N) and post-

reconstruction Gaussian smoothing. Average estimates of SAR model ACF show good 

agreement with the data. Directly evaluated pairwise pixel-wise correlations evaluated over 

200 replicates are also shown. These can be regarded as ground truth—they do not make use 

of stationarity of the normalized reconstructed data. The results show that correlation is in 

line with the stationary assumption and can be captured by the ACF of fitted SAR model. 

Fig. 10 also plots the 1-D profiles of 2-D ACF with and without data transformation. ACFs 

with and without transformation are very similar. The same patterns are observed in analysis 

of reconstruction data using count rate of 106 and the MVSK phantom (not shown).

D. Model-Based Bootstrapping of a Lung Tumor SUVmax

Fig. 11 displays a whole-body FDG-PET/CT study in a lung cancer patient. Both the PET 

and CT data are presented. The pattern of FDG uptake is very similar on the three 

Huang et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consecutive 1-minute frames, see Fig. 11 (C), selected for analysis. We focus analysis on 

voxels corresponding to the body—thresholding based on the CT and FDG scans is used to 

eliminate background. The average voxel-level tissue uptake profile, μ = μ1, μ2, μ3

normalized so that 1
3 ∑j μj = 1, is quite constant across each of the frames. Our analysis 

adjusts for the very slight increase at the voxel level. Letting zxj be the observed SUV at 

voxel x and frame j, we model these voxel-level data as

zxj ≈ γxμj

with γx estimated by the simple average,γx = 1
3 ∑j zxj. Assuming a Gamma model in which 

ϕx is constant across replicates, we estimate ϕx by the average

ϕx = 1
2 ∑

j

zxj − γxμj
2

γxμj

An argument could be made for division by 3 instead of 2 in this formula. We have been 

guided by the principle that, given the estimation of γx, there are at most 2 degrees of 

freedom associated with the deviations between zxj and γxμj. It is important to note that here 

ϕ, includes the effect of dose. Given that our analysis, see last row of Fig. 8 indicates that ϕ 
should be very regular, it is appropriate to smooth the raw estimates in order to improve the 

expected mean squared error of the estimation—we use a simple 3-D Gaussian with FWHM 

of 2-voxels in x-y direction in transverse planes and also axially. Given estimates of γx and 

ϕx, a Gamma transformed variable is created, at each voxel and at each replicate value, as

uxj = F zxj γxμj, ϕx

where F is the cumulative Gamma distribution. If the Gamma-model is correct the 

transformed data should have a uniform distribution.

The data analysis results in Fig. 11 (D–I) show substantial consistency with the Gamma 

assumption, practically validating our estimation of γx, μj and ϕx. Note we also considered 

the distribution of the uxj-values within individual replicates and on different axial planes 

within the tumor-bed. The uniformity check of the Gamma structure was reasonable 

throughout. Next, the uxj data were transformed into standard Gaussian values, 

rxj = Φ−1 uxj , and the 3-D ACF of the rxj-data evaluated. Using techniques described 

earlier, a second order SAR model was found to provide a good representation of the 3-D 

ACF. Fig. 11 (F–H) show the sample ACF and together with the fitted SAR model. The 

overall fit appears quite satisfactory. It is notable that there is a difference between the range 

of the ACF in the x and y directions. This is unlike the physical phantom data, where the 

within transverse planes the ACF in the horizontal(x) and vertical(y) directions matched and 

is also unlike our numerical simulations where the ACF was slightly more persistent in the 

long-axis direction. The ACF here is seen to be more persistent perpendicular to coronal 
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planes (the short axis) than in the direction perpendicular to sagittal planes (the long-axis). 

The effect is consistent across all planes within the tumor bed position.

Given our analysis of the replicates we are in a position to simulate synthetic copies of the 

patients 3-D SUV scan data. This follows the scheme indicated in section II-E. We begin by 

simulating three independent 3-D Gaussian processes, ϵxj for j = 1, 2, 3, each with ACF 

given by the SAR model. As before, this simulation is generated with reliance on the 

spectral density corresponding to the SAR model and the 3-D FFT. Given ϵxj, SUV values 

are produced by

zxj∗ = F−1 Φ ϵxj γxμj, ϕx

The average of these SUV values over replicates, provides a simulated 3-D image of FDG-

SUV in the tumor-bed position. A set of 500 such model-based bootstrap simulations were 

created (the entire process required less than 30 minutes on a modest laptop), giving a 

collection of 500, 3-D SUV data sets for detailed evaluation of measurement error. Fig. 12 

(A) shows a coronal slice of the original SUV but now with a color bar that has been 

augmented to provide the average bootstrap-evaluated standard error (SE) for all voxels on 

the displayed slice with that color SUV-value. Standard errors are seen to be roughly 

proportional to the size of the SUV. The level of uncertainty in SUV values is around 7.5%. 

