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Abstract

Environmental changes cause stress, Reactive Oxygen Species and unfolded protein accu-

mulation which hamper synaptic activity and trigger cell death. Heat shock proteins (HSPs)

assist protein refolding to maintain proteostasis and cellular integrity. Mechanisms regulat-

ing the activity of HSPs include transcription factors and posttranslational modifications that

ensure a rapid response. HSPs preserve synaptic function in the nervous system upon envi-

ronmental insults or pathological factors and contribute to the coupling between environ-

mental cues and neuron control of development. We have performed a biased screening in

Drosophila melanogaster searching for synaptogenic modulators among HSPs during

development. We explore the role of two small-HSPs (sHSPs), sHSP23 and sHSP26 in

synaptogenesis and neuronal activity. Both sHSPs immunoprecipitate together and the

equilibrium between both chaperones is required for neuronal development and activity.

The molecular mechanism controlling HSP23 and HSP26 accumulation in neurons relies on

a novel gene (CG1561), which we name Pinkman (pkm). We propose that sHSPs and Pkm

are targets to modulate the impact of stress in neurons and to prevent synapse loss.

Introduction

Synaptic dynamics remodel neuronal circuits under stress conditions [1]. The Heat Shock Pro-

tein family (HSPs) is involved in preserving cellular functions such as stress tolerance, protein

folding and degradation, cytoskeleton integrity, cell cycle and cell death [2–7]. HSPs are

molecular chaperones that represent an intracellular protein quality system to maintain cellu-

lar protein homeostasis, preventing aggregation and promoting protein de novo folding or

refolding and degradation of misfolded proteins [8]. In addition, HSPs participate in develop-

mental functions in a stress-independent manner [9, 10]. In Drosophila development small
Heat Shock proteins (sHsps) have a specific temporal and spatial pattern of expression [10]. In

particular, sHsp23 and sHsp26 show high expression levels in CNS during development, sug-

gesting a role in neural development [10].
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sHSPs include a large group of proteins represented in all kingdoms of life [11], with a con-

served protein binding domain of approximately 80 amino-acid alpha crystallin [12]. These

molecular chaperones were initially described as low molecular weight chaperones that associ-

ate early with misfolded proteins and facilitate refolding or degradation by other chaperones

and co-factors [11] [13]. However, members of the sHSPs have diverse functions beyond the

chaperon activity including cytoskeleton assembly [14], the suppression of reactive oxygen

species, anti-inflammatory, autophagy, anti-apoptotic and developmental functions (reviewed

in [2]). sHSPs represent the most extended subfamily of HSPs, albeit the less conserved [15].

sHSPs have a conserved primary structure divided in three elements required for their func-

tion: 1) a variable N-terminal long-sequence related to oligomerization, 2) the conserved α-

crystallin domain required for dimmers formation that represents the main hallmark of sHsps

family, and 3) a flexible short C-terminal sequence mediating oligomers stability [11, 16]. Post-

translational modifications in sHSPs shift the folding/degradation balance and, in conse-

quence, alter dimer or oligomer formation and function [11, 17]. This chaperone control

system modulates critical decisions for the folding or degradation proteins and a failure causes

pathological conditions [17].

HSPs protect synaptic function in the nervous system from environmental insults or patho-

logical factors [18–20] (reviewed in [21]), and are also associated to neurodegenerative dis-

eases, aberrant protein-induced neurotoxicity and disease progression [13]. The sHSPs family

is involved as a non-canonical role in Drosophila development and other biological processes

such as synaptic transmission [22]. However, its implication in synaptic dynamics during

development has not been described yet. Synapse number can be altered due to the influence

of physiological parameters (aging, hormonal state, exercise) [23–26], pathological (neurode-

generative process) [27, 28] or induced conditions (mutants) [29] which alter cellular compo-

nents and pathways [30]. The imbalance between the pro- and anti-synaptogenic pathways

modulates the number of synapses [30]. The neuromuscular junction (NMJ) of Drosophila
melanogaster is a stereotyped structure well established for the study of synapses [31]. Most of

the molecules involved in synaptic transmission are conserved between Drosophila and verte-

brates thus, this model system is well established for the study of synapses [32].

Here, we study the contribution of two sHsps, sHp23 and sHsp26 in the development of the

CNS and synapse modulation. sHsp23 and sHsp26 are expressed in the CNS during the devel-

opment [10, 33, 34] but their function remains unclear. In addition, we describe the function

of CG1561, named Pinkman (Pkm), as a novel putative kinase that interacts with sHSP23 and

sHSP26. Pkm regulates expression and protein stability and participates in the establishment

of synapse number during development.

