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Abstract

Introduction—Over the past couple of years, the cost of drug development has sharply increased 

along with the high rate of clinical trial failures. Such increase in expenses is partially due to the 

inability of the “one drug – one target” approach to predict drug side effects and toxicities. To 

tackle this issue, an alternative approach, known as polypharmacology, is being adopted to study 

small molecule interactions with multiple targets. Apart from developing more potent and effective 

drugs, this approach allows for studies of off-target activities and the facilitation of drug 

repositioning. Although exhaustive polypharmacology studies in-vitro or in-vivo are not practical, 

computational methods of predicting unknown targets or side effects are being developed.

Areas Covered—This article describes various computational approaches that have been 

developed to study polypharmacology profiles of small molecules. It also provides a brief 

description of the algorithms used in these state-of-the-art methods.

Expert opinion—Recent success in computational prediction of multi-targeting drugs has 

established polypharmacology as a promising alternative approach to tackle some of the daunting 

complications in drug discovery. This will not only help discover more effective agents, but also 

present tremendous opportunities to study novel target pharmacology and facilitate drug 

repositioning efforts in the pharmaceutical industry.
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1. Introduction

Before adopting a reductionist approach, pharmaceutical companies relied on phenotypic 

screenings to discover novel drugs. Later, progress in biochemistry and molecular biology 
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allowed researchers to identify key targets in disease mechanisms. The “one drug, one target, 

one disease” approach has helped the pharmaceutical industry develop drugs that act on 

specific targets and understand the molecular mechanisms of drug-target interactions. 

However, the reductionist approach fails to appreciate the complexities of disease pathways 

and the system wide effects of drugs 1.

Recently, the number of clinical trial failures has been increasing. Some system wide 

understanding of small molecule targeting and prediction of side effects well ahead of 

clinical trials can help the pharmaceutical industry curb drug development costs. To address 

this issue, many pharmaceutical companies have begun to share their high-throughput small 

molecule screening data and attempted to understand drug system-wide effects in human. 

Paolini et al. mapped global pharmacological space by assembling a dataset of 276,122 

active compounds and revealed that ~35% of the compounds had activity against more than 

one receptor 2. This is referred to as polypharmacology, the ability of a single agent to 

interact with and modulate multiple receptors. Traditionally, such off-target activity has been 

largely associated with drug side effects. For instance, propoxyphene, used as an analgesic 

agent, is a mu opioid receptor agonist with noncompetitive anti-α3, β4, and neuronal 

nicotinic acetylcholine activity (Figure 1). In 2010, the drug was withdrawn from the market 

owing to some fatal side effects. However, off-target properties can also be beneficial. 

Recently, the promiscuous nature of some drugs has been identified for novel applications to 

treat different diseases, known as drug repositioning. Repurposing previous approved drugs 

significantly decreases the time and cost in drug development compared with developing 

novel drugs from brand-new scaffolds, because previous clinical trial studies provide 

precious data of drug pharmacokinetics/pharmacodynamics (PK/PD) and toxicity profiles. A 

well-known example of drug repositioning is sildenafil (Viagra®), a drug that was originally 

designed for hypertension but is now marketed to treat penile erection dysfunction.

Due to its potential applications and recent successes, polypharmacology has generated great 

interest in drug discovery 3, 4. Kinase inhibitors are a good demonstration of 

polypharmacological properties. For instance, imatinib was initially developed to target the 

BCR-ABL protein, for which it was approved by FDA to treat Chronic Myelogenous 

Leukemia (CML) 5. Interestingly, it was also found to inhibit CD117, platelet-derived 

growth factor receptor (PDGFR), and c-KIT in the later subsequent research. It was then 

approved to use in patients with gastrointestinal stromal tumors 6. Imatinib is now known to 

inhibit even more targets and exerts various pharmacological effects. The signaling 

pathways, which have been identified to be targeted by imatinib are shown in Figure 2. 

Through targeting multiple signaling pathways, such drugs hold some significant advantages 

such as use in a larger population of patients. Also, some of these compounds have been 

reported to produce better therapeutic effects compared with selective drugs 7. Even in the 

field of neurodegenerative medicine, various studies have been reported about the use of 

multi-target-directed ligands to treat complex diseases such as Alzhemer’s Disease (AD), 

Parkinson’s Disease (PD), Huntington’s Disease (HD), and Amyotrophic Lateral Sclerosis 

(ALS) 8–10.

In polypharmacology, one of the most important goals is to rationally design compounds 

that act on multiple key targets driving the pathogenesis of a given disease. Therefore 
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targeting multiple proteins simultaneously stands a good chance to increase drug efficacy 

and decrease the possibility of drug resistance. In order to achieve these goals, it would be 

necessary to develop state-of-art computational techniques for data curation, model 

development, and quantitative predictions. In recent years, polypharmacology databases 

have been developed including STITCH 11, Polypharma 12, SuperTarget 13, IBIS 14, and 

SIDER 15. Tools such as PyMine bring relevant data from disease to chemical structure 

together and provide a convenient platform that could be potentially used for 

polypharmacology studies 16. A variety of methods that could be used to predict unknown 

targets for small molecules can be classified into three categories: structure-based methods, 

ligand-based methods and system biology methods.

