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Abstract

Background: Disabling persistent perceived fatigue occurs in 50% of people with multiple 

sclerosis (MS), but mechanisms are poorly understood. Low histidine could contribute to fatigue 

since it is the neurotransmitter histamine precursor and low serum levels are reported in other 

diseases where fatigue is common (e.g., breast cancer, kidney disease, diabetes). Serum histidine is 

also inversely correlated with proinflammatory cytokines (e.g., TNF, IFN-y), which have been 

linked to MS fatigue.

Purpose: To determine if serum histidine is low in fatigued women with MS, and if histidine is 

related to differences in proinflammatory cytokines.

Methods: Participants were classified as having elevated (n = 19) or normal (n = 18) perceived 

fatigue based on a median sample split using Profile of Mood States fatigue scale scores, with the 

elevated fatigue group having scores >7. Histidine and gene-expression of TNF, IFN-y, and leptin 

were assayed from a serum sample.

Results: After adjustment for depression, serum histidine was significantly lower in women with 

MS with elevated fatigue, compared to normal fatigue (64.57 vs. 70.48 nmol/ml, p = .048, g = 

0.75). There were no differences between groups in cytokine expression (all p > .24). Gene 

expression of TNF correlated with histidine only in people with normal fatigue (r = .51, p = .034), 

while no other cytokines related to histidine levels.

Conclusions: These results provide evidence that serum histidine is lower in fatigued women 

with MS, but the study did not find a relationship between histidine and TNF, IFN-y, or leptin gene 

expression.
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1. Introduction

Fatigue is a common multiple sclerosis (MS) symptom. About half of the people with MS 

report persistent fatigue, with many ranking fatigue as their most debilitating symptom (1–

3). Fatigue is also a primary reason that persons with MS reduce work hours or become 

unemployed (4, 5). Still unknown is why only some with MS report elevated, persistent 

fatigue. Despite the prevalence and burden, the neurobiological mechanisms of fatigue are 

poorly understood, and there are no FDA approved treatments for MS fatigue (6).

Low serum histidine could play a role in MS fatigue. Histidine is the precursor for the 

neurotransmitter histamine, which has a demonstrated role in fatigue (7–9). Histidine is 

readily shuttled across the blood-brain barrier by amino acid transporters where it is 

converted by the enzyme histidine decarboxylase to histamine (7, 10). The synthesis rate of 

histamine is determined by histidine availability, as demonstrated by both depletion (11, 12) 

and loading studies (13). Giving histidine as a dietary supplement reduces fatigue in 

otherwise healthy people who report high fatigue (14). Conversely, drugs that block the 

histamine H1 receptor, such as low-dose doxepin, increase perceived fatigue (9, 15). These 

studies demonstrate that histidine is the rate-limiting step to histamine neurotransmitter 

synthesis, and that histidine and histamine have important roles in fatigue.

Both histidine and histamine are also related to proinflammatory cytokine activity in a 

number of disease states. Specifically, serum histidine levels were found to be inversely 

associated with C-reactive protein and interleukin 6 (IL-6) in a large sample of obese women 

and people with kidney disease (16, 17). Histidine given to women with insulin resistance as 

part of a randomized, double-blind, placebo-controlled trial also resulted in decreased tumor 

necrosis factor alpha (TNF) (18). Animal models suggest that histidine may also influence 

inflammation in MS. Histamine receptor knockout mice and histidine decarboxylase 

knockout mice given experimental autoimmune encephalomyelitis have elevated production 

of the proinflammatory cytokines TNF, interferon gamma (IFN-y) and leptin, in addition to 

early disease progression (19, 20). Many proinflammatory cytokines are themselves linked 

to fatigue. TNF mRNA is higher in persons with MS with elevated fatigue, when compared 

to persons with MS who had normal fatigue (21).

