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ABSTRACT
In recent years remarkable efforts have been made to produce artificial bone through tissue
engineering techniques. Silk fibroin (SF) and hydroxyapatite (HA) have been used in bone
tissue regeneration as biomaterials due to mechanical properties of SF and biocompatibility of
HA. There has been growing interest in developing SF/HA composites to reduce bone defects.
In this regard, several attempts have been made to study the biocompatibility and osteocon-
ductive properties of this material. This article overviews the recent advance from last few
decades in terms of the preparative methods and application of SF/HA in bone regeneration. Its
first part is related to SF that presents the most common sources, preparation methods and
comparison of SF with other biomaterials. The second part illustrates the importance of HA by
providing information about its production and properties. The third part presents compara-
tive studies of SF/HA composites with different concentrations of HA along with methods of
preparation of composites and their applications.
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1. Introduction

Bone is one of the most important and active connec-
tive tissues in human body. It is continuously rede-
signed to bear loads and to quickly heal injuries. Bone

is mainly composed of cells, fibres, collagen and
hydroxyapatite [1]. Bone fractures and large bone
defects occur due to different types of injuries.
Healing rate is directly related to bone defect size.
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Fibrous tissues migrate very rapidly in a repairing
process if bone defect is of large size. Materials which
are considered to be the ‘gold standards’ in bone
repairing are autografts and allografts [2]. When a
tissue or organ is transplanted from one part to
another within the same body, it is called autograft,
while the transplant of an organ or tissue from one
individual to another of the same species is known as
allograft. However, both procedures have their own
pros and cons. For instance, limitation in donor site
and secondary operation requirements are drawbacks
in autograft, while health issues like HIV and hepatitis
are the associated problems in allografts. Therefore,
some replaceable biocompatible materials available in
vivo are greatly desired to overcome the bone defects.
In this aspect, tissue engineering is playing an impor-
tant role. Various biomaterials such as bioglass
(Na2O–CaO–SiO2–P2O5), sintered tricalcium phos-
phate (Ca3(PO4)2), wollastonite (CaO·SiO2), MgO–
CaO–SiO2 glassy matrix and hydroxyapatite (Ca10
(PO4)6(OH)2, HA) are being studied for their applica-
tions in bone regeneration. A good bone implant
material should have porous structure, mechanical
strength, and close resemblance to the framework of
extracellular matrix of bone [3,4]. It should also have
temporary architecture for attachment and prolifera-
tion of bone forming cells for bone regeneration [5,6].
Among the above-mentioned materials, a silk fibroin/
hydroxyapatite (SF/HA) composite shows all these
characteristics that favours its use in bone implants.

On one hand, SF is gaining considerable attention in
the field of tissue engineering due to its high mechanical
strength and biocompatibility. Its β-sheet structure
makes itself easily processable and convertible into var-
ious structures, such as hydrogels, fibres, membranes
and microsphere. Utilization of SF in blood vessels,
bone, cartilage and skin has been studied by tissue
engineering for years, and such use has been expending

tremendously, as witnessed from the trend of publica-
tions during last few decades (Figure 1) [7,8]. SF aids cell
activity without causing any destruction to immune
system by substituting nutrients and cell growth factors
due to the porosity caused by its β-sheet structure. The
above-mentioned propertiesmake SF an utmost reliable
material in bone regeneration. Moreover, bone implant
material should have osteoconductivity, so that the cells
responsible for new bone regeneration can adhere to it.

On the other hand, HA is the major inorganic
component of human bone tissue. It exhibits high
biocompatibility, bioactivity, and bone formability,
and thus shows chemical interaction with host cells.
It has been considered to be one of the most potential
materials for bone implant due to its osteoconductive
and osteointegrative ability. However, there are still
some downsides of HA, such as insufficient mechan-
ical strength and brittleness that limit its application in
clinical use [9]. In last few decades, many efforts have
been made to prepare HA/polymer composites to
improve such drawbacks. For instance, collagen, chit-
osan, and gelatine are typically employed bio-based
polymers. The limitations of HA can be overcome by
incorporating with various biomaterials. In particular,
when SF is incorporated with HA, a promising com-
posite biomaterial with tougher mechanical property
is produced for bone engineering.

An effective regenerative material for bone tissue
needs three dimensional (3D) porous structures with
osteogenic properties [10]. As a result, silk and its dif-
ferent forms are suitable candidates and have attracted
growing attention as a matrix materials owing to its
outstanding biocompatibility, slow degradation rate,
and tremendous mechanical strength. However, to
increase its osteoconductivity and inductivity, the accu-
mulation of osteoinductive features is necessary [11].
Precisely for this purpose, the use of inorganic/organic
composites has been extensively explored. HA or

Figure 1. Publication frequency of SF and applications of SF as a biomaterial based on Scopus database: (a) SF-related
publications, (b) SF used for tissue engineering, (c) SF used for bone tissue engineering, (d) SF/HA composites, and (e) to (h)
remarkable studies related to parts (a) to (d) [7].
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bioglass micro/nanoparticles have been embedded
within the scaffold walls to achieve the osteoconductiv-
ity of SF scaffolds. However, it remains challenges to
optimize the silk-based scaffolds with satisfied conse-
quence. Perhaps one of themost challenging issues is the
uniform dispersion of inorganic powders within poly-
mer matrix, due to the inherent aggregation propensity
of the powders [12,13]. Several attempts have beenmade
to disperse calcium phosphate (CaP) particles inside SF
scaffolds. For example, Kim et al. develop salt-leached
SF scaffolds, followed by the formation of CaP crystals
on the scaffold surface [14]. Zhang et al. prepare SF/CaP
hybrid powder with enhanced distribution homogene-
ity to attain improved osteogenic differentiation of bone
mesenchymal stem cells (BMSCs) [13]. Nevertheless,
these types of hybrids can be uniformly distributed
within the SF scaffolds at macroscopic scale, but they
get aggregated at microscopic level. In another interest-
ing effort, Yan et al. used combination approach, which
involves an in situ synthesis technique and the use of
highly concentrated SF solution for the formation of
nano-sized CaP particles to prevent the aggregation of
the particles [15]. Even though they claimed the homo-
geneous distribution of CaP nanoparticles at both
macroscopic andmicroscopic level, highly concentrated
SF solution cannot completely prohibit the self-assem-
bly of CaP nanoparticles. In order to attain homoge-
neous nanoparticle distribution at nanometre scales,
SF/HA scaffolds with better osteoconductive property
are therefore used [16]. This review mainly focuses on
the preparation, crystal structure, and properties of SF/
HA scaffold as one of the highly compatible materials
for bone regeneration.