In this review, we provide a summary of recent computational methods (Table 1) reported to 

study drug polypharmacology. We expect that a better understanding of the algorithms used 

in these methods will help improve current tools and develop novel technologies for 

polypharmacological studies. It is worth mentioning that, due to the length limit, rather than 

attempting to cover all reported methods, we will briefly discuss a few specific examples in 

each category. Readers are recommended to refer to the original articles for further 

understanding of these methods or other tools of their interest.

1.1. Structure-based Methods

1.1.1 Inverse Docking—Molecular docking of small molecules into the receptor active 

sites is one of the most widely used structure-based methods in the field of computer-aided 

drug discovery. It has been shown that current docking algorithms are able to predict 

docking poses of small molecules similar to experimental structures. Recent advances in 

high-throughput protein crystallography, nuclear magnetic resonance (NMR) spectroscopy, 

and electron microscopy have generated a large number of 3D protein structures in the 

Protein Data Bank (PDB). Availability of such structural data has allowed development of 

inverse docking methods where the primary aim is to dock a small molecule into binding 

sites of multiple targets for hit identification. Unlike traditional docking algorithms where 

small molecules are scored and ranked, in inverse docking target receptors are ranked 

according to their scores. In theory, all of the available docking algorithms should be able to 

carry out inverse docking. However the major challenge is to handle a large amount of 

structural data of macromolecules and implement scoring functions that could accurately 

rank the targets instead of small molecules. It has been found that traditional scoring 

functions used in current docking algorithms are not sufficient to rank targets accurately and 

robustly 46, 47. For example, Wang et al. observed that the original Glide scoring functions 

were insufficient in ranking targets 48, but a binding-site specific correction term was 

included, the results were significantly improved. Kellenberger et al. published another study 

where they ranked the targets using the Gold fitness score and topological molecular 

interaction fingerprint (IFP). It was shown that combination of these two scoring functions 

performed better than any other single docking scoring function 46. These studies suggest 

that novel target-specific scoring functions are needed to accurately rank targets for 

polypharmacological predictions.
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Therefore in recent years, significant efforts have been put to develop modified scoring 

functions specific for target ranking such as INVDOCK 18, TarFisDock 21, and idTarget 19. 

Chen et al. developed the first automated inverse docking method INVDOCK [18]. Briefly 

for each small molecule and target pair, INVDOCK calculates ligand-protein interaction 

energy (ΔELP). In order to screen targets, this energy score is then compared with two 

threshold values: ΔEThreshold calculated from PDB receptor-ligand complex analysis and 

ΔEcompetitor calculated from the ligand present in the PDB structure of that receptor target. 

Targets are considered as binders if the calculated ΔELP is less than ΔEThreshold and 

ΔEcompetitor. The ΔEcompetitor threshold value is used to assess if the given small molecule is 

a better binder than the one present in the crystal structure. INVDOCK has been used in 

many studies that predicted multiple targets of given small molecules49–52. For example, 

Zhao et al. predicted 32 targets for Astragaloside IV (AGS-IV) using INVDOCK method 52. 

In the follow up studies, they experimentally validated three targets, namely calcineurin 

(CN), c-Jun N-terminal kinase (JNK), and angiotensin-converting enzyme (ACE).

Another popular inverse docking tool is idTarget, a webserver for target fishing developed by 

Wang et al. 19. It uses a divide-and-conquer approach where the entire receptor surface is 

used for docking. The search space is limited by adaptively constructing small overlapping 

grids to converge docking results. For each grid an affinity profile is generated with 

Gaussian function and the binding affinity range is used to calculate the width of the 

function. This profile is then employed to compute the Z-score. The target is considered 

significant if a large negative Z value is obtained. For a given binding pocket i and ligand j, 
the Z value can be calculated using the following equations:

Zij = Eij − Ei
sdi

(1)

Ei = ∑
k = 1

Nc
Ek

c /Nc (2)

sdi = (Ek
c − Ei)

2

Nc − 1
(3)

where, Eij is the dock energy of ligand j and pocket i; sdi is the width of the affinity profile 

for pocket i; Ei is the center of the affinity profile for pocket i and Ec is the dock energy from 

the crystal pose. This idTarget method can be used for hit identification. Recently, Kumar et 

al. employed idTarget to predict multiple targets of kinetin 53, and they found that 4 out of 7 

predicted targets are consistent to experimental reports in the subsequent literature search.

1.1.2 Binding Site Similarity—In addition to inverse docking, binding site similarity-

based search is also frequently used for target prediction. It is based on the assumption that 

structurally similar proteins have similar molecular function and thus it is likely that they 

bind to structurally similar compounds. This phenomenon can be explained by the “Lock & 

Key” model that was postulated by Emil Fisher in 1894. Even differing in their overall 
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sequences or structures, proteins may share local similarities in the form of binding sites, 

enabling them to bind similar ligands. Computational tools implemented by the community 

to identify similar binding sites are listed in Table 1. A majority of these tools utilize some 

variations of geometric patterns where the 3D coordinates of proteins are converted into 

simplified patterns that can be compared. The geometric matching of triplets is the most 

commonly used strategy, and the triplets are aligned based on the measurement of the 

distances between each triplet.