Materials and methods

Drosophila strains

Flies were maintained at 25˚C in fly food in cycles of 12 hours of light and 12 hours of dark-

ness. The following stocks were used: UAS.LacZ (gift from Dr. Wurz). Fly stocks from the

Bloomington Stock Center: Gal4.D42 (BL-8816), UAS.Hsp23 (BL-30541), P{UAS-mLex-
A-VP16-NFAT}H2/TM3, Sb1 (BL- 66543), P{LexAop-CD8-GFP-2A-CD8-GFP}2; P{UAS-mLex-
A-VP16-NFAT}H2, P{lexAop-rCD2-GFP}3/TM6B, Tb1 (BL-66542). Fly Stocks from Vienna

Stocks Center:Hsp26-GFP-V5-Flag (VDR318685), UAS.Hsp26RNAi and UAS.CG1561RNAi
(VDR106503 KK (1), VDR32634 GD (2) and VDR32635 GD (3)). Fly Stocks from the FlyORF

Zurich ORFeome Project: UAS.Hsp26 (F000796).
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Drosophila dissection and immunostaining

Drosophila third instar larvae were dissected in phosphate-buffered saline (PBS) and fixed with

PFA 4% in phosphate-buffered saline (PBS). Then, the samples were washed with PBST (PBS

with 0.5% Triton X-100) and blocked with 5% bovine serum albumin (BSA) (Sigma) in PBST.

We quantified the total number of active zones per NMJ of third instar larvae. We used the

binary system Gal4/UAS (Brand & Perrimon, 1993) to drive all genetic manipulations to

motor neurons (D42-Gal4). Actives zones were visualized using a mouse monoclonal antibody

nc82 (1:20, DSHB, IA) which identifies the protein Bruchpilot, a presynaptic element. Neuro-

nal membranes were visualized with rabbit anti-HRP (1:300, Jackson ImmunoResearch, West

Grove, PA). Fluorescent secondary antibodies were Alexa 488 (goat anti-mouse, 1:500, Molec-

ular Probes, Eugene, OR) and Alexa 568 (goat anti-rabbit, 1:500, Molecular Probes). Larvae

were mounted in Vectashield medium (Vector Labs, Burlingame, CA). Synapse quantifica-

tions were obtained from the NMJ Drosophilamodel in muscle fiber 6/7 of the third abdomi-

nal segment only to regulate inter-individual data variability.

To localize sHSP23 or sHSP26, third instar larval brain or NMJ were dissected. We use an

Hsp26-GFP-V5 fusion construct. sHSP23 was visualized using an anti-Hsp23 (Sigma-Aldrich

S 0821) (1:500), and sHSP26 was visualized using anti-V5 (1:50) (Invitrogen 1718556) and

anti-GFP mouse (1:50) (Invitrogen A11122). Drosophila brains were mounted in Vectashield

with DAPI medium (Vector Labs, Burlingame, CA).

Image acquisition

Confocal Images were acquired at 1024x256 resolution as serial optical sections every 1 μm.

We used a 63x objective with a Leica Confocal Microscope TCS SP5 II (Mannheim, Germany).

We used IMARIS software (Bitplane, Belfast, UK) to determine the number of mature active

zones with the ‘spot counter’ module.

We visualized Hsp23-Hsp26 co-localization and CaLex signal in ventral ganglia cells of

third instar larva brains. We acquired brain images at 1024x1024 resolution as serial optical

sections every 1μm at 20x objective. We acquired ventral ganglia cells images at 1024x1024 res-

olution, 63x objective with magnification of 2.5. We processed the images and analyzed them

with LAS-AF (Leica Application Suite software).

Antibody generation

To detect sHsp26 protein in western blot we generated (Abmart) a mouse monoclonal anti-

body against the sHsp26 peptide sequence: GKENGAPNGKDK MSLSTLLSLVDELQEPRSP
IYELGLGLHPHSRYVLPLGTQQRRSINGCPCASPICPSSPAGQVLALRREMANRNDIHWPAT
AHVGKDGFQVCMDVAQFKPSELNVKVVDDSILVEGKHEERQDDHGHIMRHFVRRYKVPDGYK
AEQVVSQLSSDGVLTVSIPKPQAVEDKSKERIIQIQQVGPAHLNVKANESEVKGKENGA
PNGKDK

Co-Immunoprecipitation

For biochemical assays, 5–10 adult fly heads were lysed in immunoprecipitation lysis buffer