2. Silk fibroin

SF shows distinctive properties such as biocompatibil-
ity, unchallenging chemical modification, resistance to
degradation in vivo, and its assembly into various
material formats from aqueous to non-aqueous sol-
vents, due to its various functional groups at the side
and terminal positions of its structure (Figure 2) [17].

2.1. Sources of SF

There are different sources of silk, such as scorpions,
mites, bees, silkworm, and spiders, which have SF in

their glands [19]. The mostly used are arthropods,
silkworms, cocoons and spiders or spider webs.

2.1.1. Cocoon (Bombyx mori) silk
SF of Bombyx mori has a diameter of 10 to 25 μm and
comprises two protein chains with different number-
average molar masses: one is a shorter chain with
number-average molar mass around 26 kDa and the
other is longer around 390 kDa. Both of them are
covalently bonded through disulphide linker between
Cys-20 from long chain and Cys-172 from short chain,
having 20th and 172nd residues of carboxyl terminus,
respectively [20]. Moreover, both chains are in equal
number and also noncovalently connected with glyco-
protein [21].

2.1.2. Spider (Nephila clavipes) silk
Silks obtained from different spider species have dis-
tinct chemical structures and characteristics. For
instance, silk from Kukulcania hibernalis shows the
highest stiffness of 22 ± 13 GPa, from Leucauge
venusta has a maximum strength of 1470 ± 263 MPa,
while that from Scytodes sp. has the highest toughness
of 230 ± 85 GPa. Their varying mechanical properties
are probably due to the difference in silk collection
method and/or in species to species. For example, silk
from Kukulcania hibernalis is collected when they are
walking, from Leucauge venusta is gained when spi-
ders are allowed to place themselves on a dragline
from a raised platform, and from Scytodes sp is
obtained by forcible silking [22]. In addition, silk
from Nephila clavipes has two types of proteins:
ampullate spidrions protein 1 and 2 (Ma Sp1 and Ma
Sp2) [23]. On the basis of gel electrophoresis, major
ampullate has molar mass around 275 kDa, whereas its
molar mass on the basis of size exclusion chromato-
graphy is 740 kDa and that of smaller ampullate is 290
kDa [24]. Existence of sericin is not observed.

2.1.3. Structural difference between silks from
cocoons and spider
The basic structures of silks from silkworm and
spider are almost the same since both possess
microfilament clusters (0.5–2 μm) which contain
semi-crystalline domains except some differences at
nano meter level about fundamental and anatomical
features (Table 1) [25–27].

2.1.4. Dominance of cocoon silk over spider silk
As compared to spider dragline silk, silkworm silk is
supposed to be much weaker in mechanical properties
and less extensively commercialized, so that it has
been hailed as a ‘super-fibre’. Under controlled condi-
tions the mechanical properties of silkworm silk can
approach to that of dragline silk. Thread quality of
silkworm is better than that of spider silk by changing
spinning habits, rather than by having their silk genesFigure 2. Structure of silk fibroin [18].
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altered. Typical silkworm silk obtained from Bombyx
mori cocoons has a tensile strength of about 0.5 GPa, a
breaking energy (toughness) of 62.104 J g−1 and a
breaking elongation of 15% [28]. On the other hand,
Nephila spider dragline silk has strength of 1.3 GPa
with a breaking elongation of 40%, and a toughness of
162.104 J g−1. The mechanical properties vary consid-
erably for each other. Silkworm silk is traditionally
obtained from a natural cocoon that is spun by the
moving silkworm, which accelerates and decelerates
its head in arcs attached at points that correspond to
each change of direction. For spider silk, this variabil-
ity is due to the spinning conditions, which are
affected by the spider’s body temperature and the
speed of drawing. Under steady and controlled condi-
tions the artificial reeling of silk produce silk fibres,
which are superior to naturally spun fibres. As a result,
silkworms on one hand produce more brittle and
stronger fibres at faster spinning speeds, but on the
other hand slower spinning speed lead to weaker and
more extensible fibres (Figure 3) [29].In addition, the
mechanical strength of cocoon silk produced under

certain conditions is approachable to that of spider
silk. Besides, cocoons silk also shows some other
advantages over spider silk. The details are given in
Table 2.

2.2. Silk versus other biomaterials

Although many biomaterials are being used in bone
regeneration, SF has several advantages over the
others, which are allogeneic or xenogeneic in origin.
For instance, SF is comparatively inexpensive because
of its alkali- or enzyme-based degumming procedures
as compared to other biomaterials, which require spe-
cial isolation and purification methods. Only removal
of sericin covered at the outer layer of SF is needed,
which makes its processing much easier. Another
important factor is that SF is economically advanta-
geous because of large processing infrastructure. SF
causes less inflammatory reaction [34] and has a
slower degradation rate than many other biomaterials
[35,36], though it is considered as non-degradable
biomaterial according to US Pharmacopeia’s defini-
tion. However, it is actually enzymatically degradable
since proteolytic enzymes are responsible for its degra-
dation [35]. This enzymatic degradation involves two
steps: the first step is the adsorption of silk by
enzymes, and the second is silk digest by enzymes.
As a result, corresponding amino acids are produced
and thus absorbed in vivo. On the other hand, in the
degradation process of other biomaterials, such as
polyglycolides and polylactides, acidic products are
released in the host body that can cause serious health
problems. Besides, SF also shows good biocompatibil-
ity with the body tissues and retains its mechanical
strength over a long time because of its nanocrystalline
structure (Table 3) [37,38].

2.3. Preparation of SF

2.3.1. Method 1
Cocoons of Bombyx mori are degummed in 0.02 M
aqueous solution of Na2CO3 at 100°C for 30 min and
then rinsed with distilled water to remove sericin. SF is
dried before adding in a solution of CaCl2/
CH3CH2OH/H2O with molar ratio of 1:2:8. By dialys-
ing for 96 h using cellulose membrane along with

Table 1. Structural difference between cocoon’s and spider’s silks.
No. Features Silk of cocoons Silk of spider

1 Size 600-1500 m from single silkworm 137 m from ampullate gland of spider and 12 m from
spider web

2 Major amino acids Glycine, alanine, serine Glycine, alanine, glutamic acid, proline, arginine
3 β-Sheet structure Yes Yes
4 Components of crystalline

domain
Glx (x = alanine, serine, threonine, valine) (Alanine or glycine) + GPGX (X = proline,glutamine)

5 Components of less crystalline
domain

Fibroin heavy chain made up of 25 identical
amino acids

GGX glycine helix

Figure 3. Mechanical strength comparison of silks obtained
from the silkworm Bombyx mori drawn at different speeds [29].
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distilled water, SF sponges are obtained with water-
content changes after every 24 h [39,40].