The Fingerprints for Ligands And Proteins (FLAP) algorithm was developed recently by 

combining the GRID Molecular Interaction Fields (GRID-MIFs) and pharmacophoric 

features 54. In the initial steps, various chemical probes that cover all types of chemical 

interactions are used to generate MIFs. These MIFs are then converted into pharmacophoric 

features using the weighted energy-based and space-coverage functions. All possible 

combinations of pharmacophoric features are used to generate four-point pharmacophore 

fingerprints, which are used to find ligand-ligand, ligand-receptor, and receptor-receptor 

similarities. The FLAP algorithm has been implemented in BioGPS, an automated method 

that calculates binding site similarities 27. This method works in two steps. First, It uses the 

Fixpdb algorithm for automatic protein structure preparation. In the second step, it employs 

the FLAPsite algorithm for binding site detection using 16 different GRID probes. As 

described earlier the FLAP protocol then calculates MIFs for the binding sites. These MIFs 

can then be superposed against all binding site MIFs in the database. Such binding site 

similarity tools can be used for drug repurposing and hit identifications. By comparing 

binding sites, it can be used in lead optimization process as well.

1.1.3 Inverse Pharmacophore Modeling—Traditionally, pharmacophore modeling is 

used as a ligand-based approach in drug discovery to identify small molecules with similar 

3D features of the active molecule. Recently, advanced pharmacophore methods have been 

developed to map structure-based pharmacophore models of targets with small molecule 

pharmacophoric features 31, 54. One such tool, PharmMapper is devised by Liu et al. to 

predict targets of a given small molecule by reversely mapping small molecule 

conformations to the receptor pharmacophores. Similar to the widely used geometric 

hashing methods, PharmMapper creates a triangle-hashing table from triplets of feature 

points. These ligand-based triangles are then matched with a pre-computed library of 

pharmacophores generated from proteins. The alignment of these set of ligand triplets and 

protein pharmacophore is then carried out using the Kabsch algorithm, and a distance-

dependent score is calculated, which is a weighted sum of point score (Spoint) and vector 

score (Svector) defined as below:

Spoint = ∑
i = 1

n
wi F (p)i = 1 − [ d(p)i

T (p)i
]
2
, d(p)i ≤ T (p)i

0, d(p)i ≤ T (p)i

(4)

Svector = ∑
i = 1

n
wi F (v)i ∗ cosθ (5)
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where, d(p)i is the distance between the ligand point feature p and the matching receptor 

pharmacophore feature; T(p)i is the matching tolerance value for d(p)i; F(v)i is same as F(p)i 

with the directionality difference and θ is the angle between the two vectors from the 

matching pair of vector features in the ligand and pharmacophore. The final fit score is 

calculated using the following equation:

SFinalFit = Spoint + Svector − Spenalty (6)

where, Spenalty is calculated in the same way as Spoint but only between aligned 

pharmacophore excluded volume features and ligand heavy atoms. Final fit score is 

normalized to the range of [0,1]. Chen et al. applied this method to predict targets for a 

series of acenaphtho[1,2]pyrrole derivatives 55, and they identified several tyrosine kinases 

as the putative targets and experimentally validated the results thereafter.

1.1.4 Molecular Dynamic (MD) Simulations—MD simulations are often used to study 

thermodynamics and kinetics of the drug-receptor interactions. Cavalli et al. recently 

reviewed the role of MD simulation and related methods in drug discovery 56. They 

reviewed the theoretical background of MD and enhanced sampling methods most 

consistently used to study ligand-receptor interaction. They also assessed how these 

approaches help improve target affinity and drug residence time for better drug efficacies. In 

particular they discussed that, with the help of sampling techniques, clustering methods and 

accelerated MD simulations, some transient or allosteric binding pockets can be discovered 

using the static X-ray crystallographic structures 57–59.

Also Wade et al. published TRAPP (TRansient Pocket in Proteins), a tool to discover, 

analyze and visualize transient binding pockets in proteins using conformational ensemble 

data obtained from MD simulations 32. The authors showed that TRAPP was able to identify 

transient pockets observed in MD trajectory/conformational ensemble generated from the 

holo-structures with closed or partially closed binding pockets of HSP90. Another widely 

used and successful approach is Markov State Models (MSMs) with clustering algorithms 

and ensemble data generated from MD simulations 57. This technique has been used to 

identify transient pockets as well as to study activation pathway. Pande et al. performed one 

such study to identify intermediate states of c-SRC that can be targeted for drug design 60. 

Obviously, such newly identified transient pockets, although no reports have been published 

yet, can be exploited for polypharmcological agent design or drug repurposing studies.