(NaCl 150 mM, 0,1% Tween-20 (Polyoxyethylene sorbitane monolaureate), TBS pH 7.5). We

incubated Protein A/G agarose beads overnight at 4˚C with 2 μl of the indicated antibody or

control IgG (1:100), followed by incubation at 4˚C for 1 h with supernatants. We washed the

beads and resuspended in 1× SDS–PAGE loading buffer for western blot analysis in a 4%–12%

gradient SDS-PAGE for the detection of sHSP23 and sHSP26. After electro-blotted onto nitro-

cellulose 0.45 μM (GE Healthcare) 100V for 1 hour, we blocked the membranes in
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TBS-Tween-20 buffer with 5% BSA. We incubated the membranes overnight at 4˚C in con-

stant agitation with anti-Hsp23 antibody (1:1000) (Sigma-Aldrich S0821), anti-Hsp26 (1:1000)

(Abmart) We visualized the antibody-protein interaction by chemoluminescence using IRDye

Secondary Antibodies anti-mouse (IRDye 800CW, LI-COR), anti-rabbit (IRDye 680 RD,

LI-COR) and developed with Odyssey equipment. We used three RNAi tools to downregulate

pkm expression to replicate this condition. pkm RNAi 2 was selected to do the rest of experi-

ments due to the evidences we obtained in the blot assay.

Western blot

5–10 head samples were treated with lysis buffer (TBS1x, 150mMNaCl, IP 50x) and then

homogenized and centrifuged 13500 rpm for 5 minutes. After selecting the supernatant we

added NuPage 4x (Invitrogen by Thermo Fisher Scientific) and ß-mercaptoethanol 5%. West-

ern blot analysis samples were run in a 4%–12% gradient SDS-PAGE for the detection of

sHSP23 and sHSP26. After electro-blotted onto nitrocellulose 0.45 μM (GE Healthcare) 100V

for 1 hour, we blocked the membranes in TBS-Tween-20 buffer with 5% BSA. We incubated

the membranes overnight at 4˚C in constant agitation with anti-Hsp23 antibody (1:1000)

(Sigma-Aldrich S0821), anti-Hsp26 (1:1000) (Abmart) We visualized the antibody-protein

interaction by chemo luminescence using IRDye Secondary Antibodies anti-mouse (IRDye

800CW, LI-COR), anti-rabbit (IRDye 680 RD, LI-COR) and developed with Odyssey equip-

ment. Tubulin were used as a control.

Gene expression analysis with qPCR

10–15 head tissue samples were treated and homogenized with Trizol (Ambiend for Life tech-

onologies). Chloroform was added and then centrifuged 13000 rpm at 4˚C for 15 minutes.

After discarding the supernatant, the RNA was treated with Isopropanol and then centrifuged

13000 rpm at 4˚C for 10 minutes and washed with 75% Ethanol. RNA pellet was dissolved in

DNAase RNAase free water. Then we performed a transcriptase reaction and a qPCR assay

using Rp49 gene as a control. Primers for sHsp23, sHsp26, Pinkman and Cat were used: sHsp23
Fv (50-30) TGCCCTTCTATGAGCCCTAC, sHsp23 Rv (30-50) TCCTTTCCGATTTTCGACAC,

sHsp26 Fv (50-30) TAGCCATCGGGAACCTTGTA, sHsp26 Rv (30-50) GTGGACGACTCCATCT
TGGT, pkm Fv (50-30) TCGTGCTGGAGGATCTGTCTT, pkm Rv (30-50) CCCGGCCAATGATATA
GCAT, Catalase Fv (50-30) TTCGATGTCACCAAGGTCTG, Catalase Rv (30-50) TGCTCCACCTCA
GCAAAGTA, rp49 Fv (50-30) CCATACAGGCCCAAGATCGT, rp49 Rv (50-30)

AACCGATGTTGGGCATCAGA.

Statistics

To analyze the data, we used GraphPad Prism 6 GraphPad Software, La Jolla, CA). Data are

shown as mean ± SD. Statistical significance was calculated using D´Agostino & Pearson nor-

mality test and a Student’s two-tailed t-test with Welch-correction. In case data were not nor-

mal, we performed a Student´s two-tailed t-test with Mann–Whitney-U correction. For

multiple comparisons, we used One-way ANOVA test with Bonferroni post-test. �p value

� .05; �� p value� .01; ��� p value� .001; ���� p value<0,0001. p value> .05 were not consid-

ered significant.

Technical considerations

Each experiment condition has its own control sample to reduce external variables.
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Results

Heat shock proteins modify synapses in CNS

To determine the effect of HSPs in synaptogenesis, we used the UAS/Gal4 Drosophila binary

expression system [35] to modifyHsps expression in motor neurons using D42-Gal4 lines. We

used UAS-RNAi lines knockdown sHsp20, sHsp22, sHsp23, sHsp26, sHsp27, sHsp40,Hsp67 Ba,

sHsp27 Bc,Hsp70 Aa,Hsp70 Ba andHsp90 (Fig 1A). To visualize the number of active zones

in the NMJs we used anti-bruchpilot (brp) antibody. The quantification of the active zones

revealed that the knockdown of sHsp20, sHsp22, sHsp26, sHsp27, sHsp40 andHsp90 during

development provoked a reduction in synapse number. In addition, we tested the effect in syn-

apse number of sHsp23, sHsp26 andHsp70 overexpression (Fig 1B). The results show that the

upregulation of sHsp23, sHsp26 or Hsp70 decrease the number of active zones (Fig 1B).

