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Abstract

While several studies have reported a recent decline in area burned in Africa, the causes of this 

decline are still not well understood. In this study, we found that from 2002 to 2016 burned area in 

Africa declined by 18.5%, with the strongest decline (80% of the area) in the Northern 

Hemisphere. One third of the reduction in burned area occurred in croplands, suggesting that 

changes in agricultural practices (including cropland expansion) are not the predominant factor 

behind recent changes in fire extent. Linear models that considered interannual variability in 

climate factors directly related to biomass productivity and aridity explained about 70% of the 

decline in burned area in natural land cover. Our results provide evidence that despite the fact that 

most fires are human-caused in Africa, increased terrestrial moisture during 2002–2016 facilitated 

declines in fire activity in Africa.

Plain Language Summary

The last 15 years of satellite observations indicate a decrease of the global amount of burned area, 

but this decrease is not evenly distributed geographically. Africa, the continent most affected by 

fire, has seen the most pronounced decline in burned area. The causes are still poorly understood: 

the reduction in fire activity could be both due to changes in climate and human factors. We show 

that only about a third of the reduction in area burned occurred in croplands. The interannual 

burned area variability in natural lands (forest and nonforest) was linked to climate variables 

related to moisture availability. We found that about 70% of the reduction of area burned in natural 

lands can be explained by observed increase in plant-available moisture over the last 15 years. The 

results point to increased effective precipitation that inhibits flammability, ignition, and fire 

propagation, especially in wet savannas. These results bring new evidence that, in the complex 
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fire-climate-human relationship, both increased human pressure and changing climate patterns 

influenced recent fire activity trends in Africa.

1. Introduction

Several recent studies have reported a global decline in burned area, prominently observed in 

Africa (Andela et al., 2017; Earl & Simmonds, 2018). Africa is the most fire prone 

continent, responsible for over half of the global area burned and for more than half of the 

global pyrogenic greenhouse gas emissions (Rabin et al., 2015; Van der Werf et al., 2017). 

According to satellite-derived estimates, over 80% of burned area (BA) in Africa occurs in 

savanna with the remainder occurring in forests and croplands (Giglio et al., 2013). Fire 

seasonality in Africa follows the respective dry seasons occurring primarily from October to 

March with a peak of the season in December–January for Northern Hemisphere (NH), and 

April to October with a peak in August for Southern Hemisphere (SH; Boschetti & Roy, 

2008). Savanna fires in Africa are generally surface fires, burning as frequently as every 1–6 

years (Archibald, Scholes, Roy, et al., 2010; 2013). The long dry season of African savannas 

and the high rate of fuel accumulation have been identified as the main contributors of such 

an extensive amount of burning (Archibald et al., 2009); grasses can regrow quickly after the 

fire, which makes the ecosystem prone to frequent fires (Archibald et al., 2009; Van Wilgen 

& Scholes, 1997).

Three components must be present for fire ignition: sufficient biomass to burn, fuel 

flammability, and an ignition source (Bradstock, 2010; Moritz et al., 2012). Both climate 

and humans can modify biomass abundance, the number of ignitions, and potential fire 

spread. It is challenging to decouple the effect of these drivers, especially in Africa, a 

continent where humans have influenced the fire regime for millennia and where up to 90% 

of fires might be anthropogenic (Andela et al., 2017; Archibald, 2016; Knowles et al., 2016). 

Precipitation has a strong impact on the amount of BA in Africa (Andela & van der Werf, 

2014; Archibald, Nickless, Govender, et al., 2010), but the relationship between fire activity 

and moisture availability is highly variable and ecosystem dependent (Abatzoglou et al., 

2018; Williams & Abatzoglou, 2016). In fuel-limited ecosystems, precipitation promotes 

fuel load accumulation and subsequent fires, while in energy-limited ecosystems, 

precipitation enhances fuel moisture and limits flammability and fire spread (e.g., Daniau et 

al., 2012; Murphy et al., 2011). Additionally, several studies have confirmed that climatic 

variables related to water balance specific to vegetation demands, and therefore fuel 

moisture, have stronger and more direct relationships with fire activity compared to 

precipitation (e.g., Barbero et al., 2015; Daniau et al., 2012; Riley et al., 2013). The impact 

of human activities on fire is inherently complex, with direct and indirect effects. Increased 

population can directly result in increased ignitions, fire suppression, as well as altered fire 

seasonality (e.g., Balch et al., 2017). Indirectly, human activities lead to reductions of fuel 

amount and fuel connectivity due to livestock pressure, cropland expansion, and road density 

(Archibald, 2016). Anthropic influences on fire also vary geographically. For example, fire 

has long been used as a land management tool in much of Africa; fire is widely used for 

preparing agricultural fields, preventing bush encroachment, improving quality and quantity 
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of forage, maintaining biodiversity, hunting, and reducing future fire risk (Knowles et al., 

2016; Le Page et al., 2010).