1.1.5 Fragment-based Multi-target Drug Design—Fragments are small and relatively 

simpler chemical entities as compared to drug/lead-like molecules, and they tend to be more 

promiscuous. A small number of fragments can cover vast chemical search space, and thus 

fragment-based approaches increase probability of finding hits and help in designing novel 

compounds. Therefore they can be used for hit identification, hit-to-lead development, and 

lead optimization. Bottegoni et al. recently published a review article illustrating how 

fragment-based computational approaches can contribute significantly in a drug discovery 

pipeline starting from target identification to hit-to-lead optimization 61. In the article, the 

authors described various biophysical methods for fragment-based screening and how 

multiple solvent crystal structure (MSCS) can be used for multi-target design. The authors 

Chaudhari et al. Page 6

Expert Opin Drug Discov. Author manuscript; available in PMC 2020 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also described various studies indicating promiscuous nature of fragments. Along the same 

line, Hopkins and coworkers extracted the binding promiscuity information of fragments 

from Pfizer corporate screening data that included 220 diverse biological targets and 75,000 

compounds 62. They revealed that smaller molecular weight fragments with less negative 

interacting features had more promiscuous nature towards biological targets than their 

counterparts. Combining such promiscuous fragments of the drugs from multiple drug-

receptor complexes seems to be an obvious and clear strategy to develop 

polypharmacological drugs. Similarly Proschak et al. developed multiSOM, an in-silico 

approach for fragment-based design of polypharmacological ligands 63. It was applied to 

screen molecular fragments targeting 5-lipoxygenase (5-LO) and soluble epoxide hydrolase 

(sEH), and the authors identified fragments that could target both enzymes. Later, they were 

able to develop one of the fragments to a potent dual inhibitor with high affinity to both 

targets (IC50 of 0.03 μM toward 5-LO and 0.17 μM toward sEH).

1.2. Ligand-based Methods

The prediction of unknown targets using ligand-based methods is based on the compound 

properties and activities. One important assumption behind this is that structurally similar 

compounds bind to similar targets. In the past decades, many similarity-based methods have 

been developed to predict the targets of small molecules (Table 1). Herein, we take several 

examples to discuss their methodologies and algorithms.

The Similarity Ensemble Approach (SEA) is a similarity-based method that assesses the 

possibility of a compound binding to a target based on their ligand topological similarities 
37. The statistical method of SEA used to calculate the binding likelihood is similar to that 

applied in Basic Local Alignment Search Tool (BLAST) 64. The SEA dataset consists of 

65,241 ligands, which are annotated into 246 sets of receptors filtered from MDL Drug Data 

Report (MDDR). Firstly, the two-dimensional topological Daylight fingerprints were 

calculated for each ligand, and a pair-wise similarity metric was generated for each ligand in 

each set by calculating the Tanimoto Coefficient (Tc). For each set comparison, Tc between 

ligand pairs that passed the threshold were summed up and termed raw score (Sraw) for that 

comparison set. In the next step, z-score is derived using the following formula:

z − score = Sraw − μ(Srandom)
σrandom

(7)

where, μ(Srandom) is the expected random raw score mean for that combination set size and 

σrandom is the random standard deviation. μ(Srandom) and σrandom values were calculated 

from the statistical model generated from the filtered subset of the MDD database. The z-

score was then converted to the expectation value (E-value) in order to assess the probability 

that the score was achieved by a random chance:

E(z) = P (z)Ndb (8)

where Ndb was the number of sets compared in the database and P(z) was the probability 

that the z-score was achieved by random. Herein, the background z-score has an extreme 

Chaudhari et al. Page 7

Expert Opin Drug Discov. Author manuscript; available in PMC 2020 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



value distribution. As a result, probability of getting better raw score as compared to random 

chance P (Z>z) calculated using the following equation:

P (Z > z) = 1 − exp ( − ex) (9)

where x = − zπ
6 − Γ ′(1)  and Γ′(1) is Euler Mascheroni constant. A matrix of the E-values was 

constructed for all pairs of sets in the database, and using the Kruskal’s algorithm, a 

minimum spanning tree is built as a similarity map. Although the similarity map is 

calculated based on ligand similarities, it is able to generate clusters of targets that are 

biologically related. Keiser et al. applied the SEA method to predict targets for methadone, 

emetine, and loperamide 37. They found that these drugs might act as antagonist of 

muscarinic M3, α2 adrenergic, and neurokinin NK2 receptors, respectively. The follow-up 

experimental studies indeed validated their prediction results.

Alternatively Zauhar et al. developed Shape Signature, a novel fragment-based ligand 

similarity search method65. This program uses smooth surface triangulator (SMART) 

algorithm to generate the ligand surface. In addition to ligand similarity, it can also compare 

the ligand shape with the shape of the binding site. Such shape-based similarity function can 

be further explored for polypharmacological applications during hit identification.

