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Abstract

Polycystic ovary syndrome (PCOS) is a highly heritable disorder, but only a small proportion of 

the heritability can be accounted for by common genetic risk variants identified to date. It is 

possible that variants with lower allele frequencies that cannot be detected using genome-wide 

association study arrays contribute to PCOS. Here, we discuss the challenges inherent to studying 

rare genetic variants in complex disease and review several recent studies that have used DNA 

sequencing techniques to investigate whether rare variants play a role in PCOS pathogenesis. We 

evaluate these findings in the context of the latest literature in PCOS and complex disease 

genetics.

PCOS is a highly heritable complex genetic disorder (1). Genome-wide association studies 

(GWAS) have reproducibly mapped close to 20 susceptibility loci associated with PCOS 

diagnosis. The first two GWAS were completed in Han Chinese PCOS case-control cohorts 

fulfilling the Rotterdam diagnostic criteria. These GWAS together identified eleven PCOS 

association signals (2,3), several of which have since been replicated in targeted genotyping 

studies in European ancestry PCOS (4–6) (Table 1). The first GWAS in European ancestry 

PCOS included only cases fulfilling NIH diagnostic criteria (7). It identified two novel loci 

and replicated one of the Han Chinese loci. The second European ancestry GWAS included 

cases fulfilling Rotterdam diagnostic criteria so that non-NIH Rotterdam phenotypes were 

studied, in addition to NIH phenotype cases. A large number of cases with self-reported 

PCOS (8) were also studied. This GWAS replicated one signal from the first European 

GWAS and two from the Han Chinese GWAS, in addition to identifying three novel loci. A 

recent meta-analysis of European ancestry PCOS GWAS (9) identified three novel loci and 

replicated 11 of the previously reported loci (Table 1). The meta-analysis contained cases 

diagnosed by NIH and Rotterdam criteria as well as those diagnosed by self-report. 

However, only one locus differed significantly in its association by diagnostic criteria; 

otherwise, the genetic architecture was similar in NIH and non-NIH Rotterdam PCOS 

phenotypes as well as in self-reported PCOS cases across common variants at 13 loci.

These GWAS have significantly advanced our understanding of the pathophysiology of 

PCOS by implicating gonadotropin secretion (FSHB) and action (LHCGR, FSHR), 
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androgen biosynthesis (DENND1A), metabolic regulation (THADA, INSR,) and follicle 

development (YAP1, HMGA2) in PCOS pathogenesis. Nevertheless, GWAS have important 

limitations. GWAS are based on the hypothesis that common variants, typically defined by 

minor allele frequencies (MAFs) of 5% or greater, cause common, complex traits/diseases, 

such as PCOS (10). GWAS arrays measure single nucleotide polymorphisms (SNPs) that 

span the entire genome. The GWAS SNPs are located within segments of the genome where 

genetic variation is highly correlated or in ‘linkage disequilibrium’ (LD) (11). These SNPs 

serve as markers, so-called “tag SNPs”, for the surrounding genomic regions, or haplotypes. 

Therefore, trait-associated alleles identified via GWAS are often not the causal variants 

themselves, but rather are associated or in LD with the underlying causal variant(s) within 

the same region.

Additional statistical methods (12–15) and DNA sequencing of GWAS loci (16,17) are 

required to identify potential pathogenic variants and candidate genes within a given region 

in a process known as “fine mapping”. However, causality can only be proven with 

functional studies (18). The majority of GWAS variants are in noncoding portions of the 

genome, which makes elucidating their functional significance exceptionally challenging 

(19). The exact mechanisms by which most GWAS susceptibility loci contribute to disease 

pathogenesis remain unknown (20). Indeed, while PCOS GWAS have implicated many 

plausible candidate genes, the corresponding pathogenic variants within these putative 

causal genes have yet to be identified (21).

By definition, GWAS variants are prevalent in the population and, therefore, would not be 

expected to have large effects on phenotype (1). Consistent with this prediction, most of the 

risk variants identified from GWAS have modest effect sizes (22). In many complex traits/

diseases, including PCOS, GWAS variants identified to date account for less than 10% of the 

estimated heritability (the phenotypic variance attributable to genetic differences) of the 

disorder (23,24). The prevailing hypothesis for this deficit in heritability had been that 

variants with lower frequency that cannot be detected using GWAS arrays contribute to 

complex traits (23,25,26). It was anticipated that these rare variants would be in coding 

portions of the genome where they would have large effects on phenotype by disrupting the 

encoded molecule. Consequently, elucidating the biologic relevance of such coding rare 

variants would be amenable to traditional molecular approaches. Support for this hypothesis 

came from studies that found rare genetic variants with large effects on HDL (27), 

adiponectin (28) and triglyceride levels (29) as well as on blood pressure (30) in the general 

population.

