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Abstract

The Target Article by Lee et al. (2019) highlights the ways in which ongoing concerns about 

research reproducibility extend to model-based approaches in cognitive science. Whereas Lee et 

al. focus primarily on the importance of research practices to improve model robustness, we 

propose that the transparent sharing of model specifications, including their inputs and outputs, is 

also essential to improving the reproducibility of model-based analyses. We outline an ongoing 

effort (within the context of the Brain Imaging Data Structure community) to develop standards 

for the sharing of the structure of computational models and their outputs.

The issues raised by Lee et al. (2019) regarding reproducibility and robustness in model-

based approaches in cognitive science are well stated, and the proposed solutions would 

have important positive impacts on the field. In this commentary we focus on a related, 

complementary issue, that was not discussed in detail by Lee et al., yet that we believe to be 

equally important for improving reproducibility: the transparent sharing of model 

specifications, including their inputs and outputs. One strong motivation for our interest in 

the specification of model structure, inputs, and outputs comes from the increasing 

prevalence of model-based analyses in neuroimaging and cognitive neuroscience (Frank, 

2015; Turner et al., 2017).

The problem of reproducing computational models from the descriptions included in most 

published studies is comparable to that of reproducing statistical analyses: often, many of 

the details (parameter values and/or procedures) needed to replicate the results are not 

explicitly described, and are difficult to determine from the (often custom) code used to 

implement the model. This poses a problem not only for replicating results of models 

published by others, but often even when trying to re-implement a model developed earlier 

in the same laboratory using a software and/or hardware environment that is no longer 

accessible.

There are several different levels at which a modeling result might be reproducible 

(Benureau and Rougier, 2017), all of which have important implications for computational 

cognitive science. First, a researcher may wish to rerun the same code in exactly the same 

way as reported, in order to simply reproduce the results. Even this baseline level of 

reproducibility can be challenging across time within a single lab, as software interfaces and 

computational environments change. Second, a researcher may wish to rerun the same code 

while varying parameters or inputs (including different input datasets), in order to assess 

robustness, check for identifiability of parameters, or assess the ability of the model to 

recover parameters from simulated data. This requires an additional level of clarity regarding 

the structure of the inputs, outputs, and parameters. Finally, full reproducibility requires the 

ability to rerun the same model using a different implementation, which also enables 

assessment of generalizability. The latter is necessary both to assess the reliance of any 

result on specific algorithmic or implementational choices, as well as to identify any 

potential software errors (that occur with increasing likelihood in any large software project, 
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especially when software engineering best practices are not employed, as is often the case 

with scientific software). Achieving these ends requires a formal model specification, in 

terms of the equations, function definitions and/or algorithms that precisely and clearly 

communicate the theory from which any particular software implementation follows 

(Cooper & Guest, 2014), and that can be used to reproduce the published results (Fum et al., 

2007).

Careful comparative analyses of different computational cognitive modeling approaches 

applied to the same data, which would be greatly facilitated by reproducible analysis 

methods, can even lead to important theoretical results. For example, Ratcliff and Childers 

(2015) performed a comparative analysis of different fitting routines for the diffusion 

decision model (DDM), a prominent model of behavior on speeded choice tasks. They 

showed that different fitting routines can lead to different parameter estimates. Similarly, 

Donkin et al. (2011) and Goldfarb et al. (2014) fitted both the DDM and a competing 

response time model, the linear ballistic accumulator model (LBA) to the same data sets. 

They showed that using different models, although conceptually similar, can lead to slightly 

different interpretations of response time patterns. Unfortunately, comparative studies such 

as these are currently very time-intensive, because different packages need to be installed 

and learned and these packages often have very different input/output specifications. An 

alternative approach would be to code the models themselves from scratch, but this is 

potentially even more time-intensive and prone to errors. A common standard for the input/

output structure of such packages and, better still, a standard format for specification of the 

models themselves would make important modeling comparison studies such as those 

mentioned above considerably less time-intensive and much easier to reproduce on 

independent data sets.