Currently, a variety of machine learning methods such as pairwise kernel method (PKM) 66, 

Gaussian interaction profile (GIP) 67, Laplacian regularized least squares (LapRLS) 68, 

kernel regression 69, kernelized Bayesian matrix factorization with twin kernels (KBMF2K) 
70, and bipartite local method (BLM) 71 have been developed. In a comparison study of 

these methods, Ding et al. concluded that KBMF2K and PKM performed better than the 

other methods 72. Jacob et al. adopted SVM-based PKM method to predict drug-target 

interactions 66. The similarity of drug–target pairs from the drug-drug similarity score and 

the target-target similarity score is computed by following formula:

S((d, t), (d′, t′)) = Sd(d, d′) · St(t, t′) (10)

The generated similarity matrix (kernel) of drug-target pairs is then used to train SVM 

classifier for prediction of drug-target interactions. This algorithm was tested on three 

classes of targets (GPCRs, enzymes and ion channels) and it was reported that the method 

did exceptionally well compared to the traditional ligand-based methods, especially when 

targets do not have any known ligand.

Most recently, a new branch of machine learning known as deep learning is gaining 

significant attention in a variety of areas including drug discovery. The deep feed-forward 

neural network is the most basic deep learning algorithm, and can be characterized by 

cascaded layers of nonlinear processing units for feature extraction and transformation. 

Based on its architecture, several different neural networks have been proposed, including 

convolutional neural network, deep coding network and deep Boltzmann Machine (BM) 73. 

BM consists of a set of binary stochastic visible units used as a training vector in a layer 
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named visible layer. It then successively connects a set of layers filled with binary stochastic 

hidden units named hidden layer 74.

Restricted Boltzmann Machine (RBM) is a modified BM in which the training process can 

be divided into two phases 75. As illustrated by Figure 3 (Top), in the first phase, RBM 

visible layer learns the structure of the input data by its activation function and the output 

will be passed to the first hidden layer. The first hidden layer takes on the role of the visible 

layer, and its output data passes recursively until to the last layer. It is noted that each node 

in a hidden layer receives data from nodes of all previous layers, and the weight for each 

connection of paired nodes is randomly generated. In the second phase, namely 

reconstruction phase (Figure 3, Bottom), the output layer becomes the visible layer. The 

previous output data o is treated as the input data, and then passes backward from the output 

layer to the previous visible layer. In this process, the weights of each connection are the 

same as in the first phase. The difference between output X̄ and the previous X is then back 

propagated against the RBM’s weights, in an iterative learning process, until an error 

minimum is reached. Schneider et al. recently described various deep learning algorithms 

that can be applied for drug discovery 76.

In drug discovery, deep learning algorithms can be used to interpret and understand the 

features extracted from chemical as well as biological data. For example, Lusci et al. 
developed a deep learning-based webserver AquaSol that predicts aqueous solubility of 

drug-like molecules using molecular graphs of compounds 77. They showed that such deep 

learning-based method outperformed other state-of-the-art solubility prediction tools. Most 

recently, researchers have used deep learning algorithms to predict drug-target interactions, 

repurpose drugs, and explore drug novel pharmacological properties using chemogenomics 

data 78, 79. Many start-up companies have emerged to adopt deep learning algorithms for 

their business. For example, the core technology behind Berg LLC (www.berghealth.com) is 

their Berg Interrogative Biology® platform that analyzes patients’ biological and clinical 

data using a proprietary deep learning algorithm. Currently, the company has two small 

molecule drug candidates in clinical trials. Atomwise (www.atomwise.com) is another 

company that developed the first deep convolutional neural network known as AtomNet for 

structure-based drug design. Recently the company reported that its discovery of new Ebola 

treatment using this technology.

1.3. Systems Biology Approaches

Understanding of diseases, especially complex ones has never been so thorough with the 

advent of high-throughput techniques producing gigantic amount of data in fields such as 

genomics, proteomics, and so on. The efforts such as the Connectivity Map Project 41, the 

largest collection of gene-expression profiles for diseases, genetic mutations, and drug 

activities, have significantly facilitated our understanding of disease mechanisms and 

therapeutic treatment. Hopkins et al. introduced the term “Network Pharmacology” and 

suggested that integrating chemogenomics data with network biology will help develop new 

approaches to target disease-causing networks instead of single gene/target 80. Vitali et al. 
also recently used protein-protein interaction network and implemented a network-based 
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method to retrieve different associations with ligands. This has been used to rank targets for 

polypharmacological studies 81.

STITCH is useful database to predict protein-compound interactions 82. The authors 

employed natural language processing text-mining techniques and extracted known protein-

ligand interactions from literature. The data was then used to predict interactions of query 

compounds. A new function was added recently to allow filtration of tissue specific proteins 

in the network 82 based on the data from TISSUES resources 83 and Expression Atlas 84.

Recently our group has embarked on the development of new methods for drug 

polypharmacology predictions. Based on more than 56,000 protein structures and 5,000 

drugs curated in-house, we built an integrated platform to analyze the relationship between 

drugs and their receptors 85. We also implemented a web-based application that can predict 

interactions and visualize the molecular networks based on ligand and receptor annotations, 

chemical similarity, and molecular connectivity maps. Our group has also developed 

Polypharma, which includes all drug-like ligands that bind to more than two distinct proteins 

in PDB 12. It provides a collection of confirmed multi-targeted compounds useful in novel 

target predictions and can be used to predict new multi-targeting compounds. The analysis 

of these multi-targeting compounds can highlight the differences between single-targeting 

and multi-targeting agents.