We focused on the role of two sHSPs, sHSP23 and sHSP26, due to their potential role as

non-canonical-sHSPs in the CNS and their unexplored implication in synapses modulation.

The upregulation of sHsp23 in presynaptic neurons causes a reduction in synapse number (Fig

1B). In addition, sHsp26 knockdown or upregulation induces a reduction in synapse number

(Fig 1A and Fig 1B). Thus, the results suggest that sHSP23 is not required for synapse forma-

tion but in excess it is detrimental for the neuron and causes a reduction of synapse number

during development. Besides, modification in any direction of sHsp26 expression affects to the

correct establishment of synapse number during development, suggesting that sHSP26 fine

control is required during development for synapse organization.

According to the interactome (flybase) both chaperones are predicted to physically interact

with each other [36] (Fig 1C and Fig 1D). Furthermore, sHSP23 and sHSP26, both interact

with: CG11534, CG43755 and Pkm (CG1561) proteins [36] (Fig 1C and Fig 1D).

sHSP23 and sHSP26 colocalize in neurons and interact physically

To determine the expression and subcellular localization of sHSP23 and sHSP26 proteins in

larval brain we used a green fluorescent reporter tagged form of sHSP26 (HSP26-GFP-V5)

and we generated a monoclonal specific antibody against sHSP26 (S1 Fig). We dissected third

instar larvae brain and visualized both sHSPs. The data show that sHSP23 and sHSP26 localize

in the cytoplasm of CNS cells, in particular in the optic lobes and the central nerve cord (Fig

2A and 2B‘). The co-localization of both proteins occurs in neuroblasts and also in ganglion

mother cells and differentiated neurons, compatible with a general role in nervous system

development.

To further analyze the presence and co-localization of sHSP23 and sHSP26 we analyzed lar-

vae NMJs (Fig 2C–2F‘). The confocal images show an accumulation and colocalization of

sHSP23 and sHSP26 throughout the NMJ but particularly intense in the synaptic buttons (Fig

2C–2F‘). This observation is compatible with a role in synaptic activity as most of the active

zones are in the synaptic buttons.

sHSP23 and sHSP26 interact physically

In general, sHSPs proteins exhibit regions susceptible of posttranslational modifications

(PTMs) which favor their oligomerization and alter the affinity of interaction by co-chaper-

ones [17, 37]. Since, this mechanism maintains the activity of sHSPs it has been proposed that

it regulates their function [17].

The results show that both proteins are localized in the same sub cellular compartments. To

determine if both chaperones interact physically, we performed a co-immunoprecipitation

assay. We used head protein extracts that were incubated with specific antibodies to

PLOS ONE Chaperones modulate synapses

PLOS ONE | https://doi.org/10.1371/journal.pone.0233231 May 21, 2020 5 / 16

https://doi.org/10.1371/journal.pone.0233231


specifically immobilize each sHSP in Protein A/G agarose beads. Samples were pre-cleared

with untagged beads to avoid unspecified binding. Agarose beads were incubated with HSP23

or HSP26 antibody overnight. Head extract proteins and antibody-bound beads were incu-

bated 1 hour. We revealed the western blot membranes with sHSPs antibodies and the results

show that sHSP23 (Fig 2G lane 2) immunoprecipitation also precipitates HSP26, and vice

versa (Fig 2G lane 3). Both specific bands are corroborated in the input positive control (Fig

2G lane 1) and the lack of signal in the negative control (Fig 2G lane 4) 22c10 antibody). These

results confirm the physical interaction between sHSP23 and sHSP26 (Fig 2H), and it is con-

sistent with their co-localization in the motor neuron buttons.

Pkm interacts with sHSP23 and sHSP26 and modulate synapse number

CG11534, CG43755 and Pkm proteins have been postulated that interact with both sHSP23

and sHSP26 (Flybase). They have unknown functions but predicted to have protein kinase like

activity (Flybase, http://flybi.hms.harvard.edu/results.php). HSPs posttranslational modifica-

tions modulate their function [17] and therefore, we quantified the number of active zones in

the NMJ upon knockdown of each candidate gene. The knockdown of pkm in motor neurons

increases synapses number while we could not find any significant change for CG11534 and

CG43755 knockdown (Fig 3A). In consequence, we focused our study in pkm as a candidate

gene to interact with sHsp23 and sHsp26 in nervous system development.

pkm is a novel gene that encodes a protein with kinase like domains (Flybase) (Fig 3B).