Several studies have found relationships between low histidine levels and elevated 

proinflammatory cytokine production in diseases where fatigue is common, including 

rheumatioid arthritis (22, 23), kidney disease (17), breast cancer (24), obesity (16), and 

diabetes (25). These relationships have not been fully explored in MS. The purpose of this 

study was to determine if serum histidine levels were different in women with MS reporting 

normal and elevated fatigue. The second purpose was to test if serum histidine levels were 

related to differences in proinflammatory cytokine gene-expression, and if these 

relationships differed between normal and elevated fatigued women with MS.
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2. Methods

A cross-sectional design was used for this study. The Oregon Health & Science University 

(OHSU) institutional review board approved all methods and written informed consent was 

obtained using a paper form in a private exam room before data collection began.

2.1. Participants

Pre-existing MS patient databases, flyers, and websites were used to recruit study 

participants. Women with MS were included who were free of neurological impairment 

(other than MS), did not regularly use (> 2 times/week) fatigue-reducing drugs or 

supplements (including histidine or carnosine), and did not currently take antihistamine 

drugs. The sample (n = 37) was restricted to females because females have greater histamine 

H1 receptor density (26) and increased sensitivity to dietary histidine, possibly due to 

histamine-estrogen interactions (27, 28).

2.2. Measures

Perception of fatigue was assessed using the fatigue subscale from the Profile of Mood 

States-Brief Form (POMS-BF). Five different adjectives were rated on a 0 (not at all) to 4 

(extremely) scale over “the past two weeks, including today” (29). The Profile of Mood 

States has been widely used to assess fatigue in both people with MS (30) and healthy 

control participants (31, 32).

Depression, sleep, and physical activity can also be strongly related to MS fatigue (33–35), 

and were measured to control for potential confounding and for descriptive purposes. 

Depression was measured using the Beck Depression Inventory (36), a 21 item questionnaire 

with good validity evidence in MS (37). Sleep was measured using the Pittsburgh Sleep 

Quality Index (38–40), a self-rated inventory that measures sleep duration and quality over 

the prior month. Finally, physical activity behavior was measured using the Godin Leisure 

Time Exercise Questionnaire (GLTEQ), which asks participants to indicate the number of 

times in a typical week they participate in mild, moderate, and vigorous intensity exercise 

for more than 15 minutes at a time (41). The GLTEQ is strongly correlated with objective 

accelerometry measures of physical activity in persons with MS (42). The self-administered 

Expanded Disability Status Scale (EDSS), which assesses neurologic disability, was used to 

characterize the study participants (43, 44).

2.3. Procedure

Compliance with the pre-test instructions (i.e., minimum 2 hour fast) was checked before 6 

ml of blood was drawn from the arm and stored in two different tubes. Blood in the tube for 

histidine analysis was allowed to clot before serum was separated by centrifugation. Tubes 

were stored at −80°C until histidine and gene-expression batch analysis. Lastly, participants 

completed fatigue, depression, sleep, physical activity, and additional demographic 

questionnaires using REDCap web-based software and a tablet.
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2.4. Histidine Assay

The procedure to quantify serum histidine consisted of a solid phase extraction step, 

followed by a derivatization procedure using the EZ:faast amino acid analyses kit from 

Phenomenex (45, 46). Briefly, internal standard (d3-methionine) was added to diluted serum 

(10 μL serum plus 90 μL of phosphate buffered saline, PBS) and amino acids were extracted 

using sorbent tips. Extracted amino acids were converted to chloroformates using reagents 

and instructions as described in the EZ:faast kit from the manufacturer (46). Standards 

containing from 0.1 to 20 nmol/mL were prepared in 100 μL PBS at the same time.