2.3.2. Method 2
In a 0.02 M solution of Na2CO3 cocoons are boiled for
45 min and washed with distilled water to remove
small proteins. To make 20% w/v solution, SF which
is dried at 40°C for 24 h, is added in 9.3 M LiBr
solution that is prepared at 60°C for 3 h. Afterwards,
it is dialysed for 3 days and freeze dried to get purified
SF, which is used to form solution of any required
strength. Dialysed SF solution is centrifuged to remove
the solid particles, the obtained clear solution can be
used as it is or it can be lyophilized to get solid
material. A 17% w/v SF solution with hexafluoroiso-
propanol (HFIP) is prepared by the dissolution of the
lyophilized SF at normal temperature for 24 h before
experiment (Figure 4) [41].

2.4. Controlled morphology of silk biomaterials

For clinical application, silk fibre solutions are used to
develop different morphological materials followed by
reprocessing (Figure 5).

2.4.1. Silk fibres
Silk fibres are formed by reeling from cocoons and
utilized both in gumming (virgin) and degumming
(black braided silk) forms. Silk fibres have various dia-
meters (nanometres to micrometres) depending on the
method used for their preparation [23]. Electrospun silk
fibres show uniform size with diameter almost 0.8 μm
and modulus of elasticity of about 13.6 GPa, which is
much less than native silk fibre due to harsh processing
conditions adapted for reconstituted silk. Moreover,
these conditions can remove the key functional and
structural aspects of natural silk [42].

Table 2. Dominance of cocoon silk over spider silk.
NO. Properties Bombyx mori SF without sericin Crosslinked collagen Polylactic acid

1 Modulus (GPa) 15–17 [30] 0.0018–0.046 [31] 1.2–3.0 [32]
2 Ultimate tensile strength (MPa) 610–690 [30] 47–72 [31] 28-50 [32]
3 % strain at break 4–16 [30] 12–16 [31] 2-16 [32]
4 Water contact angle (°) — 84.2 ± 0.8° [33] —

Table 3. Comparison of SF with other biomaterials.
No. Points of dominance Cocoon silk Spider silk [28]

1 Size 600–1500 m from single silkworm 137 m from ampullate gland of spider and 12 m from spider web
2 Nature of structure Homogeneous Heterogeneous
3 Domestication High Less
4 Productivity High Less
5 Processing Easy Difficult

Figure 4. Schematic representation of extraction of SF from cocoons [41].
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2.4.2. Silk sponges
Silk sponges have several applications in tissue engi-
neering, such as disease modelling and implant mate-
rials like femur and mandibular defect, due to their 3D
porous structure. Silk sponges are either aqueous or
organic (e.g. HFIP) based. Water-based sponges have
a high rate of degradation and better pore connectivity
than HFIP-based ones. In contrast, HFIP-based
sponges have stronger mechanical properties and
smoother surface.

2.4.3. Silk microspheres
Silk microspheres are used as therapeutic materials
and carriers for growth factor. SF microspheres
have been synthesized by a variety of processes, e.
g. spray drying, lipid template, salting-out, freeze
induced self-assembly, water-in-oil emulsification,
casting, dissolution of polyvinyl alcohol (PVA)-silk
blend films, and laminar jet break-up of an aqueous
silk solution. Although SF nanoparticles have been
fabricated successfully, they are less well suited to
depot applications since their small size and high
surface area-to-volume ratio leads to a rapid drug
release [43]. In one of these procedures, a non-
saturated fatty acid, 1,2-dioleoyl-sn-glycero-3-phos-
phocholine, is used with a concerning molecule to
enclose water based silk microsphere. Microspheres
formed by this method are approximately 2 μm in

diameter. In another method, silk is incorporated
with PVA to make microspheres. This yields
microspheres with a size ranging from 300 nm to
20 μm. Moreover, size can be controlled by con-
trolling the amount of silk in solution of PVA [41].

2.4.4 Silk films
Silk films are tested in the adhesive property with
pattern cells, degradation, and the possibility for
release and screening of materials in vitro and in vivo
environments. Water-based processing of SF favours
incorporation of bioactive molecules with it. Silk films
may be well patterned or non-patterned. Film thick-
ness can be changed by varying the quantity of silk
solution used. To increase the pore density, silk solu-
tions are mixed with polyethylene oxide [41]. Silk
scaffolds find different medical applications because
of their different morphologies as shown in Table 4
[20,44–56].

3. Hydroxyapatite

The remarkable osteoconductivity, proliferation,
osteointegration, biocompatibility and bioactivity of
HA make itself a most promising candidate material
for bone regeneration [57]. Ca10(PO4)6(OH)2 is its
general molecular formula which is a member of apa-
tite family and forms non-organic portion of bone

Figure 5. Schematic representation of materials fabricated from silk fibroin: 4 days are required for complete extraction of silk
fibroin, and different materials can be obtained at different intervals [41].
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[58]. It is used in bone treatment, drug release, as well
as dental implants [59].

3.1. Structure of HA

HA has hexagonal structure with the calcium-to-phos-
phate molar ratio to be 1.67, and it has 44 atoms per
unit. This arrangement of atoms plays a key role in its
usage as the engineering material of bone tissue.
Atomic structure and its projection along the axis
can be visualized in Figure 6, where phosphorus, oxy-
gen, calcium and hydroxyl ions/atoms are arranged in
an ordered manner.

3.2. Size effectiveness

HA is produced both in micro- and in nano-sized
particles but many recent studies have shown better
osteoconductivity property in case of nano-sized
hydroxyapatite (nHA) because of its size resemblance
to natural HA found in bone [61]. nHA also shows
improved protein adsorption and osteoblast adhesion

in comparison with micron sized HA [57,62].
Moreover, nHA shows nontoxic behaviour towards
mesenchymal cells [63].