Pkm is reported to physically interact with sHSP23 and sHSP26 [36] (Fig 3C). Posttransla-

tional changes modulate chaperones and co-chaperones interaction and activity [17], thus it is

Fig 1. Small heat shock proteins modulate synapses during Drosophila development. Synapses quantification

screening with sHsps genetic tools underD42 driver expression. (A) Synapses modulation were detected by sHsp20
RNAi (sHsp20#), sHsp22 RNAi (sHsp22#), sHsp23 (sHsp23#), sHsp26 RNAi (Hsp26#), sHsp27 RNAi (Hsp27#),Hsp40
RNAi (Hsp40#),Hsp90 RNAi (Hsp90#), (B)UAS.sHsp23 (Hsp23")UAS.sHsp26 (Hsp26") andUAS.Hsp70 (Hsp70")
samples. One-way ANOVA test with Dunn’s multiple comparisons post-test. �p value� .05; �� p value� .01; ��� p

value� .001. p value> .05 were not considered significant. Error bars show S.D. (C) Diagram of sHsp23 interactome

and (D) diagram of sHsp26 interactome form http://flybi.hms.harvard.edu/results.php.

https://doi.org/10.1371/journal.pone.0233231.g001
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suggested that these mechanisms represent a system to modulate chaperone dynamics.

Accordingly, we did immunoprecipitation assays to determine if Pkm was necessary for the

sHSP23 and sHSP26 complex formation (Fig 3D). The results revealed that pkm knockdown

does not modify the interaction between chaperones, thus pkm expression is dispensable for

sHSP23-sHSP26 physical interaction.

Furthermore, we tested if the expression of pkm could modulate the expression of sHsps. To

evaluate transcription, we did quantitative PCR (qPCR) experiments of pkm, sHsp23, sHsp26
and catalase (Cat) as a positive control. The results show that pkm RNAi proved effective since

its transcription is drastically reduced (Fig 4A). On the other hand, sHsp23, but not sHsp26,

expression is largely increased (Fig 4A). In order to confirm the transcriptional results, we

analyzed the total protein amount of sHSPs upon pkm knockdown and those of sHSP23 and

sHSP26 by Western blot assays (Fig 4B). To silence the expression of pkm we used three RNAi

tools to replicate this condition and to reaffirm the regulation changes that we found with the

qPCR. The knockdown of pkm with pkm RNAi 2 tool provokes an increase in sHSP23 and

sHSP26 proteins (Fig 4C). The data for sHsp23 are consistent with the qPCR assays and sug-

gest that pkm is necessary to restrict sHsp23 expression, while sHsp26 expression is

Fig 2. sHSP23 and sHSP26 colocalize in CNS. (A-F) Confocal microscopy images of 3rd instarDrosophila larval brain

and NMJs. (A) sHSP23 is labeled with anti-GFP antibody driven by D42-Gal4 to visualize its expression in brain

regions (magenta). Scale bar size 100 um. (B) sHSP26 is stained with anti-sHSP23 (green). (A‘-B‘) Magnification

images of larval brain. Arrows indicate neuroblast, arrowheads indicate ganglion mother cells and asterisk indicate

neurons where sHSP23 and sHSP26 colocalize in the cytoplasm. Scale bar size 100 um. (C-F) sHSP26 is labeled with

anti-GFP antibody driven by D42-Gal4 to visualize its expression in NMJ (red), sHSP23 is stained with anti-sHSP23

(green) and neuronal membrane is detected with anti-HRP staining (magenta). Scale bar size 50 um (C‘-F‘)

Magnification images of synaptic boutons in NMJ. (G) Co-Immunoprecipitation assay membrane revealed with

sHSP26 (green, arrow) and sHSP23 (red) antibodies in control samples. Fly heads were lysed in immunoprecipitation

lysis buffer and incubated with protein A/G agarose beads previously treated with sHSP23 or sHSP26 antibody and

IgG antibody as a control. The samples were prepared for western blot analysis. The antibody-protein interaction is

visualized by chemoluminescence. Molecular weights are indicated in all the membrane images. � Unknown/

unspecific band (H) sHSP23 and sHSP26 interaction diagram.

https://doi.org/10.1371/journal.pone.0233231.g002
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independent of pkm expression but protein accumulations is increased upon pkm knockdown.

These data are compatible with sHSP26 posttranslational modifications mediated by Pkm to

control protein stability and degradation.