Most impressively, the current high-throughput methods, such as RNA-Seq, Next 

Generation Sequencing (NGS), and Reverse Protein Phase Array (RPPA), have generated 

significant amount of gene expression data. With such genome-wide data from treated and 

untreated patient samples, one can study the overall functional effects of a small molecule 

and derive gene expression signatures that could be used to build training datasets for 

polypharmacology studies. For instance, Sirota et al. devised a drug repositioning method to 

predict drug effects based on the expression pattern of 100 diseases and 164 drugs 86. In a 

follow-up experimental validation study, they showed that cimetidine could be used to treat 

lung adenocarcinoma.

In addition, the NIH Library of Integrated Network-based Cellular Signature Program 

(LINCS) (http://www.lincsproject.org) is an ambitious community-wide program designed 

to collect and disseminate the massive data constantly generated and updated worldwide 

using multiple advanced methodologies. It is also involved in development of analytical 

tools to predict the response of human cells to interference by drugs, environment, or 

mutations. The database, which contains more than millions of drug-induced gene 

expression profiles, can be used to explore the potential drugs for polypharmacology 43. 

Another software package, Ingenuity® Pathway Analysis, developed by Qiagen, helps 

analyze and visualize data by mapping various chemicals and novel signaling pathways. 

Other tools such as Cystoscope, an open source molecular interaction network visualizer, 

can also be utilized for informatics-based polypharmacology predictions 87.

Chaudhari et al. Page 10

Expert Opin Drug Discov. Author manuscript; available in PMC 2020 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.lincsproject.org


2. Polypharmacological Drug Design (PDD)

Polypharmacological drug design is the concept of rationally designing small molecules that 

can act on multiple targets of interest in order to achieve better efficacies, lower toxicities, 

less resistance, and more convenient administration. Since 2004, Morphy et al. have 

published several articles describing the opportunities, challenges and strategies for 

developing such multi-targeted ligands 88–90. One of the major advantages of this method is 

facilitation of discovery of novel lead compounds with unique structural and chemical 

properties. Although developing multi-targeted drug is extremely challenging, investigators 

have started to make attempts to identify/develop such multi-targeted agents.

Recently, efforts have been made in developing kinase inhibitors with suitable 

polypharmacological profile. For instance, Ciceri et al. employed an inter-family strategy 

based on the fact that the bromodomains play important role in multiple diseases where 

kinase inhibitors are used as therapeutic drugs 91, 92. Through structural modeling, they 

provided a rationale for new polypharmacological drug discovery strategies focused on the 

two complementary target classes. Upon testing 628 kinase inhibitors, they identified PLK1 

inhibitor BI2536 as the potent inhibitor of BRD1 receptor. Comparison of co-crystal 

structures also explained the kinase-bromodomain cross-reactivity (Figure 4) and showed a 

high degree of pharmacophore feature similarity in the binding sites. This demonstrates 

proof of principle that it is possible to develop potent and polypharmacological drugs, an 

idea that is anticipated to add important therapeutic benefits to future healthcare.

Besnard et al. reported about the adaptive optimization algorithm, a novel lead optimization 

approach based on the automated design of compounds using medicinal chemistry 

transformation rules 93. In this method, the ranking of the target is based on predefined 

polypharmacology profile objectives. In the first step, the parent population of chemical 

structures (a set of compounds that needs to be optimized) and a set of ideal objectives 

(properties of an ideal target compound) are generated. The second step is to obtain all 

possible analogues of the parent compounds through medicinal chemistry transformations. 

For each generated analogue, target activity and molecular descriptors are calculated. Based 

on these descriptors, each analogue is then scored against Laplacian-corrected naïve 

Bayesian classifier models built for 784 targets using FCFP6 fingerprints of small 

molecules. Next, analogues are ranked based on the distance between predicted score of the 

analogue and ideal achievement objective using the vector scalarization method.

By combining compounds that meet threshold values with random compounds from a 

previous parent population, a new parent population is generated and the process is iterated 

until no further improvement occurs. This algorithm was tested using donepezil, an 

approved acetylcholinesterase inhibitor, as a starting point to develop new compounds with 

blood brain barrier (BBB) permeability and selectivity against D2 and D4 dopamine 

receptors 93. The authors were able to identify novel compounds with dual activity against 

acetylcholinesterase and D2/D4 dopamine receptors with improved BBB permeability. They 

reported that 75% of the predictions from 800 ligand-receptor interactions studied were 

correct. It suggests that this method can be very useful in the development of novel leads for 

suitable polypharmacology profiles.
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Alzhemer’s Disease (AD) is a complex diseased caused by multiple factors such as 

formation of insoluble neurotoxic plaques of Aβ through amyloid aggregation, oxidative 

stress, hyperphosphorylation of tau protein, calcium imbalance, mitochondrial dysfunction, 