The bootstrap also provides an analysis of the uncertainty in the maximum SUV for the 3-D 

tumor-bed volume. Fig. 12 (B) shows the histogram of 500 model-based bootstrap 

simulations of the SUVmax in the 3-D volume of the tumor bed position. The sample value 

of the SUVmax is indicated in red, quantiles corresponding to a 90% confidence interval are 

indicated in blue. The bootstrap-generated distribution is seen to be slightly skewed. The 

bootstrap-estimated standard error in the SUVmax is 0.72 close to 5.5% of the recovered 

SUVmax value from the scan. The analysis demonstrates the potential for the methodology to 

generate uncertainty assessments for clinical PET data. Further validation of this approach is 

merited.

V. DISCUSSION

We have described a practical approach to using physical phantom data to obtain a statistical 

understanding of the imaging characteristics of an operational scanner that uses iterative 

reconstruction. The approach is based on a 3-D model taking account of the Gamma-

characteristic of positivity constrained iterative reconstruction, and a novel adaptation of 

spatial auto-regressive (SAR) modelling for representation of covariance patterns. The SAR 

analysis uses a variation on the Whittle approach for implementation of conditional 

likelihood in general SAR models. SAR analysis is based on assumption that the correlation 

is independent of position. We use simulation and data analysis to assess assumptions. Based 

on 200 noise realizations we calculated correlation of 10 lags in different directions in 

normalized uniform reconstruction, showing little deviation from the ACF of the fitted 

model (Fig. 10). However, without normalization the ACF analysis failed to capture 

correlation structures in the data (Fig. 10). Similar phenomena are observed in VSK and 

MVSK studies. These results agree with the empirical analysis of both Physical phantom 
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and some replicate clinical scan data that shows there is little slice to slice variation in ACF, 

although there is large slice to slice variation in variance. We also found there is little 

variation in the 3-D ACF across time frames. Numerical studies demonstrate the reliability 

of the SAR estimation procedure. These results are fully in line with asymptotic theory, see 

e.g. [16].

Our techniques, which are implemented in R [25], are applied to data from a PET scanner in 

operational clinical use. In the patient data, we used 1-minute re-binning to obtain three 

approximate replicates for estimation of normalization and covariance structures directly 

from data. It is significant that the effort required to produce the re-binned data was readily 

facilitated by operational PET scan technical staff at our institution. Given that institutional 

configuration of our scanner is, like the vast majority of modern PET scanners, fully 

dedicated to clinical work, it may be that a similar rebinning approach effort would be 

practically feasible in a wider clinical setting. This would facilitate the use of data-adaptive 

normalization and ACF modelling with SAR for patient studies. When there is no 

opportunity to re-bin, it may still be possible to use the attenuation map to specify the 

Gamma model normalization and perhaps use more simplified 2-D simulation and physical 

phantom data for specification of ACF patterns. Kueng et. al. [14] have described how local 

reconstruction variability is approximately described by the local integration of the 

attenuation pattern over relevant lines joining the scanner detector pairs that pass through the 

local region. Our numerical studies find that in the 2-D setting 95% of the variance in our 

normalization factor, ϕ, can be explained by the predicted value obtained by such local 

integration of the attenuation map. Patient data is 3-D but a combination the Kueng et. al. 

[14] formula applied to the PET attenuation pattern derived from the CT component of the 

PET/CT scan, together with slice-by-slice adjustment for axial effects from the physical 

phantom data is found to explain more than 90% of the variability in the normalization 

factor. Current efforts are directed towards further investigation of this possibility so as to 

obtain an image domain bootstrap procedure that does not require even the very limited 

rebinning we have proposed.