3.3. Natural sources of HA

3.3.1. HA derivation from mammalian bones
The size distribution, properties, efficiency, and
phase purity of HA obtained from natural precur-
sors, mainly from mammalian bones, depend on
various factors such as temperature of calcination,
extraction technique, and bone type. Bones that are
most commonly used for the extraction of HA are
bovine bones. Animal bones are first washed with
pure water, boiled, washed with aq. NaOH or
hypochlorite solution to remove proteins and dirt,
and then dried. To control morphology and size of
the final product, bones are then treated in two
ways. One is to cut them into small pieces, and
the other to mill them for times to powders. The
processed bones are then heated from 600 to 1400°
C for calcination so that all organic matters are

Table 4. Clinical applications of silk scaffolds.
Applications Type of tissue Scaffold format

Tissue engineering Bones Sponges (both HFIP and aqueous)
Fibres

Cartilage Sponges (both types)
Fibres

Soft tissue Sponges
Vascular tissues Fibres
Cervical tissues Aqueous sponges
Cornea Films
Skin Fibres

Drug delivery Drug delivery Microspheres
Growth factor delivery Microspheres
Small molecules Microspheres

Implant material Anterior cruciate ligament (ACL) Fibres
Femur defects HFIP sponges
Mandibular defects Aqueous sponges

Disease modelling Breast cancer HFIP sponges
Autosomal dominant polycystic kidney disease Aqueous sponges

Figure 6. (a) atomic structure of HA and (b) its projection along c-axis [60].
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cleared away. Selection of calcination regime is very
important. It should avoid thermal decomposition
but insure to destroy pathogens that could be
responsible for disease transfer from cattle to per-
son [64]. HA obtained from different mammalian
sources may have slightly different properties
(Table 5). It might be due to the difference in the
origin of source or variable temperatures and meth-
ods that are applied for its extraction.

3.3.2. Marine/river sources
About 50% of fish utilization is provided by mar-
ine/river captured fisheries, which produces Ca-
and HA-rich waste. Fish bones containing excessive
amount of HA are treated with hot water and
sometimes with various alkaline solutions, to get
rid of all organic impurities, followed by calcina-
tion at a high temperature to obtain pure HA [64].
Properties of HA obtained from different fish
sources are shown in Table 6.

3.3.3. Plant sources
HA is applicable as bone scaffold template due to its
high strength, toughness, and stiffness like wood. HA
can be prepared from CaCO3, algae and corals due to
its porosity and interconnectivity. For example,
Biphasic HA can be made from red algae [84], and
Corallina officinalis is the best option for HA extrac-
tion as it contains calcium carbonate. Hydrothermal
method can be used to convert calcite from
Phymatolithon calcareum (red algae) into HA [85].
Additionally, several studies showed that C. edulis
(khat), trifolium, mint, green tea and basil can be
used for the preparation of HA [86].

3.3.4. Biogenic sources
Sintering temperature, sintering duration, and com-
position of ceramic materials are the factors that can
control the mechanical properties. In this aspect, egg-
shells and seashells are best options to produce high
quality biomaterials because of their close resemblance
to human hard tissue. Carbonated nHA is the main
inorganic component of teeth and bones [87,88].
Molluscs’ shells can also be converted to HA powder
by in vitro treatment at room temperature [89].

A large number of eggshells are produced every year
from hatcheries, houses, restaurants, and bakeries as a
waste. Similarly, a large amount of seashells and other
calcite materials are also abundant resources. About
94% calcium carbonate, 1% magnesium carbonate, 1%
calcium phosphate, and 4% organic substances are pre-
sent in an eggshell [90]. As a low cast and readily
available material, eggshells can be a thorough source
of calcium that is used to transform to HA. Table 7 is
illustrating the properties of HA obtained from egg-
shells and seashells by different methods.

3.4. Preparation of HA

Wet methods for HA preparation are most commonly
used, such as aqueous solution, co-precipitation, pre-
cipitation by emulsion, and template and sol-gel tech-
nique. Reactant concentration, temperature, and pH
of solutions are the factors which need special atten-
tion to control [105].

3.4.1. Chemical precipitation
The most promising method for production of
mesoporous HA is chemical precipitation. Various

Table 5. Characteristics of hydroxyapatite obtained from mammalian sources.
No. Source(animal+ extraction method) Calcium/phosphorus ratio Shape Calcination (T/°C)

1 Bovine, sheep and hen femur bone +sheep skull. 1.46–2.01 Irregular 600-1100 [65]
2 Defatted pork bone pulp — — 650-950 [66]
3 Cow bone by

(a) hydrothermal hydrolysis
(b) subcritical H2O extraction
(c) thermal decomposition

1.52–1.9 Nanorods [67]
250
275
750

4 Cow bone 1.9 — 1000 [68]
5 Defatted bovine bone 1.7 Needle shaped 800 [69]
6 Cow bone through thermal and mechanochemical way — Spheroidal and polygonal 800 [70]
7 Bovine bone through transferred arc plasma 1.93 — [71]
8 Human, pig and porcine bones — — 600-1200 [72]
9 Bovine bones by ball milling — Spherical 800-1100 [73]
10 Cortical femoral bovine bone — Equiaxial 900 [74]
11 NaOH-treated bovine bone >3 Interconnected with pores 900 [75]
12 Cow femur bone Almost 1.6 Round [76]

Table 6. Properties of HA obtained from fish sources.
No Source Ca/P ratio Shape Calcination (°C)

1 Big eye tuna bone 1.76 Rod like 900 [77]
2 Pseudoplatystoma corruscans, Paulicea bones 1.64 Rod like 900 [78]
3 Sepia officinalis bones 1.64 Rod 900 [79]
4 Thunnus thynnus and Xiphias gladius sword bones ~1.9 Rod 600 and 950 [80]
5 Oreochromis niloticus scales 1.7 Hexagonal 950 [81]
6 Nile tilapia scales 1.8 Occasionally circular 950 [82]
7 Gadus morhua bone 1.5 Needle like 900-1200 [83]
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chemicals of calcium and phosphate sources, sur-
factants, and pH-controlling reagents are involved
in this reaction. Commonly used source of Ca2+ is
calcium nitrate tetrahydrate (Ca(NO3)2 · 4H2O)
and that of PO4

3- is diammonium hydrogen phos-
phate ((NH4)2HPO4) or dipotassium hydrogen
phosphate trihydrate (K2HPO4 · 3H2O). In this
procedure, dropwise addition of a phosphate salt
to calcium salt with continuous stirring is first
carried out. The stoichiometric ratio of Ca to P is
kept at 1.67. In the second step, aging of sample is
carried out at a constant temperature, and the pre-
cipitation is then washed, filtered, dried, calcined,
and finally grounded into a powder at the last step
[106–108].