or deterioration of synaptic transmission. Such multi-factorial etiology is most suitable for 

multi-targeted drug discovery approach. For instance, Viegas et al. reported recent advances 

and applications of multi-targeted drug design strategies for AD treatment 94. They 

described various examples of multi-targeted drugs by hybridizing Tacrine with caffeic acid, 

pyrines, carvedilol, ferulic acid, and cystamine. They also discussed Memoquin, a dimeric 

agent with anticholinesterasic and antimuscarinic activity developed by Cavalli and co-

workers. It has IC50 of 1.55 nM for AChE and 108nM against BACE-1. Thus by restoring 

cholinergic deficit and reducing AB expression and accumulation, the agent helps in AD 

recovery. Recently, Grover et al. published highly predictive group-based QSAR (GQSAR) 

model for the fragments of 20 1,4-dihydropyridine (DHP) derivatives. A large combinatorial 

library of DHP analogues was created, the activity of each compound was predicted, and the 

top compounds were analyzed using refined molecular docking. A detailed interaction 

analysis was carried out for the top two compounds (EDC and FDC), which showed 

significant binding affinity for BACE-1 and AChE 95. Cordeiro et al. published a fragment-

based QSAR model that showed 94.06% and 92.92% for sensitivity and specificity in 

training sets respectively for anti-PCa activity 96. Some fragments were extracted from the 

molecules and their contributions to anti-PCa activity were calculated. They identified 

several fragments as potential substructural features responsible of anti-PCa activity. They 

reported new molecular entities designed from fragments with positive contributions as 

possible anti-PCa agents. Success in such studies shows promising future for 

polypharmacological drug design.

3. Conclusions

Pharmaceutical companies have successfully carried out their drug discovery programs 

using a reductionist approach in the last several decades. However, the cost increase in drug 

development has promoted the pharmaceutical industry to opt for alternative strategies, and 

recent success in discovering previously unidentified uses of well-studied FDA drugs has 

provided a great motivation for such efforts. The assumption that similar compounds bind to 

similar targets remains as the basic principle behind most of the polypharmacology studies. 

A major challenge is to develop accurate and robust scoring functions that can rank targets 

instead of small molecules. Currently novel approaches to rational design of multi-targeting 

small molecules are being explored. Apart from classical structure-based and ligand-based 

methods, interest in system biology and bioinformatics-based methods, along with 

community-wide efforts, has increased. These methods are shown to not only predict new 

targets of small molecules, but also help understand the complex dynamics of diseases and 

the molecular interaction pathways underneath.
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4. Expert Opinion

4.1. Key Findings and Potentials

Polypharmacology has certainly emerged as a new paradigm in drug discovery. It is not only 

being used to identify toxicities or new uses for approved drugs but also develop novel 

molecular entities with controlled multiple targeting activities. Recently, we have witnessed 

rapid growth and wide application of polypharmacology studies. Particularly, the successes 

in drug repurposing 97 brought a high expectation to this field and such efforts have become 

international initiatives 98, 99. As polypharmacology can predict drug effects, both on-target 

and off-target, it could provide a better picture of targeting diseases. Therefore, the rational 

polypharmacological drug design holds a great promise and potential for the next generation 

of drug discovery. However, to achieve such ambitious goals and ultimately translate the 

knowledge to effective patient therapies, we still need to overcome a variety of weaknesses 

and challenges.

4.2. Weakness and Challenges

One of the biggest challenges in polypharmacology studies is that we only understand the 

pathways/mechanism of many diseases partially at the molecular level. It is of great issue to 

derive the polypharmacological network using incomplete data. Even after the complex 

networks are constructed 100, understanding the convoluted associations is still a very 

challenging task. Also computational polypharmacology methods rely heavily on 

experimental data for model building or program learning, and frequently such data is either 

missing or varies in quality. For instance, structure-based methods need high quality 3D 

structures of receptors. While this is the case for certain proteins such as kinases, only 

representative structures or no structures are available for many other protein families. There 

is also a tendency in the scientific literature that research efforts concentrate on a small 

number of targets, resulting in the lack of functional annotation of many, sometimes even 

most, family members. In addition, inverse docking suffers from several issues including 

difficulty to address target flexibility and limitations in accurately and efficiently scoring 

targets instead of small molecules. More accurate mining techniques and mapping 

methodologies are needed to analyze the complex data. Currently it is still difficult to 

seamlessly integrate and constantly update the enormous data from non-standard, non-

synchronized sources.

Although it is now possible to study system-wide functional data with the help of high-

throughput screening technologies, integration of such data will provide a better 

understanding of drug effects on complex diseases and their molecular regulation pathways. 

Unfortunately, most computational programs follow the “garbage in, garbage out (GIGO)” 

rule. Hence a close attention needs to be given to the quality of input data and thus a 

significant amount of effort on data curation is required. In addition, most of the current 

methods are implemented either as web servers or standalone packages. Since community 

efforts become more crucial, it will be important to develop portable programming libraries 

which can be employed by the community developers to modify existing or implement new 

toolkits. It is also critical to integrate concepts and approaches into this field from other 
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disciplines such as cheminformatics, bioinformatics, and systems biology, as demonstrated 

by examples such as the SEA 37 and Polypharma 12 methods.