Previous studies have used empirical climate-fire models (Andela et al., 2017; Andela & van 

der Werf, 2014; Earl & Simmonds, 2018) to elucidate drivers of recent changes in fire 

activity in Africa. While the BA interannual variability in SH was partly explained by 

rainfall variability (Andela & van der Werf, 2014), the nature of the strong BA decline in 

NH is still not well understood. Earl and Simmonds (2018) proposed that it is linked to the 

observed increase of net primary productivity. This increase in net primary productivity in 

Africa was attributed to decrease in vapor pressure deficit (Zhao & Running, 2010) and 

increase in rainfall (Hoscilo et al., 2014). We hypothesize that increased fuel moisture 

reduced flammability and BA. Andela and van der Werf (2014) pointed at socio-economical 

changes as a main factor of reduction in BA NH Africa; however, their statistical models 

showed that only a quarter of the decline was attributed to cropland expansion and another 

quarter to changes in precipitation, leaving the remaining half of the reduction unexplained.

In the present study we reanalyzed the recent changes in fire activity in Africa using the 

MODIS MCD64A1 Burned Area product over a 15-year study period (2002–2016). 

Previous studies have typically calculated trends and variability in fire activity using high 

spatial resolution grids, possibly at a scale too fine to appropriately describe top-down 

climate-fire relationships on interannual time scales. Furthermore, they did not distinguish 

the influence of climate on fuel abundance and flammability for different vegetation types 

(Littell et al., 2016). We analyzed trends at the ecoregion scale and further examined 

changes within cropland and natural lands. Further, we expand on previous work by 

systematically exploring a simple relationship between the amount of burned area and 

climate, considering not only precipitation but also variables that are more mechanistically 

related to plant-available water and flammability. The overarching goal of this study is to 

investigate the drivers of trends and interannual variability in fire activity in Africa which 

will be useful for fire policies and management, and statistical fire and vegetation models.

2. Materials and Methods

2.1. Data Sets

Burned area: the most recent Collection 6 MODIS Global Burned Area Product 

(MCD64A1) provides daily global 500-m resolution BA maps (Giglio et al., 2018). The 

MCD64A1 data record from April 2002 to March 2017 was used to derive a monthly BA 

time series. Although the MODIS fire products are available from April 2000 onward, their 

use prior to November 2000 and during June 2001 is deprecated because of extended 

outages (Giglio et al., 2016).

Climate variables: the choice of an appropriate climate data set is vital but challenging, 

particularly in Africa where the lack of a dense weather station network severely affects data 

reliability (Dinku et al., 2014; Tadesse et al., 2014; Toté et al., 2015) especially for 

precipitation (Beck, 2017). We chose the Famine Early Warning Systems Network Land 

Data Assimilation System (FLDAS) since it was produced specifically for drought 

monitoring in Africa (McNally et al., 2017), and incorporates precipitation data from 
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infrared satellite observations, atmospheric models, and stations. We used simulation run 

“C” that used Noah Land Surface Model and outputs from MERRA-2 (Modern-Era 

Retrospective Analysis for Research and Applications) at 0.5° resolution (Rienecker et al., 

2011) and Climate Hazards Group InfraRed Precipitation with Station data at 0.1° resolution 

(Funk et al., 2015) which has been extensively used in Africa (Dembélé & Zwart, 2016; 

Funk et al., 2015; Toté et al., 2015). Additionally, overall trends in precipitation and surface 

soil moisture derived from FLDAS agree with independent satellite-derived trends from 

Gravity Recovery and Climate Experiment (GRACE) 2002–2016 that depicts increased 

terrestrial water storage across much of Africa (Rodell et al., 2018), thus further supporting 

our choice of precipitation data set. From FLDAS we considered precipitation (P) and soil 

moisture content at 0- to 10-cm depth (SM). Penman-Monteith reference evapotranspiration 

data (ETo) was derived from MERRA-2 for consistency, being one of the FLDAS inputs. 

