Skip to main content
. Author manuscript; available in PMC: 2021 May 15.
Published in final edited form as: J Org Chem. 2020 May 4;85(10):6380–6391. doi: 10.1021/acs.joc.0c00139

Table 1.

Optimization informs distinct conditions for electron-deficient and electron-rich aryl bromidesa

graphic file with name nihms-1586941-t0005.jpg
entry R X [Ni] (mol %) ligand solvent unreacted 1a (%)b yield (%)b
1 CF3 Br 5 MeCN 0 >98c
2 CF3 I 5 MeCN 10 79
3 CF3 Cl 5 MeCN 39 43
4 tBu Br 5 MeCN 30 32
5 tBu Br 10 MeCN 22 33
6 tBu Br 10 dtbbpy MeCN 12 47
7 tBu Br 10 dtbbpy EtOH 7 89c
8 tBu Br 10 dtbbpy 9:1 MeCN: EtOH 5 90
9 tBu Br 10 dtbbpy EtOH with H2O (100 equiv) 72 6
10 tBu Br 10 dtbbpy MeOH 27 76
11 tBu Br 10 dtbbpy iPrOAc 50 7
12 tBu Br 10 dtbbpy CH2Cl2 38 0
13 tBu Br 10 dtbbpy DMSO 27 32
14 tBu Br 10 dtbbpy acetone 46 35
15 tBu Br 10 dtbbpy 2-methyl tetrahydrofuran 26 23
16 CF3 Br 5 EtOH 18 70
17 CF3 Br 5 MeOH 12 81c
18 tBu I 10 dtbbpy EtOH 6 81
19 tBu Cl 10 dtbbpy EtOH 60 7
a

General reaction conditions: sulfamide 1a (1.0 equiv), aryl halide 2 (1.5 equiv), NiBr2•glyme, [Ir(ppy)2(dtbbpy)]PF6 (1 mol %), DBU (3.0 equiv), and ligand (4 mol %) in indicated solvent (0.25 M) with stirring and irradiation between two 34 W blue Kessil lamps for 24 h.

b

Yields determined by 1H NMR using an internal standard of 2,3,5,6–tetrachloronitrobenzene.

c

Isolated yield.