Second-order SAR models are found to adequately represent auto-correlation of the 

normalized phantom, numerical simulation and patient data. This extends the analysis 

reported in [18]. A numerical phantom study using both uniform and non-uniform (VSK and 

MVSK) source distributions, indicates that after normalization via an appropriate Gamma 

model probability transform [18], the 2-D autocorrelation pattern of iteratively reconstructed 

data does not appear to depend on whether the source is uniform or non-uniform. This 

merits more detailed investigation. The patient data finds greater persistence in short-axis, 

perpendicular to the scanning bed, than in the long-axis. This is at odds with what we found 

in simulations and also the simulation results reported by Razifar et. al. [20]. There may be a 

number of ways to explain this. For example, one might hypothesize that since this is a lung 

tumor patient, the effect of respiration which may be quite abnormal, would be expected to 

introduce blurring/smoothing in the short-axis direction. This blurring would smooth the 

data in this direction and at the same time induce the stronger and more persistent short-axis 

auto-correlation. A referee has suggested that it may also be an artifact of the OSEM 

reconstruction process—perhaps insufficient iterations. A systematic study of the factors that 
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influence the nature of local Gamma-model parameters associated with non-uniform sources 

would be a valuable next step. This could lead to a practical and efficient approach to 

obtaining uncertainties for regional summaries of PET scanning information in clinical 

settings and would be particularly valuable in situations where the brute-force bootstrap [12] 

with similar numbers of simulations, i.e. several hundred, and full iterative reconstruction 

might not be routinely feasible.

In the current study of the phantom with reconstructed voxel size of 5.46875 × 5.46875 

mm2, the neighborhood size 2 would be enough as shown in different ACF plots (Fig. 5, Fig. 

6). Although finer voxel size would be expected to modify the lag-scale of the ACF, if the 

imaging process is based on the standard PET the basic shape pattern ought to be similar. 

The SAR model analysis is of course easily adapted, by including more neighbors, to adjust 

for the effects of more locally persistent auto-correlation. Our simplified approach to 

representing the statistical characteristics of an operational 3-D scanner, though obviously 

much less sophisticated than a proper physical representation, may have some on-going 

value, particularly as the ability to fully represent all of the details of the operational scanner 

is challenging. The parsimony offered by the approach described here, should be of practical 

value.

The reliability of the estimation procedures used for SAR analysis have been investigated by 

simulation. See Tian et. al. [18] for evaluated procedures used for evaluation of 

normalization factors with physical phantom data. In the patient data study, we used three 

approximate replicates to estimate the Gamma model parameters for the normalization as 

well as the parameters of the auto-correlation function. The SAR model structure is such that 

there are only a modest number of parameters relative to the amount of data available. The 

numerical simulations presented in Fig. 7 as well as formal asymptotic theory [16] support 

the reliability of the approach. The normalization process involves estimation of the voxel-

level scale factor—the ϕ introduced in section II-A. Similar to the target source, this is a 

very high dimensional parameter with effectively only 2 degrees of freedom for estimation 

at each voxel. If the ϕ were very highly unstructured, reliable estimation would be a 

potential concern. However, it can be seen from the simulation studies, c.f. Fig. 8, that the 

target scale factor is a much smoother object than the source. Based on the work of Kueng 

et. al. [14], it appears to be largely a function of attenuation characteristics, see above. As a 

result there is the opportunity to improve estimation accuracy by smoothing. This regularizes 

the estimation process for normalization and make it more reliable.

After all the investigations of phantom and simulation studies, the ultimate purpose of our 

research is to improve the quantitative use of PET in supporting clinical decisions. Based on 

our practical and effective modelling of the noise structure in PET phantom images, the 

Gamma distribution could be included in modelling the noise characteristics in patient 

images. Lesion detection and characterization must be quantitatively impacted by the spatial 

characteristics of the supporting data [23]. As demonstrated by our illustration with a 

clinical lung scan data, the approach has potential to provide practical assessments of 

uncertainty, via model-based bootstrapping [7]. In a clinical setting, this methodology could 

also allow estimation of uncertainties in much more complex imaging biomarkers, including 

tumor texture and other heterogeneity assessments. The work presented motivates future 

Huang et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efforts to explore this approach, ideally carrying out extensive validations using the full 

projection-domain bootstrap with at least 500 replicates each and a meaningful clinical 

series of patients.