Effective Rainfall (ER) was calculated as P minus ETo. Monthly P, ER, and SM time series 

were generated from January 2001 to March 2017.

Global 
ecoregions:

The Terrestrial Ecoregions Of the World (Olson et al., 2001) were used as the spatial analysis unit, 
because of commonalities in vegetation which mediates climate-fire relationships as in previous 
studies (e.g., Abatzoglou et al., 2018).

Land cover: The Land Cover Climate Change Initiative (LC-CCI) v.1.6.1 Annual Global Land Cover (2002–
2015) was used to mask unburnable surfaces and to define land cover types within ecoregions. The 
LC-CCI 300-m resolution maps are generated from MERIS, PROBA-V, SPOT-VGT, and AVHRR 
data (CCI-LC, 2017).

Livestock 
density:

Gridded Livestock of the World (GLW 3) global subnational livestock distribution data for 2010 at 
0.083333° (Gilbert et al., 2018). Densities of different livestock species were combined into actual 
carrying capacity (ACC) defined in equivalent tropical livestock units, applying the conversion 
factors for cattle (0.70), sheep, and goats (0.10) proposed by Pica-Ciamarra et al. (2007).

Road density: Global Roads Inventory Project global gridded road density data set at 8-km resolution (Meijer et al., 
2018).

2.2. Analysis

For the purpose of the analysis, Terrestrial Ecoregions Of the World and LC-CCI were used 

to create a two-level stratification, separating ecoregions by broad land cover types (forests, 

nonforest, and cropland). In this study, savannas, shrublands, and grasslands were 

aggregated into the nonforest class; croplands include all LC-CCI cropland and cropland-

natural vegetation mosaic classes.

2.2.1. Burned Area Seasonality and Trends—Total BA was summarized using the 

April-to-March optimal fire year proposed by Boschetti and Roy (2008). This resulted in a 

15-year annual BA time series stratified by land cover and ecoregion. Ecoregions where a 

land cover is not significantly present (i.e., less than 5% of the ecoregion area) and/or with 

negligible fire activity (less than 0.5% of the ecoregion burned on average) were excluded 

from the analysis. For each ecoregion, the fire season (FS) was determined as the minimum 

number of consecutive months in which 80% of the total average annual BA occurs 

(Abatzoglou et al., 2018).
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In order to determine spatial patterns and rates of change, BA trends were calculated for 

each ecoregion by fitting a simple linear regression to the 15-year BA time series; trends 

were thus represented by the slope of the regression line.

2.2.2. Analysis of Potential Anthropogenic Drivers—Human activity has both the 

potential of increasing fire activity, through accidental and intentional ignitions, and 

decreasing it by transforming natural land into croplands, reducing fuel load through 

grazing, and due to landscape fragmentation (Archibald, 2016; Knowles et al., 2016). The 

lack of gridded, multitemporal data sets of variables directly linked to human pressure limits 

the possibility of including anthropogenic drivers in a continental fire model. As an 

alternative, we created spatial masks of (a) croplands, (b) grazing pressure, and (c) road 

density, and analyzed separately the BA trends inside and outside the areas affected by 

significant human activity.

2.2.2.1. Croplands: In order to fully account for cropland expansion during the study 

period, we aggregated the annual land cover maps to define a single cropland mask 

encompassing any pixel mapped as cropland or cropland/natural vegetation mosaic during 

2002–2016. This choice ensures that the burned area trends observed inside the cropland 

mask fully capture both cropland expansion and any changes in agricultural practices, 

whereas the trends observed outside of the mask reflect only areas that remain natural lands 

for the entire time period.

2.2.2.2. Grazing Pressure: Grazing negatively influences fire activity, since livestock 

reduces available fuel (Anderson et al., 2007; Archibald et al., 2009; Archibald & Hempson, 

2016). Spatial analyses have observed that BA in SH Africa is drastically reduced when 

ACC is greater than six tropical livestock units, but relationships between grazing pressure 

and area burned are nonlinear since more grazers are required to reduce fuel loads in more 

productive ecosystems (Archibald et al., 2009; Archibald & Hempson, 2016). To account for 

the different agroecological conditions across Africa, we followed the methods proposed by 

Pica-Ciamarra et al. (2007), using reference Maximum Carrying Capacity values provided 

for different levels of annual rainfall and defining four grazing pressure classes based on the 

ratio between the ACC from the GLW3 data set and Maximum Carrying Capacity (Table S2 

in the supporting information).