To check the particle shape, surface area, size, and
pore characteristics at different temperatures and pH,
various surfactants are used to lower the surface ten-
sion of liquid in which they are dissolved. Two types of
surfactants are usually applied, namely, soft and hard

surfactants. Soft surfactants are further divided into
cationic, anionic and non-ionic types.

Mesoporous carbon as the template with 2-dimen-
sional hexagonal structure CMK-3 was used by Xia et
al. for the preparation of rod like nanoparticles with
100 nm in length and 20 nm in width (Figure 7). Its
pore size, surface area, and pore volume are 2.73 nm,
42.43 m2 g−1, and 0.12 cm3 g−1, respectively. Microbial
test gives much better results with surface area of
86 m2 g−1 and pore width of 2–4 nm. Though these
materials provide good results but drawbacks are also
obvious. For example, method proposed by Xia et al.
needs complex procedure to eliminate carbon that
may cause serious experimental errors [109].

Compounds of alkyl trimethyl ammonium bromide
are used as cationic surfactants, for example, cetyltri-
methyl ammonium bromide (CTAB). By using CTAB,
HAnanorods have been synthesized by Yao and his team
with diameter of 50–100 nm and length of 500–1000 nm
along with the pore volume of 0.0113 cm3 g−1 [110]. The

Table 7. Properties of HA from biogenic sources.

No. Source Ca/P ratio Particle size (nm) Morphology Secondary phase
Calcination

(T/°C)

1 Egg shell 1.65 — — β-TCP 900 [91]
2 Coral shells — — — — — [91]
3 HCl+DAHP solution treated Egg shells 1.67 50 Rectangular — [92]
4 Hen Egg shells >1.67 18 Spherulite — 800-1200 [93]
5 Chicken Egg shell — ~35 Prolate spheroidal — 700 [94]
6 Hen Egg shell 1.63 — — — [95]
7 Egg shells treated with *DAHP+EDTA 78 Flower like — [116]
8 Egg shell treated by precipitation technique 1.67 ~35 Globule like — 900 [96]
9 Oyster shell — Rod like — 1000 [97]
10 Ground waste egg shell Flower like — — [98]
11 Fruits and egg shell waste 1.57–1.77 12-49 Needle like and rod like — — [99]
12 Egg shell waste 2.20 — Spheroidal β-TCP 1100 [105]
13 Mussel shell 1.61 — — — — [100]
14 Egg shell — — — — 600 [101]
15 Egg shell — 15 k-35 k Flower like — — [102]
16 Sea urchin shell — — Rod like — 900 [103]
17 Egg shell – 60 Whiskers CaHPO4 700 [104]

*DAHP = ‘2,4-diamino-6-hydroxypyrimidine and EDTA = ethylenediaminetetraacetic acid’

Figure 7. Typical transmission electron microscopy images of mesoporous HA calcined at 600 ° C: (a) 100 nm scale and (b) 20 nm
scale [109].
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size of these pores confirmed by nitrogen adsorption is
3 nm. Induction of pores in nanorods by CTAB is further
confirmed by other studies [111]. By mixing cationic
CTAB and anionic sodium dodecyl sulphate (SDS) sur-
factants, nanoparticles with different morphologies are
prepared by Tari and co-workers [112]. The different
shapes of nanoparticles depend on the concentrations
of cationic and anionic surfactants. When cationic sur-
factant is higher in concentration, sheet-like arrangement
of particles is observed, whereas high concentration of
anionic surfactant leads to the formation of rod-like
nanoparticles. It proves the morphology of nanoparticles
can be controlled by themolar ratio between cationic and
anionic surfactants. However, nanoparticles obtained in
this way are of low surface area and their pore size is not
uniform. To overcome these problems, non-ionic surfac-
tants, including poly(ethylene oxide)-based triblock co-
polymers, i.e. F-127 and P-123, and Tween-16, are used
[108,113]. High concentration of F-127 (0.1 g mL−1)
results in spherical nanoparticles with a diameter of

100 nm and a pore size of 5.8 nm, whereas low concen-
tration (0.03 g mL−1) yields rod-shaped particles with
diameters of 40–50 nm, lengths of 100–300 nm, and
pore sizes of 2.5–3 nm (Figure 8). There results once
again confirm the dependence of morphology of nano-
particles on the concentration of surfactant.

In order to get particles of HA with larger pore size,
the use of a mixture of P-123 and Tween-16 is tried,
which results in hollow nano-spheres and nano-rods
[113]. Citric acid addition to P-123 solution gives
nanotubes. Nanospheres have a diameter of 60 nm
and a pore size of 36 nm with a pore volume of
0.47 cm3 g−1, while nano-rods have a diameter of
35 nm and a length of 50–250 nm with pore volume
of 0.34 cm3 g−1 and pore size of 15.6 nm.

3.4.2. Hydrothermal
Highly crystalline HA nanoparticles are obtained by
hydrothermal method, which has basic similarity with
chemical precipitation method. The difference between

Figure 8. FE-SEM images of calcium phosphate nano-particles. (a–c) Nano-particles synthesized at 40 C: (a) 10% F127; (b) 40%
F127; and (c) 80% F127. (d–f) Nano-particles synthesized at 100 C: (d) 10% F127; (e) 40% F127; and (f) 80% F127. Magnification is
80,000 times [108].
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precipitation and hydrothermal method is aging. The
aging in hydrothermal process is carried out in an
autoclave at higher temperature than boiling point of
water [114]. High temperature in hydrothermal process
improvises the phase purity and Ca/P ratio [115].
Improvements can be achieved in pore size and surface
area of pores by using CTAB with F-127, F-87, and P-
123, which are most commonly used surfactants in this
method [115]. A closed packing of HA is achieved
owing to the high temperature and concomitant high
crystallinity. Stoichiometric ratio of Ca/P and crystal-
linity in HA make the hydrothermal method more
promising in the future [105].