Although the precise definition varies from study to study, the term “rare variants” generally 

refers to variants that have a MAF on the order of less than 1-2% in a given population. 

Testing for rare variants has only recently become feasible because of cost-reductions in 

DNA sequencing technologies (31–33). Rare variants can be inferred, or “imputed”, from 

GWAS data using large genomic databases, but this approach is only reliable down to a 

MAF of ~0.1% (34,35) and is not yet available for many ancestral populations (genetic 

variation is ancestry-dependent). Successful utilization of sequencing data to study rare 

variants in a complex disease framework still requires overcoming a number of unique 

challenges. First, rare variants occur too infrequently to perform standard case-control allele 
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association tests without recruiting prohibitively large cohorts. For example, having 80% 

power to detect an association for a variant with 0.001% MAF and a phenotypic effect size 

of one standard deviation (β≈4) would require a sample size over one million (36). 

Populations can be enriched for causal rare variants by studying extreme phenotypes or by 

incorporating families with multiple affected individuals (26), but even in enriched cohorts, 

most rare variant allele frequencies are still too low for individual variant associations (37), 

particularly because—in contrast to Mendelian disorders—pathogenic alleles in complex 

traits are not individually predictive of phenotypes (38,39). Collapsing methods that 

aggregate sets of rare variants within the same gene or genomic region into single statistics, 

such as burden tests (40) or sequence kernel association tests (41), can be used to test for 

association with a given disease or phenotype. However, aggregating variants according to 

presumed functional correlation presents another significant challenge because of the 

complex nonlinear nature of the genome (42). For example, functional variants within an 

intron of a gene do not necessarily act through that gene (43,44).

Second, there is a tremendous amount of variation within the human genome. Accordingly, 

analyzing whole exome and whole genome sequence data for functionally relevant genetic 

variation is computationally arduous. Efficient processing of sequencing data requires access 

to high-performance computing clusters and/or specially designed bioinformatics hardware 

(45). Many different software tools and pipelines exist for processing sequencing data and 

performing corresponding statistical tests, but advanced bioinformatics training is required 

to perform such analyses and ensure interoperability between software versions and file 

formats.

The power of aggregate-level tests to detect causal variants is highly dependent on a priori 
variant screening (46). Ideally, only functional alleles would be included in association 

testing, as inclusion of inconsequential variants introduces statistical noise. Variant effect 

prediction (VEP) tools exist that model either evolutionary conservation (47,48) or protein 

changes (49,50), but substantial differences in their design and output metrics complicate 

integration of their results (51). Further, thresholds based on VEP results are typically 

subjective (52). Functional annotation of the genome has expanded significantly in recent 

years (53–56) but not for all cell types and genomic regions (57). Despite the difficulties 

associated with studying rare variants, mounting evidence indicates that they do contribute 

to complex traits (58,59), and corresponding technologies and methods for studying rare 

variants continue to evolve at a rapid rate (60,61).

We investigated the potential role rare variants play in the pathogenesis of PCOS. We used 

two approaches: case-control candidate gene sequencing studies and family-based analyses. 

Anti-Müllerian hormone (AMH) is a highly plausible PCOS candidate gene. It is an 

important regulator of folliculogenesis (62), steroidogenesis (63) and neuroendocrine 

signaling (64). Circulating levels of AMH are elevated in women with PCOS (65,66). We 

performed targeted sequencing of AMH in a cohort of 643 PCOS cases and 153 controls and 

identified 18 rare (MAF≤1%) coding variants that were present in PCOS cases but not in 

controls (PCOS-specific variants) (67). We then measured the functional impact of these 

variants using AMH-mediated luciferase assays in transfected COS7 cells. Of these 18 

PCOS-specific variants, 17 demonstrated a significant reduction in AMH-mediated signaling 
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capacity. Further, using a gene-based burden test approach (40), the functional AMH 
variants were significantly associated with PCOS using population-based controls. There 

were also rare coding variants that were present in both cases and controls. However, these 

variants had no impact on AMH signaling. This finding emphasizes the importance of 

functional assays to confirm the biologic relevance of genetic variants.