2.2.2.3. Road Density: We defined a map of high/low road density by applying to the 

Global Roads Inventory Project data set the threshold value of 33.3 m/km2 after which BA 

significantly decreases, as proposed by Archibald et al. (2009).

2.2.3. Fire-Climate Relationship—We investigated the relationship between fire and 

climate on natural lands (i.e., excluding all croplands as defined above) using ecoregion-

level linear models that predict BA as a function of climate variables, temporally integrated 

over meaningful intervals that represent conditions prior to and during the FS.

Three climate variables (P, ER, and SM) were considered because previous studies found 

them to be strong predictors of fire activity and drought in forest and savanna (Daniau et al., 

2013; Higuera et al., 2015; Lehmann et al., 2014; McNally et al., 2017). Previous studies 
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showed that the relationship between fire and climate can be sensitive to the seasonal 

windows examined (Littell et al., 2016); we therefore considered distinct temporal 

accumulation intervals that capture the conditions both antecedent to the FS and concurrent 

with the FS which encompass the influence of climate variability on fuel loading and 

flammability, respectively. The average monthly value of each variable was calculated for 

each ecoregion, and integrated for each year over two temporal intervals: the FS, and the 

water year preceding the fire season (1WY), defined as the 12-month period ending 2 

months before the FS (Abatzoglou et al., 2018).

The relative importance of antecedent and concurrent conditions changes across ecosystems. 

For example, in fuel-limited ecosystems, like SH nonforest, antecedent moisture is the main 

driver of fire activity, because it promotes biomass accumulation and therefore increases the 

amount of available fuel to support subsequent fires (Archibald, Nickless, Scholes, et al., 

2010; Balfour & Howison, 2001; Van Wilgen et al., 2004). In energy-limited systems, like 

tropical forests, unusually dry conditions during the FS promote fire activity because of 

increased flammability (Cochrane, 2003; Higuera et al., 2015; Littell et al., 2016).

Expanding on the approach by Abatzoglou et al. (2018), for each ecoregion the relationship 

between BA and climate time series was explored through a simple linear model. BA was 

log-transformed to satisfy the assumption of normality as BA data are often right skewed 

(Abatzoglou et al., 2018; Higuera et al., 2015). Thus, the base-10 logarithm of the annual 

BA (BALC) in each land cover type (forest, nonforest) of each ecoregion is predicted as the 

linear combination of antecedent (C1) and concurrent (C2) climate conditions, plus an error 

term ε:

log (BALC) = β0 + β1 × C1 + β2 × C2 + ε (1)

The model (1) was built separately for the three climate variables to evaluate the robustness 

of relationships and test whether measures of surface moisture that are more mechanistically 

related to plant-available moisture improve upon those which only consider precipitation; in 

each case, β0, β1, and β2 were estimated through ordinary least squares, and the time series 

of predicted BA (BApred) was computed. The ratio = t(BApred)
t(BA) , between the slope t [Mha/

year] of the linear interpolation of the predicted and observed BA time series is the fraction 

of BA trend that can be explained by the climate variables and represents the degree to 

which climate variables have driven BA changes in our model framework.

To verify the assumption of independence of covariance of the predictor variables, we 

computed the variance inflation factor (VIF), that quantifies the severity of multicollinearity 

of C1 and C2, with VIF > 5 being a common cutoff value for high collinearity (James et al., 

2013).

We computed the Durbin-Watson statistic to assess the temporal autocorrelation (Durbin & 

Watson, 1950). Because in several ecoregions the test-confirmed temporal autocorrelation at 

1 year lags, we also explored a modified version of (1) using the first-order differencing 
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procedure, which is one of the most common remedies for temporal autocorrelation 

(Chatfield, 1996; Wooldridge, 2013).

Given the relatively short time interval of the study, we verified the robustness of the 

analysis by testing the use of simplified versions of (version of (1), using for each ecoregion 

the single time interval that resulted in the largest adjusted coefficient of determination. 