Acknowledgments

This work was supported in part by Science Foundation Ireland (Grant No. PI-11/1027), the National Cancer 
Institute USA (Grant No. R33-CA225310) and Beijing Municipal Natural Science Foundation (Grant No. 
1182008).

REFERENCES

[1]. Alpert N, Chesler D, Correia J, Ackerman R, Chang J, Finklestein S, Davis S, Brownell G, and 
Taveras J, “Estimation of the local statistical noise in emission computed tomography,” IEEE 
transactions on medical imaging, vol. 1, no. 2, pp. 142–146, 1982. [PubMed: 18238267] 

[2]. Barrett HH, Wilson DW, and Tsui BM, “Noise properties of the EM algorithm. I. Theory,” Physics 
in medicine and biology, vol. 39, no. 5, pp. 833–846, 1994. [PubMed: 15552088] 

[3]. Box GE, Jenkins GM, Reinsel GC, and Ljung GM, Time series analysis: forecasting and control. 
John Wiley & Sons, 2015.

[4]. Brockwell PJ and Davis RA, Time Series: Theory and Methods. New York, NY, USA: Springer, 
1991.

[5]. Carson RE, Yan Y, Daube-Witherspoon ME, Freedman N, Bacharach SL, and Herscovitch P, “An 
approximation formula for the variance of PET region-of-interest values,” IEEE transactions on 
medical imaging, vol. 12, no. 2, pp. 240–250, 6 1993. [PubMed: 18218411] 

[6]. Cheng T and Anbaroglu B, “Methods on defining spatio-temporal neighbourhoods,” in The 10th 
International Conference of GeoComputation, Sydney, Australia, Nov 30th–Dec 2nd 2009.

[7]. Chernick MR, Bootstrap Methods: A Guide for Practitioners and Researchers, ser Probability and 
Statistics. John Wiley and Sons, 2011.

[8]. Gelfand AE, Diggle P, Guttorp P, and Fuentes M, Handbook of spatial statistics. Boca Raton, 
Florida, US: Chapman Hall/CRC Press,, 2010.

[9]. Guyon X, “Parameter estimation for a stationary process on ad-dimensional lattice,” Biometrika, 
vol. 69, no. 1, pp. 95–105, 1982.

[10]. Haynor DR and Woods SD, “Resampling estimates of precision in emission tomography,” IEEE 
Transactions on Medical Imaging, vol. 8, no. 4, pp. 337–343, 12 1989. [PubMed: 18230533] 

[11]. Huesman R, “The effects of a finite number of projection angles and finite lateral sampling of 
projections on the propagation of statistical errors in transverse section reconstruction,” Physics 
in Medicine and Biology, vol. 22, no. 3, pp. 511–521, 1977. [PubMed: 866415] 

[12]. Ibaraki M, Matsubara K, Nakamura K, Yamaguchi H, and Kinoshita T, “Bootstrap methods for 
estimating PET image noise: experimental validation and an application to evaluation of image 
reconstruction algorithms,” Annals of nuclear medicine, vol. 28, no. 2, pp. 172–182, 2 2014. 
[PubMed: 24158790] 

[13]. INTERNATIONAL ATOMIC ENERGY AGENCY, Quality Assurance for PET and PET/CT 
Systems, ser. IAEA Human Health Series. Vienna: INTERNATIONAL ATOMIC ENERGY 
AGENCY, 2009, no. 1 [Online]. Available: http://www-pub.iaea.org/books/IAEABooks/8002/
Quality-Assurance-for-PET-and-PET-CT-Systems

[14]. Küng R, Driscoll B, Manser P, Fix M, Stampanoni M, and Keller H, “Quantification of local 
image noise variation in pet images for standardization of noise-dependent analysis metrics,” 
Biomedical physics & engineering express, vol. 3, no. 2, p. 025007, 2017.

[15]. Maitra R and O’sullivan F, “Variability assessment in positron emission tomography and related 
generalized deconvolution models,” Journal of the American Statistical Association, vol. 93, no. 
444, pp. 1340–1355, 12 1998.

[16]. Mohapl J, “On maximum likelihood estimation for Gaussian spatial autoregression models,” 
Annals of the Institute of Statistical Mathematics, vol. 50, no. 1, pp. 165–186, 1998.