Pkm modulates synapse number

Small chaperones work as dimers or oligomers to modulate their activity [38], therefore sHSPs

protein-protein interaction opens a potential activity as a complex. Since sHSPs family is char-

acterized by forming oligomer assemblies based on dimers joined [39], we investigated the

coordinated effect of sHSPs and Pkm.

pkm RNAi causes an increase of synapse number in development (Figs 3A, 4D and 4E),

moreover sHsp23 upregulation reduces synapse number and knockdown does not change syn-

apse number during development (Fig 1). We combined pkm RNAi and sHsp23 upregulation
in neurons and we observed an increase in synapse number sample comparable to pkm RNAi
alone, suggesting that the effect of pkm RNAi for synaptogenesis during development is medi-

ated by sHSPs (Fig 4D). These results suggest that the synaptogenic effect of pkm knockdown

is not restricted to sHsp23 upregulation (Fig 4A–4C), thus we investigated the contribution of

sHsp26 in combination with pkm. Protein quantification experiments show that sHSP26 is

accumulated upon pkm RNAi expression but in a lesser extent than sHSP23. To demonstrate

that sHSP26 is the limiting factor in sHSP23/26 complex we upregulated sHsp26 together with

pkm RNAi. Synapse quantifications show that upregulation of sHsp26 can further increase syn-

apse number in pkm RNAi background (Fig 4E). These results suggest that sHSP26 is a limit-

ing factor for synaptogenesis in development and pkm reduction contributes to stabilize

sHSP26 partially but sHsp26 upregulation causes complementary synaptogenesis.

Fig 3. Pkm does not affect to sHSP23-sHSP26 interaction. (A) Quantification of synapse active zones in the NMJ is

shown for the knockdown of all candidate genes genotypes: CG43755 RNAi (CG43755#), CG11534 RNAi (CG11534#)
and pkm RNAi (pkm#). One-way ANOVA test with Bonferroni post-test� P<0.05. Error bars show S.D. (B) pkm
contains a EcKinase like (Ecdysteroid kinase-like) domain between 257–545 aa sequence and a CHK_kinase like

(Choline kinase-like) domain between 346–543 aa sequence. (C) Diagram of Pkm interactome. Pkm physically

interacts with sHSP23 and sHSP26. (D) Co-immunoprecipitation assay membrane revealed with sHSP23 antibody in

control and pkm RNAi samples. Molecular weights are indicated.

https://doi.org/10.1371/journal.pone.0233231.g003
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To further determine if sHSPs protein interaction and pkmmodulation contribute to

synaptogenesis, we altered sHsps expression together and counted synapse number in NMJs.

The joint upregulation of sHsp23 and 26 induces an increase in synapse number (Fig 5A). This

increase contrasts with the reduction elicited by each sHsp when upregulated separately (com-

pare to Fig 1A). Moreover, the upregulation of both chaperones in combination with pkm
knockdown maintains the drastic increase in synapse number and, actually, is of a larger mag-

nitude than the pkm knockdown by itself (Fig 5A). This observation is compatible with a func-

tional interaction of Pkm kinase with at least one of the two sHSP analyzed here.

Finally, the combined knockdown of both sHsps does not alter synapse number. This result

suggests that only the modulation of one single chaperone of this combo produces an imbal-

ance that triggers synapse loss. If both chaperones are reduced in combination, there is no

Fig 4. sHSPs amount is regulated by the novel candidate gene pkm. (A) qPCR assay of pkm RNAi sample measuring

mRNA expression fold change of 3rd instar larval of pkm, sHsp23, sHsp26 expression and Cat as positive control,

normalized with Rp49 as a control. (B) Western blot assay of control and pkm RNAi (pkm#) samples stained against

sHSP23 and sHSP26. We used three RNAi tools to confirm the protein amount changes under pkm downregulation

condition. pkm RNAi 2 was selected due to its efficacy. Tubulin was used as a control. (C) Mean Intensity sHSP23 and

sHSP26 signal are shown for control and pkm RNAi (pkm#) samples. Unpaired T-test Welch´s correction� P<0.05.

Error bars show S.D. (D) Quantification of synapse active zones in the NMJ is shown for the combination of sHsp23
and pkm, sHsp26 downregulation underD42 driver expression. (E) Synapse number quantification in NMJs after

sHsp26 upregulation and pkm downregulation. Unpaired T-test Mann Whitney post-test � p value<0.05; p value> .05

were not considered significant. Error bars show S.D.

https://doi.org/10.1371/journal.pone.0233231.g004
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effect what supports the idea that the equilibrium between sHSP23 and sHSP26 is relevant.