The sharing of code is clearly necessary for reproducibility (Eglen et al., 2017; Gleeson et 

al., 2017), but is rarely sufficient, as nicely stated by Buckheit and Donoho (1995): “An 

article about computational science … is not the scholarship itself, it is merely advertising of 

the scholarship. The actual scholarship is the complete software development environment 

and the complete set of instructions which generated the figures.” Sharing of the execution 

environment is now possible using containerized computing environments (such as Docker 

or Singularity), but containerization alone only enables the first level of reproducibility 

outlined above. The higher levels of reproducibility require a clear way to specify the 

structure of the model so that it can be modified and/or replicated in a different environment, 

and compared with others.

The need for standards

The availability of standards for the organization of data and models has the potential to 

greatly enhance the utility of shared models and results; without such standards, inordinate 

effort is required on the part of one researcher simply to understand the organization of the 

information shared by another. Lee et al. state the following regarding the sharing of 

modeling details:
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Modelers should always endeavor to make their models available (Baumgaertner et 

al., 2018). The motivating goal of ensuring availability is to preserve the rights of 

others to reach independent conclusions about model-based inferences. A minimum 

standard, then, is to provide accessible modeling details that allow a competent 

person in the field to reproduce the results. This is likely to include mathematical 

and statistical description, an algorithm or pseudo-code, user documentation, and so 

on. Providing these details in a sufficiently precise form makes a model available, 

and means it is likely to be used and understood more broadly than by a specific 

researcher or a single lab.

While we concur with the goals described above, we believe that achieving them on a 

meaningful scale will only be possible through the development and use of community 

standards for the description of computational models. This is because of the growing 

diversity of ways in which models can be expressed, and the fact that different investigators 

often arrive at different interpretations of the degree of precision needed for full 

reproducibility. An instructive example comes from the sharing of data within the brain 

imaging community which suffered from similar problems of a proliferation of formats and 

practices with regard to precision of description and organization. This community has 

benefited substantially from the development of community standards, first of a common file 

format (NIfTI) supported by all major software packages; and more recently through the 

Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016), that defines a schema for 

the organization and naming of data files and folders, as well as a framework for the 

specification of metadata that are important for data analysis at multiple levels. Whereas 

BIDS first arose as a standard for raw magnetic resonance imaging data, it has been 

extended by the community to a number of additional data types including 

magnetoencephalography (MEG) and electroencephalography (EEG). In addition, ongoing 

work is extending the standard to derived data types, such as the outputs of neuroimaging 

analyses and the statistical models used to analyze these data.

Inspired by the increasing relevance of computational models in neuroimaging research and 

supported by the NIH BRAIN Initiative, a group of researchers (including the authors of this 

commentary) met in April 2019 to initiate the development of a standard framework for the 

description of computational models relevant to neuroscience and psychology. The breadth 

of modeling approaches represented by the attendees was intentionally wide, from cognitive 

models to dynamic neural models to spiking neural networks, such that while the inspiration 

came from neuroimaging research, the ultimate product is meant to be useful for a much 

broader range of modeling approaches (from single neurons to higher-order cognition).

A first goal of the standards effort is to develop a scheme to organize the inputs to a 

computational model (such as behavioral or neuroscientific measurements) and the outputs 

of a modeling run. In many cases, this effort dovetailed with prior work in describing 

derived data types within BIDS, such as connectivity matrices that may be the result of 

structural or functional connectivity analysis, but which also may inform brain-network or 

statistical models. A further need was identified to standardize the representation of stimuli 

and training corpora used in empirical studies and/or computational simulations, which were 

left free-form in the original BIDS specification but would benefit from greater structure in 
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the modeling context. Finally, several classes of derivatives specific to computational and 

statistical models were identified, including descriptions of parameter distributions, traces of 

internal model variables and synthetic neuroimaging data.