Additionally, we repeated the analysis by using detrended climate and BA time series to fit 

the model, and then applying the model to the original time series.

3. Results

3.1. Burned Area Trends

During the study period, the annual average BA in Africa was 280.6 Mha, 45.7% of which 

was in NH. Of the 112 ecoregions, 81 had significant fire activity; the ecoregions excluded 

from the analysis are prevalently located around the Sahara Desert. Nonforest fires were 

predominant (204.7 Mha/year, 72.9% of the total), followed by forest fires (41.1 Mha/year, 

14.7% of the total) and cropland fires (34.8 Mha/year, 12.4% of the total; (Figure 1, Table 

S1).

Overall, BA in Africa declined by 51.9 Mha (18.5%) during 2002–2016 with 80.3% of the 

decline (41.7 Mha) occurring in NH. Negative trends were statistically significant (p < 0.05) 

in 21 of the 81 ecoregions, 14 of which were in NH. Although several ecoregions showed a 

positive trend, none were statistically significant.

3.2. Impact of Human Factors on BA Trends

The cropland mask derived from the aggregation of the 2002–2015 LC-CCI annual maps 

encompassed a total of 491 Mha (Figure S2a), with only a modest expansion (1.06 Mha) 

observed in the study period. The interannual variability within natural lands and croplands 

is very similar (Figure 1, right column); since it is well established that climate explains 

most of fire interannual variabilities (Andela et al., 2017), this may imply that climate is 

responsible for years with high or low fire activity even in croplands. BA trends have the 

same direction but vary in magnitude, with cropland burning experiencing a steeper negative 

trend than natural land covers in both hemispheres. Overall, croplands account for 31.7% of 

the total BA decline (31.6% in NH, 32.0% in SH).

Livestock pressure (Figure S2b) highly correlates spatially with croplands (Figure S2a), with 

over 50% of the high livestock pressure areas falling within the cropland mask. We 

separately computed BA trends for each livestock pressure class on croplands and on natural 

lands (Table S3). Considering the whole continent, the negative trend is higher with some 

grazing pressure (−1.7% to −1.9% on natural lands, −4.6% to −4.7 % on croplands) than no 

grazing pressure (−0.8% on natural lands, −2.4% on croplands). The two hemispheres, 

however, exhibit a very different behavior, with a strong connection between livestock 

pressure and BA trends in SH both in croplands and natural lands, and a negligible 

connection in NH. In particular, about 75% of BA in NH, and the strongest negative trend 

(−1.9%/year which accounts for 78% of the BA decline), occurred in areas with no livestock 

pressure. Higher level of livestock pressure showed a very similar, albeit slightly lower trend 
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(−1.6%/year, −1.3%/year, and −1.6%/year for low, medium, and high pressure, respectively). 

These results suggest that part of the observed BA reduction in croplands could be attributed 

to grazing, but the decline of BA on natural lands in NH does not appear to be related to 

livestock pressure.

BA trends stratified by road density and land cover are reported in Table S4. At the 

continental level, high road density corresponds to a slightly more pronounced BA trend 

(−0.9% and −1.1% for low and high road density in natural lands, −3.0% and −3.3% in 

croplands), with a stronger relationship in SH than NH. In natural lands, in particular, the 

trend is −0.2% and −0.5% for low and high density in SH, while −1.7% and −1.9% in NH. 

These results suggest that in NH road density is not a likely driver of BA decline in natural 

lands.

3.3. Climate and BA Trends in Natural Lands

Increased ER and surface SM due to a combination of increased rainfall and decreased ETo 

have been observed across much of Africa in the last 15 years (Figure 2). BA in nonforest 

(Figure S4) negatively correlates with all three climate variables at concurrent (FS) and 

antecedent (1WY) time scales in Northern and Central Africa, and positively in Southern 

Africa but only at antecedent time scales. Noticeably, P has a weaker correlation with BA 

than ER and SM in all ecoregions. Considering forests instead (Figure S5), most of the 

ecoregions did not have a strong relationship between BA and either concurrent or 

antecedent climate conditions, and this relationship was predominantly negative.

The linear models (version of (1) were estimated for each ecoregion and land cover, 

separately for each climate variable (Tables S5 and S6). Only two ecoregions had VIF > 5, 

indicating that the use of C1 and C2 in (version of (1) is not redundant.