3.4.3. Emulsion
Mesoporous HA is also prepared by emulsion process.
HA nanoparticles with different morphologies, such as
needle-like, spherical, and rod-shaped, have been
synthesised by Kumar et al. by changing the condition
of emulsion reaction between calcium nitrate tetrahy-
drate (Ca(NO3)2 · 4H2O) and phosphoric acid (H3PO4)
as themain precursors for Ca2+ and PO4

−3 sources [116].
Jarudilokkul and his co-workers showed that sur-

face area can be reduced by increasing calcination
temperature and reaction between (sorbitan ester)
Span 20 and (ethoxylated spans) Tween 80 [117]. But
if the temperature is kept low there will be a chance of
impurity in the sample. Therefore, an optimum tem-
perature is maintained at which polymeric surfactants
can work best.

4. Silk fibroin/hydroxyapatite

SF is incorporated with HA to enhance the clinical
application of HA due to its less inflammatory reac-
tions [118,119].

4.1. Preparation

Different strategies are used to prepare SF/HA scaffolds,
for example, electrospinning [120], freeze gelation and
freeze drying [121]. In general, a commonly used
method is freeze drying. Different steps involved in
this process are as follows.

4.1.1. Step 1
Main components of silkworm Bombyx mori are ser-
icin (outer covering) and fibroin (inner brins). Outer
covering sericin is removed by degumming process
and fibroin is obtained from methods, as mentioned
previously.

4.1.2. Step 2
The starting materials for the production of nHA are
CaCl2 and Na2HPO4. 400 mL (0.12 M) of Na2HPO4

aqueous solution is slowly added to 400 mL of (0.20 M)
of CaCl2 aqueous solution. 0.02 g of citric acid is then

added as dispersant. NaOH aqueous solution is used to
maintain the pH at 11. Mixture is then stirred continu-
ously for 4 h and afterwards aged for 3 h. Precipitates
are collected by centrifugation, neutralized by ethanol
and distilled water for 3 h, and ultrasonically treated at
80°C. Sample is then vacuum-dried at 60°C for 24 h.

4.1.3. Step 3
HA solution is prepared by ultrasonication for 30 min-
utes in distilled water. Various amounts of SF solution
are then added into different HA solutions. During
mixing ultrasonication is still applied for uniform dis-
tribution of HA into SF constituent at a constant pH of
8. Glutaraldehyde (0.05% w/v) is added as a cross-
linking agent and the mixture is then poured into a
plate with a diameter of 23 mm and a depth of 18 mm.
Temperature is lowered to −20°C and kept for 12 h,
followed by freeze drying. In this way, SF/HA compo-
sites with different concentrations of HA can be pre-
pared. Figure 9 illustrates the formation of SF/HA.

4.2. Preference of SF/HA over other HA based
biomaterials

SF/HA shows better environmental stability, options
for genetic control to tailor sequence, biocompatibil-
ity, mechanical properties, and ability to take the place
of hard tissue material, making itself much more pro-
mising material for bone regeneration. Another
important factor, which makes SF/HA superior to
other biomaterials, is its advantageous porous struc-
tures that provide better transportation of blood and
body fluids for metabolism and growth of bone. All
these properties of SF/HA scaffolds guarantee its close
resemblance to the natural bones. HA-based compo-
site materials used in tissue engineering are presented
in Table 8 and Figure 10, and discussed as follows:

(1) nHA-chitosan nanocomposites
Pore formation, biodegradation and antibac-

terial properties make chitosan favourable for
bone tissue engineering. However, mechanical
properties of chitosan-based composites are not
sufficient and need to be improved [122–134].

(2) nHA-collagen nanocomposites
The main component of bone is collagen

that shows good cell adhesion and proliferation
activities. When composited with HA, collagen
shows cell differentiation as well. Collagen con-
tains several kinds of negatively charged, posi-
tively charged, and polar yet neutral groups, in
which the negatively charged groups undergo
chemical reactions that suppress the nucleation
of HA on collagen [135–151].

(3) nHA-polycaprolactone nanocomposites
Polycaprolactone (PCL) has applications in

bone regeneration due to its nice bioresorbability
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and inexpensiveness. However, it is not an effec-
tive bioactive material because bone tissue makes
very loose bond with it. This problem is being
resolved by making its composites with HA, but
still needs more improvements [2,152–167].

(4) nHA-poly(lactic-co-glycolic) acid nanocomposites
Poly(lactic-co-glycolic) acid (PLGA) is a biode-

gradable copolymer and widely used biomaterial
in medical implants due to good mechanical
strength and modulus of elasticity. However, its
small pore size makes it less favourable for bone
regeneration [8,168–177].

(5) nHA-polyvinyl alcohol nanocomposites
Polyvinyl alcohol can be applied in bone

tissue engineering because of its good hydro-
philicity and chemical stability, but it’s in vivo
or in vitro applications require further investi-
gation [178–182].

4.3. Characterization of SF/HA Scaffold

4.3.1. Morphology
SF nanofibres have diameters of 242 ± 34 nm, as
shown in the field-emission scanning electron micro-
scopy (FE-SEM) images (Figure 11). FE-SEM images
also show that the deposition of HA on SF does not
affect the macroscopic structure of SF. The deposited
HA particles have nanocrystalline structures with dia-
meters of 30–35 nm, as known from X-ray diffraction
(XRD) analysis. With the concentration increasing,

the roughness in the pore-wall also increases. HA
nanoparticles are uniformly distributed on SF network
and considered to be helpful in proliferation and cell
adhesion due to biocompatible nature of HA.

4.3.2. Secondary structure of SF/HA
4.3.2.1. FTIR analysis. Fourier transform infrared
(FTIR) spectroscopy has been extensively used to pro-
vide helpful information regarding functional groups
present in different types of HA and SF based struc-
tures/composites. Specifically, FTIR analysis shows a
band for phosphate group between 900 and 1100 cm−1

(P-O stretching) and another band between 500 and
600 cm−1 (P-O-P bending) [3]. The peaks at 1455 ,
1419, 874 cm−1 are due to C-O stretching of dissolved
CO2 from atmosphere in the solution [17,183].
Moreover, amide groups of SF show their absorption
peaks at 1232, 1524 and 1627 cm−1 (Figure 12) [9]. For
further detailed evidence along with FTIR investiga-
tion chemists still require different other characteriza-
tion tools to explore and identify the different
structures of SF and HA. Following figure presents a
highly significant peak values to identify its structure.

4.3.3. Crystal structure of SF/HA
4.3.3.1. Energy dispersive X-ray spectroscopy. Along
with atomic arrangement, the ratio of calcium and
phosphorus is very important for understanding the
mode of action of HA and SF. Elemental analysis of
SF/HA by energy-dispersive spectroscopy (EDS)

Figure 9. Schematic representation of preparation of SF/HA.
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reveals incorporation of HA into SF scaffolds. Higher
amount of Ca is observed as the concentration of HA
increasing in scaffolds (Figure 13).