Huang et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www-pub.iaea.org/books/IAEABooks/8002/Quality-Assurance-for-PET-and-PET-CT-Systems
http://www-pub.iaea.org/books/IAEABooks/8002/Quality-Assurance-for-PET-and-PET-CT-Systems


[17]. Morey AM and Kadrmas DJ, “Effect of varying number of osem subsets on pet lesion 
detectability,” Journal of nuclear medicine technology, vol. 41, no. 4, pp. 268–273, 2013. 
[PubMed: 24221921] 

[18]. Mou T, Huang J, and O’Sullivan F, “The Gamma characteristic of reconstructed PET images: 
Implications for ROI analysis,” IEEE transactions on medical imaging, vol. 37, no. 5, pp. 1092–
1102, 2018. [PubMed: 29727273] 

[19]. Qi J and Leahy RM, “Resolution and noise properties of MAP reconstruction for fully 3-D PET,” 
IEEE transactions on medical imaging, vol. 19, no. 5, pp. 493–506, 2000. [PubMed: 11021692] 

[20]. Razifar P, Sandström M, Schnieder H, Långström B, Maripuu E, Bengtsson E, and Bergström M, 
“Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation 
function: a phantom study on data, reconstructed using FBP and OSEM,” BMC medical imaging, 
vol. 5, no. 1, p. 5, 2005. [PubMed: 16122383] 

[21]. Rosenblatt M, Stationary Sequences and Random Fields. Birkhäuser Boston, 1985.

[22]. Scheuermann J, Opanowski A, Maffei J, Thibeault DH, Karp J, Siegel B, Rosen M, and Kinahan 
P, “Qualification of NCI-designated comprehensive cancer centers for quantitative PET/CT 
imaging in clinical trials,” Journal of Nuclear Medicine, vol. 54, no. supplement 2, pp. 334–334, 
2013.

[23]. Song Y, Cai W, Huang H, Wang X, Zhou Y, Fulham MJ, and Feng DD, “Lesion detection and 
characterization with context driven approximation in thoracic fdg pet-ct images of nsclc 
studies,” IEEE transactions on medical imaging, vol. 33, no. 2, pp. 408–421, 2014. [PubMed: 
24235248] 

[24]. Tanaka E and Murayama H, “Properties of statistical noise in positron emission tomography,” in 
International Workshop on Physics and Engineering in Medical Imaging. International Society 
for Optics and Photonics, 1982, pp. 158–164.

[25]. R. C. Team, “R: A language and environment for statistical computing,” R Foundation for 
Statistical Computing. Vienna, Austria, 2017 [Online]. Available: http://www.R-project.org

[26]. Vardi Y, Shepp L, and Kaufman L, “A statistical model for positron emission tomography,” 
Journal of the American statistical Association, vol. 80, no. 389, pp. 8–20, 1985.

[27]. Wang W and Gindi G, “Noise analysis of map-em algorithms for emission tomography,” Physics 
in Medicine and Biology, vol. 42, no. 11, pp. 2215–2232, 1997. [PubMed: 9394408] 

[28]. Whittle P, “On stationary processes in the plane,” Biometrika, pp. 434–449, 1954.

[29]. Yao Q and Brockwell PJ, “Gaussian maximum likelihood estimation for ARMA models II: 
spatial processes,” Bernoulli, vol. 12, no. 3, pp. 403–429, 2006.

[30]. Yin Z and Collins R, “Belief propagation in a 3d spatio-temporal mrf for moving object 
detection,” in IEEE Conference on Computer Vision and Pattern Recognition IEEE, 2007, pp. 1–
8.

Huang et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org


Fig. 1. 
Diagram of first (red) and second (blue) order neighbors for a selected voxel (black) with a 

set of coefficients for each neighbor.
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Fig. 2. 
Graphical representation of the PET analysis and simulation process.
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Fig. 3. 
Top: The transverse and sagittal image of 3-D dynamic PET study on a cylindrical phantom 

using iterative (3D-IR) reconstructed methods (24th time frame of slice 23). The ROI data 

within white outline are used in analysis. On the right is the histogram of the data generated 

from ROIs. Bottom: Images and histogram of the probability transformed/normalized data 

generated by the previous study.
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Fig. 4. 
The 1-D horizontal, vertical and axial profiles through the center of the 3-D ACF image of 

the ROI data shown in the top of Fig. 3.
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Fig. 5. 
Top: The transverse image of the normalized physical phantom data and one dimensional 

profiles of 3-D ACF of the normalized physical phantom data and the fitted SAR model. 