Moreover, sHsp23, sHsp26 and pkm RNAi co-expression show an increase in synapse number

Fig 5. Pkm activity is restricted by sHsps expression. Quantification of synapse active zones in the NMJ is shown for

the combination of sHsps expression and pkm downregulation underD42 driver expression: (A) pkm RNAi (pkm#),
UAS.sHsp23; UAS.sHsps26 (sHsp23"; sHsp26"),UAS.sHsp23; UAS.sHsps26/pkm RNAi (sHsp23"; sHsp26"/pkm#), (B)

UAS.sHsp23 RNAi; UAS.sHsps26 RNAi (sHsp23#; sHsp26#), UAS.sHsp23 RNAi; UAS.sHsps26 RNAi /pkm RNAi

(sHsp23#; sHsp26#/pkm#). One-way ANOVA test with Bonferroni post-test. �p value� .05; �� p value� .01; ��� p

value� .001. p value> .05 were not considered significant. Error bars show S.D. (C) Summary table for the

combination of sHsps expression and pkm downregulation.

https://doi.org/10.1371/journal.pone.0233231.g005
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(Fig 5B). Thus, we conclude that the effect of sHsps upregulation surpasses Pkm contribution

but, sHsps knockdown is not sufficient to prevent the increase in synapse number caused by

pkm knockdown (Fig 5B).

As a result, we suggest that sHSP23 and sHSP26 together form a complex that promotes

synapse formation in presynaptic neurons, Pkm is an anti-synaptogenic element in neurons

through, but not restricted to, the modulation of sHsp23 and sHsp26 (Fig 5C).

Neuronal activity correlates with synapses changes caused by sHSPs and

Pkm

Changes in synapse number are expected to reflect on neuronal activity. To evaluate the cellu-

lar effect of the observed synapse number changes, we took advantage of CalexA system (Cal-

cium-dependent nuclear import of LexA) to perform a functional assay in motor neurons

[40].

CalexA is a tracing system to label neuronal activity based on calcium/NFAT signaling and

the two binary expression systems UAS/Gal4 and LexA/LexAop [41]. We used specific lines to

drive a modified NFAT form to motor neurons (D42.Gal4 and P{LexAop-CD8-GFP-
2A-CD8-GFP}2; P{UAS-mLexA-VP16-NFAT}H2, P{lexAop-rCD2-GFP}3/TM6B, Tb1). The

accumulation of Ca2+ due to the action potentials activates calcineurin which dephosphory-

lates NFAT, provoking its import into the nucleus. NFAT binds to LexAop sequence and

induces the expression of a GFP reporter gene (Fig 6A). Therefore, GFP signal becomes a

reporter of neuronal activity.

To evaluate neuronal activity and sHsps and pkm expression we measured the signal of the

GFP reporter in larva brains (Fig 6B–6E). The sHsp23 and sHsp26 upregulation increases GFP
signal in cells of ventral nerve cord (Fig 6C and 6E) which correlates with an increase in the

number of synapses (Fig 5A). By contrast, pkm knockdown reduces CalexA reporter signal in

motor neurons (Fig 6D and 6E) which correlates with its anti-synaptogenic role in motor neu-

rons. The results indicate that Pkm contribution is not limited to sHSP23 and sHSP26. Here

pkm knockdown reproduces the effect of small chaperones upregulation on neuronal activity.

Besides, we have shown that pkm RNAi synaptogenic effect is not prevented by sHsp23 and

sHsp26 RNAi (Fig 5B). Therefore, additional Pkm targets participate in synapse formation and

neural activity. Taking all these data together, we conclude that sHsps and pkm expression par-

ticipate in synapse formation during development and neuronal activity.

Discussion

Synapse regulation is a central event during nervous system development and adult life. Dis-

ruptions in the establishment of synapses is associated with morphological, cognitive and psy-

chiatric disorders, but the precise mechanisms underlying these disorders remain unknown

[42]. Changes in synapse structure and function are related to paralysis and muscular atrophy

in amyotrophic lateral sclerosis (ALS) [43, 44], impairment of the neuromuscular junction

function and therefore, motor decline [45] or social and cognitive behaviors related to autism

[46]. Thus the study of relevant mechanisms for synapse formation during development is a

need.

Chaperones participate in protein folding maintenance as a mechanism to regulate function

and pathological conditions, but the specific contribution to synapse number during develop-

ment was not addressed. Here we describe the combined contribution of two sHSPs (sHSP23

and sHSP26) to synapse formation and the modulation by a novel putative kinase protein

Pkm. sHsp23mRNA and total protein amount increases upon pkm knockdown, suggesting a

transcriptional negative regulation by Pkm.
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The results show that sHsp26mRNA levels do not show significant changes after pkm
expression interference. However,HSP26 in yeast is degraded via a ubiquitin/proteasome-

dependent mechanisms [47], the results from western blot experiments show HSP26 protein

accumulation upon pkm RNAi expression. Therefore, as Pkm is proposed to be a kinase, we

cannot discard that Pkm could promote HSP26 post-transcriptional modifications (phosphor-

ylation) to promote its degradation. According to the putative domains present in Pkm pro-

tein, there are no DNA binding domains and hence it is unlikely that Pkm acts as a

transcription factor. We postulate that the transcriptional regulation of sHsp23 is determined

by transcription factors sensible to posttranslational modifications as direct targets of Pkm.