Derivatized amino acids were analyzed using a 4000 QTRAP hybrid/triple quadrupole linear 

ion trap mass spectrometer (SCIEX, Foster City, CA) with electrospray ionization (ESI) in 

positive mode. The mass spectrometer was interfaced to a Shimadzu (Columbia, MD) 

SIL-20AC XR auto-sampler followed by 2 LC-20AD XR LC pumps. The instrument was 

operated with the following settings: source voltage 4500 kV, GS1 50, GS2 50, CUR 20, 

TEM 350 and CAD gas medium. The multiple reaction monitoring (MRM) transitions were 

as follows: Histidine, m/z 370→196 (quantifier ion) m/z 370→110 (qualifier ion); d3-

methionine, m/z 281→193 and m/z 281→142. All transitions were obtained with a DP 56, 

CE 25, CXP 10 and each was monitored with a 50 ms dwell time. The gradient mobile phase 

was delivered at a flow rate of 0.25 ml/min and consisted of two solvents, 10 mM 

ammonium formate (solvent A) and 10 mM ammonium formate in methanol (solvent B). 

Initial concentration of B was 70%, which was held for 0.1 min followed by an increase to 

98% B by 6 minutes, held at 98% to 8 min decreasing to 70% again over 0.1 minutes, 

followed by re-equilibration for 5 min. The column was a EZ:faast AAA-MS column, 250×2 

mm, maintained at 40°C using a Shimadzu CTO-20AC column oven. Data were acquired 

using Analyst 1.6.2 software and analyzed using Multiquant 3.0.1 software.

2.5. Gene-Expression Analyses for pro-inflammatory cytokine expression

RNA isolation, quality assessments and qPCR assays were performed in the OHSU Gene 

Profiling Shared Resource in order to quantify expression of TNF, IFN-y, and leptin from 

blood. The sample RNA was isolated using the PAXgene QIAsymphony Kit (Qiagen). RNA 

assessments were performed on the samples using the Bioanalyzer 2100 and a NanoDrop 

8000 for UV analysis. Samples displayed excellent RNA quality consistent with intact RNA. 

All samples have RIN values ranging between 7.2–9.0. Due to inconsistent quantitation 

measurements between the bioanalyzer and UV spectrophotometry, Qubit fluorescent 

quantitation was performed and these values were used for qPCR. Reverse transcription was 

performed using 600ng of total RNA per 50μl reaction using the Vilo Superscript kit (Life 

Technologies) for mRNA analysis. Following cDNA synthesis, 2μl of cDNA was used in 

PCR reactions with 10μl TaqMan universal mastermix and 1μl of 20x gene specific TaqMan 

assay in a total volume of 20μl and loaded onto the QuantStudio instrument. All genes were 

run together on a single 384 well plate. All samples generated Ct values within an acceptable 

linear range (between 5 and 35 cycles). The standard deviation between replicates was very 

low (all samples < 0.2).

The qPCR cycle threshold (Ct) values were normalized relative to the stable reference gene 

UBE2D2 and transformed onto an expression scale. First, we evaluated data quality using 
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standard metrics such as the amplification score. Based on these measures we found that 

essentially no meaningful amplification occurred after 35 cycles, although the amplification 

was allowed to run for a full 40 cycles before terminating. Thus, Ct values were censored at 

a value of 35 and may be viewed as gene expression below a lower limit of detection. To 

normalize the Ct values, we collapsed all triplicate wells to the median and subtracted the 

median Ct of each target gene from the median Ct of UBE2D2 for each subject-gene 

combination. Normalized Ct values were then transformed onto an expression scale by 

subtracting each normalized Ct from the nearest integer larger than the maximum 

normalized Ct across all plates, so that higher values on this expression scale represent 

relatively greater gene expression. Censored values are given a value of 0 on this scale, 

ultimately representing no measured expression.

2.6. Statistical Analysis

Statistical tests were conducted using SPSS 24.0 (IBM Corp., Armonk, NY). Complete and 

usable data were obtained from 37 of 44 participants in the study. Participants were grouped 

according to whether they had elevated (>7) or low (≤ 7) fatigue ratings, based on a median 

split of the POMS-BF fatigue subscale scores. This was done to improve clinical 

interpretation of the results (47), and because POMS-BF fatigue scores > 7 have previously 

been used as an indicator of high fatigue (9). Data were checked for normality using 

histograms, scatterplots, and Shapiro-Wilk tests. Differences in sample characteristics 