A second (and arguably much more ambitious) goal of the effort was to develop a common 

framework for describing the structure of computational models themselves. The upside of a 

common specification for computational models is potentially enormous: researchers would 

be able to implement the same model in multiple environments; to easily inspect, evaluate, 

compare and extend one another’s models; and to express even relatively complex models 

using a common generative syntax. However, the barriers to developing such a standard are 

also considerable. One challenge is the need to balance expressivity against simplicity: it is 

probably impossible for a relatively compact specification to capture the full breadth of 

computational models used in all of neuroscience and psychology, so difficult choices will 

have to be made in balancing the desire for comprehensiveness with the goal of practicality. 

The BIDS community heavily emphasizes the Pareto Principle or 80/20 Rule—a recognition 

that, with regard to adoption, the sweet spot for a new standard is a specification that is as 

simple as possible while capturing as wide a range of common use cases as possible. We 

expect that the same philosophy is likely to be fruitful in the case of computational models.

One potentially promising approach to developing a standard for model specification is 

description in the form of a computational graph. This is an approach that is seeing 

increasing use in other domains (such as the data sciences and machine learning), and has 

already been adopted by at least two open source model specification projects that address 

very different levels of analysis in neuroscience: NeuroML (Cannon et al., 2014), focused on 

spiking network models containing elements ranging from integrate and fire neurons to 

biophysically detailed cells; and PsyNeuLink (psyneulink.org), focused on higher level 

models of system-level brain and cognitive function. Despite these differences in focus, both 

share the idea that computational elements (whether neurons, neural populations, entire 

brain areas, or even abstract cognitive functions) can be expressed as a graph, the nodes of 

which describe the function carried out by each computational element (as well as its 

parameters), and the edges of which describe the exchange of information among them (i.e., 

the sources of inputs and destinations of outputs for the functions of the nodes they connect).

The initial goal of this approach would be to provide a standard format that allows the 

description of a model to be imported into and executed by any run-time environment that 

supports the standard. A key requirement of this approach is the ability to express the 

functions of nodes in a standard form. A first step in this direction would be the definition of 

an ontology of the most commonly used functions — describing these in a canonical 

mathematical form (e.g., using a common vocabulary of function and parameter names) — 

while allowing references to existing function libraries (such as MATLAB, Numpy, or any 

publicly accessible repository) for functions not in the ontology. For example, a model that 

included neural network layers that linearly combine and apply a logistic transformation to 

their inputs would be able to reference the functions of nodes as “LinearCombination” and 

“Logistic,” using parameter names specified for these in the ontology. Specifications of 

functions not in the ontology (for example, the analytic expression for the distribution of 

reaction times and mean accuracy of a drift diffusion process) would be required to 
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reference an existing library or a published from of the function (Navarro and Fuss, 2009). 

Such a framework would have the ability to encode a very broad class of models, ranging 

from neural networks to Bayesian models to large-scale models of neural dynamics. This 

could facilitate exchange across the existing diversity of environments that focus on 

particular levels of analysis and/or theoretical approaches, such as NEURON (Carnevale and 

Hines, 2006), Emergent (Aisa et al. 2008), Nengo (Bekolay et al., 2014), The Virtual Brain 

(Sanz Leon et al., 2013), and ACT-R (Anderson et al., 2004). During the recent BIDS 

workshop, the group developed an outline for such an approach, that provides a promising 

starting point for a standard model description format that can help bridge between and 

integrate existing computational modeling efforts in neuroscience and psychology.

Moving forward, our group plans to further develop the standard for computational model 

description as part of the BIDS ecosystem, though its utility far beyond brain imaging is a 

possible argument for its deployment as an independent standard (inspired by, but separate 

from, the BIDS initiative). We would also note that many of the issues raised here are not 

specific to BIDS, and are relevant to any attempt to develop new standards for computational 

models. This process will undoubtedly involve many iterations over an expanding set of 

concrete use cases. Researchers interested in contributing to this effort can find more 

information at the BIDS Github page, where all discussion regarding the standards takes 

place (https://github.com/bids-standard/bids-specification/issues/230).
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