ER was the best predictor of the overall BA decline, explaining 73.2% of the observed trend, 

followed by SM (60.8 %) and P (30.1 %). SM, however, better reconstructed the interannual 

variability, resulting in slightly lower residuals (mean absolute error, MAE = 2.7%) than ER 

(MAE = 3.0%); P had instead significantly higher residuals (MAE = 4.2%). Considering 

separately the two hemispheres and the two land covers, in NH, ER was the best predictor in 

nonforest, with SM performing only marginally worse. While in NH in forest, SM was a 

better predictor. In SH there is no clear pattern, with all three variables performing similarly 

both in terms of trend and interannual variability. To summarize the results, Figure 3f reports 

the prediction obtained using the best variable for each ecoregion; Figure S6 shows the 

spatial distribution of the best climate predictor for each ecoregion. The results of the 

modified model using the first-order differencing procedure are presented for completeness 

as Figures S6–S10. Temporal autocorrelation was significant only in few ecoregions, and the 

results of the transformed models are consistent with the original models. The simplified 

version of the models (Figure S11) confirmed that ER is the best predictor (69.1% 

explained), followed by SM (52.6 %) and P (26.8 %). The more conservative models based 

on detrended time series further indicate that ER is the best of the three predictors, 

especially in NH Africa (Figure S12). However, the predictive power of the simplified 

models decreased substantially, arguably due to the low interannual BA variability in NH 

Africa, which is problematic when fitting the model to detrended data.
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These results point to increased fuel-moisture in humid area as an alternative explanation of 

the recent decline in BA in Africa. Increased moisture during the FS reduces fuel 

flammability thereby limiting ignitions and fire spread, particularly in wet savannas (mean 

annual precipitation >900 mm/year) where moisture is not a limiting factor for vegetation 

productivity and fuel for fire propagation (Herrmann et al., 2005; N’Datchoh et al., 2015). In 

the drier savanna of Southern Africa, instead, a positive rainfall-fire relationship is observed: 

increased moisture in the years before the FS promotes biomass productivity, and hence 

more dry flammable fuels in the following year (Archibald et al., 2009; Daniau et al., 2013). 

These results are consistent with previous findings by Andela and van der Werf (2014). 

Forests in Africa are located within humid and moist subhumid zones that are not fuel-

limited, and therefore the negative correlation with climate variables is supported by other 

studies that found these ecosystems to be sensitive to fire weather and drought (Bedia et al., 

2015; Van der Werf et al., 2008).

4. Conclusions

We analyzed recent changes in fire activity in Africa using the 2002–2016 Collection 6 

MODIS MCD64A1 Burned Area Product. We observed a strong BA decline in both 

hemispheres, although trends were only statistically significant in NH. Reductions in 

cropland BA accounted for approximately one third of the continent-wide decline, but BA 

declines in natural lands were predominantly associated with climatic conditions, which 

yielded increased near-surface moisture during 2002–2016. Climate variables that account 

for near-surface moisture availability antecedent and concurrent to the fire season were the 

strongest BA predictors. We found that ER explained both the most interannual variability 

and trend in BA of the three moisture variables considered. Overall, these results show that 

climate variables can explain a larger portion of the BA decline in Africa compared to 

previous studies (e.g., Andela & van der Werf, 2014). This outcome may be due to the use of 

more complex climate variables (EM, SM), to the improved empirical models that use 

physically meaningful accumulation time intervals, and to the adoption of ecologically 

relevant spatial analysis units rather than a lattice of square cells (Abatzoglou et al., 2018).

Recent trends in terrestrial moisture may be the result of internal climate variability 

including El Nino-Southern Oscillation (ENSO) and sea surface temperatures in the tropical 

Pacific and Indian Oceans (Andela & van der Werf, 2014; Earl & Simmonds, 2017; Rocha 

& Simmonds, 1997a, 1997b). However, looking at the regional scale, Hulme et al. (2001) 

established strong forcing of ENSO only in southeastern and eastern equatorial Africa, while 

Western Africa region with the strongest decline in BA showed little or no rainfall sensitivity 

to ENSO. Climate model simulations predicted further increase in SM and decrease in 

drought risk in NH Africa in the second half of the century due to increase in precipitation 

and/or decrease in evaporative demand (Berg et al., 2017; Lehner et al., 2017). This may 

imply that current increased fuel moisture is not due to the current cycle of large-scale 

atmospheric processes, and additional research is needed to attribute the origins of such 

trends.