between the groups were detected using independent-samples t-tests. One-way analysis of 

covariance (ANCOVA) was used to test if serum histidine was different between fatigue 

groups, while controlling for differences in depression ratings between groups. Hedges’ g 
was calculated as a measure of effect size (48), with values ~ 0.20 considered small and 

those ~ 0.80 classified as large (49). Partial correlations, also controlling for depression, 

were used to determine if there were relationships between serum histidine and expression 

of proinflammatory cytokines (TNF, IFN-y, leptin). In order to test if these correlations 

differed by fatigue group, the correlation coefficients were converted using Fisher’s r-to-z 

transformation and the corresponding values were used in a z-test (50).

3. Results

Descriptive characteristics of the normal and elevated fatigue groups are reported in Table 1. 

Neither age nor EDSS were significantly different between the groups. Although the normal 

fatigue group was more physically active than the elevated fatigue group as measured by the 

GLTEQ, this difference was not statistically significant (p = .064). Depression was 

significantly higher in the elevated fatigue group (t = −4.74, p < .0001), as was poor sleep 

quality (t = −2.93, p = .006). Since depression and poor sleep quality were highly correlated 

here (r = .64, p < .0001), only depression was included as a covariate in further analyses.

Histidine was significantly higher in the normal fatigue group than in the elevated fatigue 

group, as shown in Figure 1 and Table 1. The ANCOVA testing if histidine was different 

between fatigue groups was significant, F(1,34) = 4.22, p = .048, g = 0.75 (95% CI = 0.08, 

1.42). ANCOVAs identified no difference between fatigue groups for TNF, F(1,34) = .10, p 
= .746, g = 0.09 (95% CI = −0.55, 0.73); IFN-y, F(1,34) = 1.40, p = .244, g = 0.36 (95% CI 
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= −0.28, 1.01) or leptin, F(1,34) = .88, p = .355, g = −0.25 (95% CI = −0.90, 0.39). 

Descriptive statistics of expression are provided in Table 1.

TNF expression correlated significantly with histidine in persons with MS with normal 

fatigue (r = .51, p = .034) but not among those with elevated fatigue (r = .30, p = .225), as 

shown in Figure 2. However, the relationship between TNF and histidine was not 

statistically different by fatigue group (z = −.598, p = .549). IFN-y was not significantly 

correlated with histidine among either MS with elevated fatigue (r = .34, p = .165) or normal 

fatigue (r = −.07, p = .785). The correlations between IFN and histidine in the elevated and 

normal fatigue group were not statistically different from each other (z = 1.151, p =.249). 

Leptin was not significantly correlated with histidine in those with elevated fatigue (r = 

−.093, p =.714) or normal fatigue (r = −.12, p = .627). Leptin correlations with histidine also 

did not differ by fatigue group (z = .094, p = .924).

4. Discussion

This study found that mean serum histidine was lower in women with MS who reported 

elevated fatigue, compared to those with normal fatigue. This finding was consistent with 

our hypotheses that low serum histidine could potentially play a role in reducing brain 

histamine synthesis and result in fatigue. Another possible implication is that low histidine 

availability could reduce the effectiveness of some treatments used to reduce MS fatigue, 

such as medications (i.e., modafinil, methylphenidate) or exercise, which may work in part 

by increasing histamine release (9, 51, 52). Although it is unclear why histidine may be 

lower in fatigued persons with MS, our findings are consistent with others who found 

alterations in histidine metabolism in MS (53), and in fatigued groups with other diseases 

(24).

The current study did not find that cytokine expression (TNF, IFN-y, leptin) was different 

between fatigue groups. We expected to see higher cytokine expression in the elevated 

fatigue group given that previous reports found higher TNF expression in persons with MS 

with fatigue (21, 54). Although other researchers have not always adjusted for depression, 

we did not find that TNF was higher in the elevated fatigue group even when models were 

unadjusted (data not shown). Other researchers have also included males in their MS 

samples, and it is unknown if the relationships between cytokine expression and fatigue vary 

by sex. Other investigators also sometimes report large variability in cytokine expression 

between fatigue groups (21). If the true relationship between cytokine expression and fatigue 

is highly variable or not particularly strong, authors may not always find a statistically 

significant difference in cytokine expression between fatigue groups. If null findings are not 

reported, this could create a publication bias and lead researchers to believe that 

proinflammatory cytokines are much higher in fatigued persons with MS when this is not 

true.