Bottom: The transverse image and one dimensional profiles of 3-D ACF of the fitted SAR 

model residuals.
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Fig. 6. 
Comparison of the 3-D ACF of the physical phantom data and the SAR model simulated 

data in each direction.
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Fig. 7. 
Log mean squared errors (MSE) of the estimated model parameters based on simulation 

study with different sample sizes (20 repetitions for each size). N0 corresponds to the size of 

the phantom ROI in the CUH data.

Huang et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Row 1: The VSK, MVSK and uniform elliptical phantom (from left to right). Row 2: EM 

reconstructions of the three phantoms; Row 3: The mean images of 200 replicate 

reconstructions; Row 4: The estimated ϕ(n) of the Gamma model from the 200 replicates. 

The green colored pixel is an arbitrarily placed reference pixel, which is used to caculate 

pairwise pixel correlations shown in Fig. 10.
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Fig. 9. 
Row 1: Normalized reconstruction of the VSK, MVSK and uniform phantoms (from left to 

right). Row 2 and 3: 1-D horizontal and vertical profiles through the center of the ACF 

image of normalized reconstruction—data (triangle), the SAR model (red dot) and the 

residual deviation between data and model(*).
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Fig. 10. 
Horizontal and vertical profiles of 2-D ACF of Uniform and VSK phantom reconstructions 

based on a count rate N = 105 with (black triangle) and without probability transformation 

(black plus), overlaid with correlations of the pixel at the center for 10 lags in different 

directions (red cross) and the ones of arbitrary pixel closed to edge of the phantom (green 

star). The pixel is shown on the first row of Fig. 8 as a green dot. From left to right, FWHM 

of 2, 4 and 8 pixels are used for post-reconstruction smoothing. Calculation is based on 200 

replicates for each setting.
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Fig. 11. 
A: Whole-body coronal views of the FDG uptake, 60–75 mins post injection. B: The 

corresponding CT scan. The yellow dashed lines indicate the bed-position corresponding to 

the lung tumor in the hilar region of the left lung. C: Coronal views of consecutive 1-minute 

scans obtained from the 3-minute acquisition of raw list-mode data over the tumor bed 

position. D: Profile of the average uptake profile per voxel as a function of acquisition, 

constant profile shown in red. E: Histogram of the Gamma transformed voxel level data—

the red line shows the reference uniform. F-H: ACF plots of the probability transformed data 

(black), in 3 co-ordinate directions. The fit of the SAR model is shown in red. I: Deviations 

between the full 3-ACF and the fitted SAR model ACF.
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Fig. 12. 
A: Coronal view of the FDG-SUV for the tumor bed position. The SUV color bar is 

augmented with a white bar-chart providing the bootstrap-estimated average standard error 

(SE) for voxels in each color level in the displayed image. B: Histogram of the bootstrap-

generated distribution of the SUVmax in the 3-D volume of the tumor bed position. The 

sample value of the SUVmax is indicated in red, quantiles corresponding to a 90% 

confidence interval are indicated in blue. The analysis is based on 500 model-based 

bootstrap simulations.
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TABLE I

NON-LINEAR REGRESSION COEFFICIENTS

a1 0.151 ± 0.005∗  a2 −0.015 ± 0.002
∗

b1 0.149 ± 0.005∗  b2 −0.014 ± 0.002
∗

c1 0.275 ± 0.006∗  c2 −0.040 ± 0.003
∗

d1 −0.018 ± 0.003∗  d2 −0.037 ± 0.003
∗

∗
denotes significant.
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TABLE II

FITTED SAR MODEL COEFFICIENTS BASED ON NORMALIZED RECONSTRUCTION DATA

VSK MVSK Uniform

a1 0.345 ± 0.038 0.346 ± 0.037 0.339 ± 0.046

b1 0.357 ± 0.035 0.355 ± 0.040 0.366 ± 0.038

a2 −0.054 ± 0.014 −0.056 ± 0.015 −0.052 ± 0.014

b2 −0.074 ± 0.013 −0.074 ± 0.015 −0.080 ± 0.016

d −0.093 ± 0.029 −0.093 ± 0.031 −0.097 ± 0.033
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