Table 4. Comparison of the N-SRS, the R-FSRS, and other machine learning methods performance on the Validation cohort.
N-SRS | R-FSRS (both genders) | R-FSRS (men) | R-FSRS (women) | Log. Reg | CART | Random Forest | XGBoost | |
---|---|---|---|---|---|---|---|---|
Sensitivity | 0.8986 | 0.8403 | 0.8411 | 0.8396 | 0.8576 | 0.8402 | 0.9055 | 0.9076 |
Specificity | 0.4019 | 0.3663 | 0.3786 | 0.3565 | 0.3733 | 0.3599 | 0.4078 | 0.4092 |
Precision | 0.9395 | 0.9320 | 0.9329 | 0.9313 | 0.9349 | 0.9348 | 0.9407 | 0.9455 |
NPV | 0.2771 | 0.1815 | 0.1882 | 0.1762 | 0.2026 | 0.1805 | 0.2811 | 0.2818 |
PPV | 0.9395 | 0.9320 | 0.9329 | 0.9313 | 0.9345 | 0.9317 | 0.9421 | 0.9446 |
AUC | 0.7403 | 0.6491 | 0.6246 | 0.6735 | 0.7065 | 0.6829 | 0.7482 | 0.7501 |
AUC (95% CI) | 0.7149–0.771 | 0.6266–0.6716 | 0.5931–0.6555 | 0.6411–0.7058 | 0.6772–0.7558 | 0.6484–0.7175 | 0.7198–0.7801 | 0.7202–0.7856 |
calibration χ2 | 7.12 | 36.66 | 37.42 | 35.98 | 25.03 | 35.76 | 6.67 | 6.52 |