4.3.3.2. XRD analysis. Well-defined two peaks
appeared in XRD patterns at 25.9° and 31.8° for Ca
and P of HA and are identified as (002) and (211)
peaks, respectively. Semicrystallinity in HA structure
has been observed by broadening and overlapping of
peaks (Figure 14) [1]. Another major peak appearing
at 20.5° is attributed to β-sheet structure of SF. As
concentration of HA increasing, the two peaks at
25.9° and 31.8° became more intense and anisotropic
growth of HA is observed due to the existence of SF.

4.4. Properties of SF/HA scaffolds for bone
regeneration

SF/HA scaffolds have various applications such as in
bone transplant, drug delivery, growth factor delivery,
and bioconjugates because of their biocompatible and
osteoconductive properties. Major characteristics,
which make SF/HA scaffold most compatible material
for bone regeneration are discussed below.

4.4.1. Mechanical properties of SF/HA
As the concentration of HA was increased from 0 to
30%, a slight change in the tensile strength was observed
and which suggests that concentration of HA in scaf-
folds does not considerably affect the mechanical
strength of SF/HA. It means the mechanical property
of SF/HA decisively depends on SF.

4.4.2. Hydrophilicity
The most important factor that affects the biocompat-
ibility of any material is its hydrophilicity. By increasing
HA content in SF/HA, the hydrophilicity of SF/HA
increases in line with the decrease in the contact angle
(Figure 15). Water drop on SF surface shows a contact
angle of about 84°, whereas the optimum contact angle
should locate between 55°and 75° for a suitable cell
adhesive material [40]. Although SF with polar – OH
and – COOH groups shows moderate affinity to water,
its hydrophilicity should be further enhanced for bio-
compatibility by incorporating with HA bearing
additional – OH and phosphate groups. These highly
hydrophilic groups make the spreading of water dro-
plets more favourable, which is in turn responsible for
improved hydrophilicity. Hydrophilicity of SF/HA con-
tinues to decrease with the increase of the HA content,
and SF/HA with around 30% HA content shows the
highest hydrophilicity in the studied samples [185].

4.4.3. Thermal properties
nHA is thermally stable up to 600°C, as shown in Figure
16. For SF, a 7% decrease in the weight is observed due to
the evaporation of water when temperature is changedTa
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from 90 to 105°C. In addition, a sharp decrease in weight
is observed in a temperature range of 295–305°C due to
its thermal degradation [57], and only 28.4% residues
when temperature is raised up to 600°C. In contrast,
SF/HA scaffold shows a similar thermogravimetric
change within the scanning temperature. In the tempera-
ture range of 90–105°C, only 5% water loss was observed
while 48.4% residue was remained at 600°C for the
mineralized silk/nHA composite scaffolds [40].

4.4.4. Cell proliferation
The pore size of used materials plays a significant role
in tissue regeneration. Various studies indicate that
pore size of > 100–150 µm is desired for achieving
better results in tissue growth. SF/HA scaffolds are of
macroporous with the size range of 200–250 µm, as
shown in Figure 17. Comparison of SEM images of SF

and SF/HA shows no change in macroscopic
morphology. However, the porous surface becomes
rougher when content of nHA is increased, and the
cell adhesion and proliferation activity of nHA will be
enhanced. As for pore-wall surface, the microscopic
wall becomes rougher by increasing content of nHA.
The nHA particles are dispersed homogeneously
throughout the SF network, and larger nHA aggrega-
tions are not detected. Moreover, for the cell adhesion
and proliferation the nHA particles are inlaid on the
pore-wall surface of composite due to the well-known
biocompatibility of HA.

The development and metabolic behaviour of cells
cultured on the scaffolds is a special concern for clin-
ical transplantation. Ding, et al. have studied the
development and proliferation activity of rabbit
mesenchymal stem cells (rBMSCs, a common

Figure 10. Types of polymers used in HA/polymer scaffolds.

Figure 11. FE-SEM images of pure SF after three cycles of Ca-P treatment and mineralized SF/HA nanofibres: (a) pure silk
nanofibres and (b–d) SF/HA nanofibres with different magnification [40].
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osteogenic cells) on SF/HA scaffolds with different
molar% contents of HA (0%, 10%, and 30% SF/HA,
respectively). In this study, much higher metabolic
rate of rBMSCs on 30% SF/HA has been observed as

compared to that on pure HA after 4 days. The study
concludes that SF/HA with higher HA content
increases the proliferation activity of rBMSCs (Figure
18). SEM results also show higher cell adhesion and
spreading of rBMSCs by 30% SF/HA (Figure 19). This
result is in agreement with previous studies [185].

However, another study on the MC3T3-E1 cells
which are osteoblast precursor cell line derived from
Musculus (mouse) calvaria (skullcap) indicates an
opposite behaviour (Figure 20). Kai and Wei et al.
report that higher proliferation activity is observed
on pure SF than on SF/HA even after a 7-day cultiva-
tion. According to their explanation, it may be due to
the size, density and bulk distribution of nHA. Their
study coincides with other studies in that surface mor-
phology has significance influence on cell behaviour,
as previously stated as curved surface of HA greatly
reduces cell proliferation activity [40]. Nevertheless,
this study also reveals that an increase of HA content
has no negative effect on cell proliferation in latter
stages of cell cultivation.

Figure 13. Elemental analysis of calcium (Ca), phosphorus (P), with oxygen (O) and nitrogen (N) in (a–d) Increase in SF/HA
concentration is confirmed via EDS mapping of Ca (e–g) [185].

Figure 14. XRD patterns of different scaffolds of SF/HA
composites with (a) HA0, (b) HA10, (c) HA30,(d) HA60,
and (e) HA70 [184].
2θ (degree)

Figure 12. FTIR spectra of SF/HA porous scaffolds with different molar% contents of nHA: (a) 0%, (b) 10%, (c) 30%, (d) 60%,
(e) 70%, and (f) 100% [184].
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4.4.5. Alkaline phosphate activity
Alkaline phosphate (ALP) is an enzyme found in dif-
ferent body tissues such as liver, kidney, intestine, and
bone. It helps to break down various proteins. ALP test
is very helpful in the diagnosis of bone problems like
weakening, softening, and destruction. It also supplies
information about vitamin D deficiency. ALP is an
important part of bone matrix vesicle that breaks
down the organic phosphate esters and forms apatite
Ca-phosphate which helps in the initiation of cell
differentiation process. ALP activity of rBMSCs and
MC3TC-E1 cells suggests a remarkably enhanced cell
differentiation with the increase of HA content.
Moreover, a higher deposition level of Ca is observed
on 30% SF/HA than on pure SF. As more Ca deposi-
tion implies higher degree of cell differentiation, bone

Figure 15. (a) Water contact angle of SF/HA scaffolds with different HA contents (p < 0.05) and (b) photographs of water droplets
on SF/HA scaffolds [185].