However, the precise mechanisms and molecular details of Pkm-sHSPs relation require be fur-

ther investigated.

Genetic modifications of one single sHsp (sHsp23 or sHsp26) cause an imbalance in the

equilibrium between both genes, as a consequence it causes a reduction in the number of syn-

apses. These results suggest that single alterations in sHSPs are detrimental for the number of

synapses. However, we propose that sHSP23 function in synaptogenesis requires forming a

complex with sHSP26. sHsp26 upregulation and downregulation modify synapse number in

the same direction (synapse number reduction). However, sHSP23 is the one modulated by

Pkm but sHsp23 downregulation does not change synapse number. It is tempting to speculate

that a reduction in sHSP23 does not affect to CNS development and it has a protective func-

tion more than synaptogenic. However, when sHSP23 and sHSP26 play together they modu-

late synapses, upregulation of both genes cause an increase in synapse number. Moreover, pkm
knockdown increases synapse number but does not further increase synapse number upon

sHsps overexpression, indicating that pkm effect on synapses is mediated by sHsps regulation.

In addition, the combined silencing of sHsps does not alter synapse number, in line with the

proposal of sHSPs equilibrium. But pkm knockdown increases significantly the number of syn-

apses in sHsps knockdown background. These results suggest that pkm is a repressor of sHsps

Fig 6. sHSPs contribute to neuronal activity GFP signal. (A) CalexA system labels neuronal activity based on

calcium/NFAT signaling after a neuronal action potential and the two binary expression systemsUAS/Gal4 and LexA/
LexAop. The accumulation of calcium activates calcineurin that dephosphorylates NFAT that are imported to the

nucleus. NFAT binds to LexAop sequence and induces the expression of GFP reporter gene that correlates with

neuronal activity. (B-D) Confocal microscopy images of 3rd instarDrosophila larval ventral nerve cord of (B) control,

(C) UAS.sHsp23; UAS.sHsps26 (sHsp23"; sHsp26"), (D) pkm RNAi (pkm#) samples. (E) GFPmean intensity signal

quantification is shown for sHsps expression and pkm downregulation underD42 driver expression:UAS.sHsp23;
UAS.sHsps26 (sHsp23"; sHsp26"), pkm RNAi (pkm#), One-way ANOVA test with Bonferroni post-test.; ��� p

value = 0.002. ���� p value<0,0001;. p value> .05 were not considered significant. Error bars show S.D.

https://doi.org/10.1371/journal.pone.0233231.g006
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and pkm RNAi counteracts the reduction of sHSPs. Thus we speculate with the hypothesis of

sHSP26 acting as a synapse modulator and sHSP23 as a protective partner regulated by Pkm.

A direct consequence of sHspsmodulation is a reduction in neuronal intracellular calcium

levels in the brain, an indicator of neuronal activity. Co-overexpression of both sHSPs results

in enhanced intracellular calcium activity directly associated to neuronal activity. Therefore,

small chaperones are required for the formation of the correct synapse number in NMJs and

also can stimulate brain activity. These results connect neural activity and chaperones, which

are proteins that sense environmental changes and in consequence, link neural activity and

environment during development. In particular, these two chaperons are associated to temper-

ature changes [48, 49], environmental-stress-induced degeneration [50, 51] and lifespan [52].

Besides, maternal loading of sHSP23 determines embryonic thermal tolerance pointing to a

physiological role during development [53]. All these evidences support that sHsp disruption

during embryogenesis and development can be associated to physiological defects in adult-

hood, therefore Pkm-sHSPs contribution during development is proposed as a central mecha-

nism for nervous system correct formation, function and response to environmental stress.

Supporting information

S1 Fig. Tools validation. (A-B) To validate if the antibody that we generated against sHsp26 is

specific, we knocked down sHsp26 in the posterior compartment of wing imaginal disc

(engrailed-Gal4) and visualized the specific domain with the co-expression of GFP. (C) The

quantifications of pixel intensity show that anti-sHsp26 recognizes the reduction of sHsp26
expression caused by UAS-sHsp26 RNAi. Unpaired T-test Welch´s correction ���� p

value<0,0001. Error bars show S.D.

(TIF)

S1 Raw images.

(PDF)
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