We acknowledge several limitations of this study. All input data sets are inherently affected 

by uncertainties: (i) the accuracy of our cropland mask depends on the LC data set, whose 
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spatial resolution might be too coarse, especially in very fragmented landscapes; (ii) while 

MCD64A1 better detects small fires than previous global BA data sets (Giglio et al., 2018), 

it still underestimates BA in croplands and tropical forests, therefore affecting the 

confidence of our analysis in these land covers; (iii) despite selecting climate data sets 

specifically designed and/or validated in Africa, it is well documented that the scarcity of 

direct observations might cause biases (Akinsanola et al., 2017; Beck, 2017). While the 15-

year study period is relatively short for assessing trends, particularly for fire metrics (Parks 

et al., 2014), the very short fire return intervals in Africa and spatial extents of the 

ecoregions mitigates the risk of finding spurious correlations. Finally, we note that not in all 

ecoregions were we able to adequately model BA trends and interannual variability using 

climate variables alone. This is not unexpected given the numerous other environmental and 

societal factors influencing fire activity, especially in ecoregions where the majority of BA 

occurs in croplands, and where it is likely that human activity is the main driver of long-term 

BA trends. We believe that this research places a high priority on the development of 

continental scale BA models that assess the impact of both human and climate drivers.

Limitations notwithstanding, our finding of a strong relationship between ER, SM, and BA 

in most fire-prone ecoregions in Africa provides new insights into the fire-climate 

relationship in savannas. Although precipitation promotes fuel buildup prior to the fire 

season, climate variables that incorporate additional meteorological inputs arguably better 

reflect plant-available moisture, resulting in better predictive ability in a simple linear model.

We believe that this paper work contributes to a growing body of research aimed at better 

understanding the relationship between anthropogenic pressure, climate, and fire. Our 

findings suggest that, regardless of the magnitude of human contributions, the role of climate 

in the changing fire regimes of Africa should not be ignored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points:

• Burned area in Africa declined by 18.5% (51.9 Mha) from 2002–2016

• The majority of the decline (35.4 Mha) occurred in noncropland areas

• 71.2% of the decline in noncropland burned area can be explained by changes 

in effective rainfall
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Figure 1. 
Left column: (a) Number of times burned during in the 2002–2016 study period (at MODIS 

500-m resolution); (c) average ecoregion burned area fraction per year; (e) linear trends in 

burned area. Gray color represents ecoregions with negligible fire activity (less than 0.5% of 

the ecoregion burned on average). Graticule lines are every 10°. Right column: Burned area 

time series observed by MCD64A1 for (b) whole continent; (d) Northern Hemisphere; (f) 

Southern Hemisphere. In all three cases, the plots report the total burned area (blue lines), 

the burned area detected in croplands (orange lines) and the burned area detected in natural 
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lands (green lines), with the respective trends represented by the dashed lines. Asterisk 

indicates significant trends.
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Figure 2. 
Linear trends in burned area and climate data. Top row, (a–d) Burned area (BA) trends in 

nonforest; middle row (e–h) BA trend in forest; bottom row (i–l) trends of climate variables. 

(a, e) Observed linear trend in burned area; (b, f) modeled linear trends using precipitation as 

a predictor; (c, g) modeled linear trends using effective rainfall as a predictor; (d, h) modeled 

linear trends using soil moisture as a predictor. Gray color represents ecoregions with 

negligible fire activity in each land cover. Graticule lines are every 10°.
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Figure 3. 
Observed and predicted burned area (BA) in natural lands. Linear trends in (a) Northern 

Hemisphere nonforest; (b) Northern Hemisphere forest; (c) Southern Hemisphere nonforest; 

(d) Southern Hemisphere forest; (e) the whole continent; (f) the whole continent, selecting in 

each ecoregion the model with the highest adjusted R2 (Figure S6 in the supporting 

information). (BA obs = burned area observed from MODIS MCD64A1; BA pred = burned 

area predicted by linear models; model was computed with precipitation as predictor; ER = 

effective rainfall; SM = soil moisture; MAE = mean absolute error as a percent of the 

average BA obs).
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