We also did not find that histidine was related to cytokine gene expression, except to TNF in 

the low fatigue group. This was unexpected since supplemental histidine in humans reduces 

TNF (18) and histidine decarboxylase knockout mice given experimental autoimmune 

encephalomyelitis have higher TNF, IFN-y, and leptin production (20). There are several 
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reasons this could have occurred. One possibility is that only extreme levels of histidine and 

histamine (i.e., supplementation or complete absence) influence measured cytokines to a 

degree that can be detected, whereas individual variability of histidine is not related to 

cytokine expression. Numerous confounders can also impact proinflammatory cytokines, 

including time of day, body fat, physical activity, and medication use (55). Although these 

confounders were not related to expression in our sample (analyses not reported), not all 

investigators report considering these confounders. Since this study also found that cytokine 

expression was not different between fatigue groups but that histidine was, it may not be 

important in future studies to reduce proinflammatory cytokine expression in order to also 

improve fatigue in MS.

A strength of this study is that it was hypothesis-driven, in that only serum histidine and 

expression of select genes (TNF, IFN-y, leptin) were measured. No other amino acids or 

expression of additional cytokines were measured. Another strength is that all analyses 

adjusted for depression differences between fatigue groups. Although depression and fatigue 

are highly comorbid in MS (33), further efforts to separate fatigue and depression research 

in MS are needed to develop effective treatments. Limitations of the study are that men with 

MS and a healthy control group were not included, small sample size, and a cross-sectional 

design was used. This limits generalizability and the ability to infer a causal relationship 

between low histidine and fatigue. The study also did not examine metabolic differences in 

MS that could explain fatigue. Some researchers have noted that dysregulated mitochondrial 

function could increase fatigue in persons with MS (56). Differences between MS and 

control participants have been noted for sorbitol and fructose metabolites from cerebrospinal 

fluid (57), serum lactate (58), and, among others, serum creatinine and xanthine (59). 

However, these studies do not specifically examine differences in perceived fatigue among 

those MS, so the relationship between mitochondrial dysfunction and perceived fatigue 

within groups of persons with MS remains unclear and needs further research.

In summary, this study found that serum histidine is lower in women with MS who report 

elevated fatigue, and that serum histidine and fatigue levels are not related to the 

proinflammatory cytokine gene expression of TNF, IFN-y and leptin. Future studies are 

needed to confirm these results and test if serum histidine is also related to fatigue in males 

with MS. Researchers could also determine if serum histidine is lower in other conditions 

marked by fatigue including cancer, heart failure, and myalgic encephalomyelitis/chronic 

fatigue syndrome. Finally, since dietary histidine reduces fatigue in apparently healthy 

people (14), future research could also test histidine supplementation as a treatment for MS 

fatigue.
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Figure 1. 
Serum Histidine in Women with MS with Elevated and Normal Fatigue. There was a 

significant difference between groups, F(1,34) = 4.22, p = .048. Values shown are adjusted 

for Beck Depression Inventory scores. Bars are standard errors. Nmol/ml = nanomoles of 

histidine per milliliter of serum.
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Figure 2. 
Relationship Between TNF Expression and Serum Histidine in People with MS with Normal 

and Elevated Fatigue. TNF expression was significantly correlated with histidine in people 

with normal fatigue (r = .51, p = .034) but not those with elevated fatigue (r = .30, p = .225). 

TNF cycle threshold (Ct) values are normalized to a reference gene (UBE2D2). Nmol/ml = 

nanomoles of histidine per milliliter of serum.
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