Figure 16. Thermogravimetric curves of nHA, pure SF and SF/HA
(molar ratio = 8:2) [40].

Figure 17. SEM images of porous SF/HA scaffolds with different molar contents of nHA: (a) 10% (b) 0% (c) 10% (d) 30% (e) 60%
and (f) 70% [184].
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formation ability will be increased by SF/HA scaffolds
with higher HA content.

4.4.6. Mineralization
The phase in which cells begins to release mineral
matrix during osteogenic differentiation is called
mineralization phase. It is typically determined by a
dye (Alizarin Red S) that binds selectively to the cal-
cium salts and hence can be used for mineral staining.
The mineral deposition analysis of rBMSCs showed
more quantity of Ca deposited on 30% SF/HA than
pure SF in Figure 21. High mineral deposition ability
means more mature osteoblast cells which shows more
differentiation of rBMSCs and finally leads to deposit
more extracellular cellular matrix.

4.5. SF/HA for bone regeneration

Many studies present HA as a promising biomaterial
for bone tissue engineering. Despite of the fact that
HA is a slowly biodegradable, this biomaterial displays
high biocompatibility. Moreover, the biocompatibility
of SF has also been proven by many studies
[8,40,126,142,145]. More recently Kweon et al. have
synthesized a nanoporous SF/HA composite and
tested its biocompatibility in vivo [186].In another
post-implantation study, in rat models the immune
response against HA/SF-5% (% of fibroin in aquatic
solutions) is evaluated after long term (4 weeks) and
short term (1 week). The number of inflammatory
cells is analysed and counted including lymphocytes,
macrophage, and cellularity at the tissue-scaffold

Figure 18. Cell proliferation investigation of rBMSCs cul-
tured on 30% SF/HA (dark in colour) and pure HA (light in
colour) [185].

Figure 19. SEM images of attachment and proliferation of rBMSCs cultured on SF/HA scaffolds for 7, 14 and 21 days (a,c, e,
g, i and k) scale bars = 100 µm; (b, d, f, h, j and l) scale bars = 50 µm [185].

Figure 20. Proliferation activities of cells cultured on pure SF, SF/
nHA, and tissue culture dish (TCD) from 3 to 14 days. (p ≥ 0.05)
indicates significant increase in proliferation activity [40].
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interface area. Regarding the degradation process of
the scaffold, the immunological attack and number of
lymphocytes offer a valuable biocompatibility in vivo.
As shown in Figure 22, the number of lymphocytic
cells did not increase significantly as compared to
control group (P > 0.05) in both short-term and
long-term tests [187].

In contrast to the control experiment, a remark-
able increase in number of macrophages has been
observed. Macrophages may help in degradation
process. Moreover, the prominent increase in the
cellularity in the implantation area indicates the
progress in tissue regeneration and degradation of
scaffold [187].

Wang et al. studied segmental bone defect by varying
SF-to-HA molar ratios of the SF/HA composite. Four
types of SF/HA composites with different SF weight
loadings, different porosity, pore sizes, and additives
were embedded subcutaneously into Sprague-Dawley
rats to analyse biodegradation. It was observed that
among four groups of SF/HA composite, SF/HA-3 is

more suitable for bone substitute on the basis of
strength and resorption, since SF/HA-1,SF/HA-2 were
not degradable and SF/HA-4 have poor mean compres-
sive strength of 1.59 MPa [188]. So, in order to evaluate
its bone regeneration capacity, SF/HA-3 was selected as
scaffold and co-cultured with rabbit bone-marrow stro-
mal cells (BMSCs). It is found that this scaffold alone
has no bone-inductive effect and limits bone repair
efficacy. However, better results are observed with SF/
HA-3 consisting BMSCs. (Figure 23(a–c)).

Similarly, Jin et al. investigate the potential of SF/
HA scaffold as a delivery vehicle in the rabbit radius
defect model for human placenta-derived mesenchy-
mal stem cells (PMSCs). They subject transplantation
of SF/HA alone (control group) to 16 New Zealand
healthy rabbits and also SF/HA plus PMSCs (experi-
mental group). Through histological and radiographic
analyses, they show that fracture healing in the experi-
mental group is significantly improved over the con-
trol group (Figure 24). This strongly suggests that the
transplantation of human PMSCs, which are grown in

Figure 21. ALP activity. Osteogenic differentiation of (a) rBMSCs on SF/HA scaffolds with 0 and 30 mol% HA, and (b) MC3TC-E1 on
pure and mineralized SF/nHA after 5, 7, 10 and 14 days. ⋆ shows difference in ALP activity [40,185].

Figure 22. (a–d) In vivo biocompatibility of HA/SF-5% (black arrows denote lymphocytes, eosin and haematoxylin staining). (e–h)
Increment of lymphocytes at the implantation site between control and experimental groups [187].
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an SF/HA scaffold into injured radius segmental bone
in rabbits, can markedly enhance tissue repair [189].

5. Conclusions

This review suggests that due to increasing number of
accidents and bone injuries, a large amount of strong and
clinically safe biomaterials is required. HA/polymer scaf-
folds have been studied for their biocompatibility and
osteoconductivity. Natural waste, such as eggshell and
mint, etc., can be used to prepare HA. SF/HA scaffolds
are one of the best options that can reduce risks during
bone implantation owing to their exceptional bioactivity,
proliferation activity and osteointegrativity. SF/HA scaf-
fold is a cost effective precursor, because SF and HA are
natural and readily available materials. SEM, XRD and
FTIR absorption are important techniques for studying
the resemblance of biomaterials with natural HA. ALP

and proliferation activity studies can be very helpful in
analysing SF/HA homogeneity and satisfyingmechanical
characteristics and biocompatibility. SF/HA-based com-
posites are promising biomaterials, and researchers
should continue exploring their diversity aiming to
develop novel biomaterials.
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