We subsequently investigated rare variation in the regulatory regions of AMH and its 

specific type 2 receptor, AMHR2 (68). We identified 20 additional PCOS-specific variants in 

or near AMH and AMHR2 that resulted in significantly reduced AMH signaling activity and 

were also significantly associated with PCOS. These variants included one missense variant 

in AMHR2, 16 noncoding/splicing variants in or upstream of AMHR2, and 3 noncoding 

variants upstream of AMH. AMH levels in cases with functional variants were significantly 

higher than control women (67). However, PCOS women with functional AMH/AMHR2 
variants had significantly lower AMH levels compared to other women with PCOS (68). 

Five of the AMH variants have also been found in men with persistent Müllerian duct 

syndrome, a rare disorder in which males retain internal Müllerian duct structures (69). 

AMH levels in these men are typically normal or undetectable (70). These findings suggest 

that AMH signaling capacity does not correlate positively with circulating AMH levels. 

Reduced AMH signaling could contribute to PCOS, however, by increasing androgen 

production due to loss of CYP17 inhibition by AMH. CYP17 is a key enzyme in androgen 

biosynthesis (71). The AMH variants with reduced AMH signaling showed a significant 

reduction in CYP17α1 expression inhibition compared to wild-type AMH (68). Collectively, 

about 6.7% of PCOS-affected women from these cohorts had one or more of the AMH/
AMHR2 rare variants (67,68). Further, these studies illustrate the power of limiting 

sequencing to a few highly plausible candidate genes to avoid the statistical penalty of 

correcting for multiple testing in genome-wide analyses.

We performed whole-genome sequencing on DNA from 261 individuals from 62 families 

with one or more daughters with PCOS. We tested for gene-level associations of rare 

variants (MAF≤2%) that were predicted-to-be-deleterious (48,51) with PCOS and its 

concomitant hormonal traits using a quantitative trait meta-analysis (72). We found rare, 

primarily noncoding variants in DENND1A that were significantly associated with the 

following reproductive and metabolic traits: testosterone, dehydroepiandrosterone sulfate, 

sex hormone-binding globulin, insulin, luteinizing hormone (LH), and follicle-stimulating 

hormone (FSH). Common variants in DENND1A were associated with PCOS diagnosis in 

GWAS (2,3,9). Subsequent studies demonstrated that DENND1A is an important regulator 

of human ovarian androgen biosynthesis (73,74). However, none of the common GWAS 

variants were in known functionally important regions of the gene. Further, sequencing 

DENND1A in a limited number of PCOS cases did not identify pathogenic variants (73). 

Most of the rare variants we found were not in LD with the DENND1A GWAS variants 

(75). However, nine of the DENND1A variants were predicted to significantly disrupt 

transcription factor binding, while 23 were predicted to significantly affect RNA-binding 

protein motifs. Nevertheless, functional assays are needed to confirm these predictions.

Each of the rare variants in DENND1A was observed in only one or two families. 

Collectively, however, the rare variants were present in 50% of families. This finding is of 
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considerable interest in light of our original family studies that demonstrated a unimodal 

distribution for testosterone levels in control women but a bimodal distribution in sisters of 

women with PCOS (76) suggesting that elevated testosterone levels in PCOS were affected 

by specific autosomal alleles within families. Rare noncoding variants in DENND1A that 

altered gene regulation could result in increased testosterone production. Testosterone 

antagonizes the effects of estradiol and progesterone to slow hypothalamic GnRH 

contributing to enhanced LH release characteristic of PCOS (1,77). Consistent with this 

hypothesis, LH:FSH ratios were significantly higher in PCOS women with one or more of 

the DENND1A rare variants compared to PCOS women without any of the DENND1A 
variants (72). While no other gene associations in the family-based sequencing reached 

genome-wide significance, two of the top-5 associated genes were highly plausible PCOS 

candidate genes: C9orf3, which is a PCOS GWAS gene (2,3,9,78), and BMP6, which is a 

regulator of folliculogenesis in granulosa cells (79), and was more highly expressed in 

PCOS women compared with reproductively normal control women (80).

These studies support a model of PCOS in which pathogenic variants, while individually 

rare, tend to occur in genes regulating relevant disease pathways. The DENND1A findings 

support our studies implicating hyperandrogenemia as a core biologic pathway in PCOS 

(76). Hyperandrogenemia is a consistent reproductive phenotype in male as well as female 

PCOS relatives (76,81), including premenarchal daughters (82). Further, one of the earliest 

biomarkers in at-risk children, daughters of affected women, is evidence for global increases 

in 5α-reductase activity, which would enhance the conversion of T to its more potent 

metabolite, dihydrotestosterone (83,84).

The emerging consensus is that complex traits are primarily driven by noncoding variation 

(85,86), both common and rare (87,88). The idea that rare variants account for most of the 

heritability of complex traits was largely disproved by a series of studies that modeled 

cumulative contributions from all common SNPs within a population (not just those with 

significant trait associations), and found that common SNPs with small effect sizes 

collectively account for a much more significant portion of complex disease heritability than 

GWAS SNPs alone (59,89,90). Accordingly, as GWAS sample sizes have increased, the 

number of significant associations discovered per study has increased proportionally (91). 

However, the distribution of variant effects sizes and allele frequencies varies between 

different complex traits and diseases (92). Additionally, recent large-scale sequencing 

studies have demonstrated that remaining unexplained heritability in complex traits and 

diseases can be accounted for by rare variants that are not in LD with any common variation 

(93,94). Our studies indicate that both common and rare noncoding genetic variants 

contribute to PCOS pathogenesis, analogous to other complex traits/diseases. However, we 

also identified rare, pathogenic coding variants in AMH in about 3% of affected European 

ancestry cases (67). It is highly likely that as more candidate genes are sequenced, additional 

rare coding variants contributing to PCOS will be identified.

In conclusion, although the study of rare variants in PCOS remains extremely limited, 

results from our initial studies indicate that these variants contribute to PCOS. Candidate 

gene studies have indicated that rare coding and noncoding variants affecting the bioactivity 

of AMH or its receptor are present in a substantial minority of PCOS cases (67,68). Rare, 

Dapas and Dunaif Page 5

Curr Opin Endocr Metab Res. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



primarily noncoding, variants in DENND1A appear to play a role in the pathogenesis of 

familial PCOS in ~50% of families (72). These variants have implicated several plausible 

causal pathways, in particular androgen biosynthesis, consistent with our family studies of 

PCOS phenotypes (76,81,82). Functional studies are needed to determine the specific 

mechanisms by which these noncoding variants contribute to disease pathogenesis. More 

broadly studying the potential effects of rare variants represents a next step in the 

progression towards understanding of the genetic architecture of PCOS.
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Highlights

• Studying rare variants in complex disease presents unique challenges

• Rare variants affecting AMH or AMHR2 are present in many PCOS cases

• Rare variants in DENND1A associated with altered hormone levels in PCOS 

families
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Table 1.

PCOS GWAS Susceptibility Loci

Chromosome Han Chinese
¶

Chen, 2011 (2)
Shi, 2012 (3)

European 1*,
Hayes, 2015 (7)

European 2*¶§

Day, 2015 (8)
European Meta*¶§

Day, 2018 (9)

2p16.3 LHCGR

2p16.3 FSHR

2p21 THADA THADA THADA

2q34 ERBB4 ERBB4

5q13.1 RAD50 RAD50

8p32.1 GATA4/NEIL2
GATA4/NEIL2

†

9p24.1 PLGRKT

9q22.32 C9orf3 C9orf3 C9orf3

9q33.3 DENND1A DENND1A

11p14.1 FSHB FSHB FSHB

11q22.1 YAP1 YAP1 YAP1

11q23.1 ZBTB16

12q13.2 RAB5B/SUOX RAB5B/ERBB3

12q14.3 HMGA2

12q21.2 KRR1 KRR1

16q12.1 TOX3 TOX3

19q13.3 INSR

20q11.21 SUMO1P1

20q13.2 MAPRE1

*
PCOS diagnosis was based on NIH criteria,

¶
Rotterdam criteria, or

§
self-report.

†
PCOS association dependent on diagnostic criteria in bold; association with remaining loci was similar for PCOS diagnosed by self-report and 

PCOS diagnosed by NIH or non-NIH Rotterdam criteria
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