4.3. Current status and future perspective

It is well recognized that, drug polypharmacology goes well beyond target families and drug 

off-targets are poorly understood or largely unknown, in most cases. However, it is 

impossible to exhaustively test all of the chemical and biological space with wet lab 

experiments. Thus more computational approaches are needed, along with increased 

integration of available data. As described above, numerous methods and databases have 

been developed, and of course challenges still lie ahead. However it is acknowledged that 

polypharmacology approaches are showing their promise and will certainly have the 

potential to transform our next-generation drug discovery and development.

During the next 5–10 years, polypharmacology will grow significantly, with more and more 

cutting-edge technologies such as deep learning used to extract unexpected relations of 

biological and chemical entities controlling complex diseases. On one hand, this is important 

for prediction of possible adverse effects of new drugs in the pipeline of development. On 

the other hand, it is particularly helpful for drug repurposing where new indications of 

existing drugs/agents can be identified. To revive the stalling drug discovery engine, both 

public and private sectors have launched new initiatives such as the NCATS program and the 

Cures Within Reach mission (http://http://cureswithinreach.org/). Therefore, in the near 

future we will see wider collaborations between academia and pharmaceutical industry for 

repositioning FDA approved drugs.

Along the same line, advances in computational sciences for polypharmacology prediction 

will continue with more widespread applications in drug discovery, especially deep learning, 

which is essentially to train a computer to take all unstructured big data and look for 

complex relationships in all that big data using methods like artificial neural networks. This 

is something the human brain does naturally, with well-known examples such as the IBM 

cognitive computing platform Watson and the most recent AlphaGo program developed by 

Google DeepMind. Although the application of deep learning in drug discovery is still 

limited, with development of new deep learning algorithms, we have been equipped with a 

potentially game-changing toolbox. Based the success of recent pioneering studies, deep 

learning will be useful for the coming age of big data analysis in pharmaceutical research 

and ultimately personalized precision medicine. Down the road in the next few years, we 

anticipate that more sophisticated, robust, and accurate polypharmacology approaches will 

boom and rational design of more potent but less toxic multi-targeting agents may become 

possible, although it remains extremely challenging at the current stage.
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Article Highlights

• Polypharmacology involves molecular interactions of drugs and multiple 

targets implicated in complicated single or multiple disease pathway signaling 

and treatment. This review article covers computational aspects of 

polypharmacology studies.

• Polypharmacology is alternative to the traditional concept of “one drug –one 

target”. Computational polypharmacology studies could predict potential drug 

side effects and disastrous toxicities as well as be used to repurpose existing 

drugs.

• High-level data curation/integration and novel computational approaches have 

been developed, but more are needed for accurate polypharmacology 

prediction.

• Deep learning is being adopted for retrieving hidden and complex relations 

between biological targets and chemical entities.

• Numerous attempts have been made to develop new molecular entities with 

optimized polypharmacology profiles.

• Significant challenges still lie ahead for polypharmacology studies, in 

particular for rational design of effective multi-targeting agents.
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Figure 1. 
Multiple targets of propoxyphene, along with its medical use and side effects.
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Figure 2. 
The polypharmacology profile of imatinib, generated using the QIAGEN’s Ingenuity® 

Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity).
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Figure 3. 
Top: in the first phase, input data x is passed through hidden layers to the final output layer. 

Bottom: in the reconstruction phase, the output results o are passed from output layer to the 

previous visible layer.
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Figure 4. 
Binding of the small molecule BI2536 in A) the binding pocket of PLK1 receptor (PDB ID: 

2RKU); and B) the binding pocket of the first bromodomain of human BRD4 (PDB ID: 

4OGI).
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Table 1

Methods and algorithms used for polypharmacology studies

Methods Algorithms Used Web Links

Structure-based Methods

DOCK17
Geometric shape matching algorithm, anchor and 
grow algorithm http://dock.compbio.ucsf.edu/

INVDOCK 18 Geometric algorithm http://bidd.nus.edu.sg/group/softwares/invdock.htm

idTarget 19 Modified DOCK algorithm http://idtarget.rcas.sinica.edu.tw

DRAR-CPI 20 Connectivity maps with DOCK6 algorithm http://cpi.bio-x.cn/drar/

TarFisDock 21 Modified DOCK Algorithm http://www.dddc.ac.cn/tarfisdock/

Glide 22 Stochastic Search Algorithm http://www.schrodinger.com/Glide

FRED23 Stochastic Search Algorithm https://docs.eyesopen.com/oedocking/fred.html

SiteEngines 24 Geometric hashing method http://bioinfo3d.cs.tau.ac.il/SiteEngine/

SuMo 25 Geometric matching of triplets http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome

IsoMIF Finder 26 FLAP algorithm, Tanimoto coefficient http://bcb.med.usherbrooke.ca/imfi.php

BioGPS27 FLAP algorithm NA

PocketMatch 28 Greedy alignment algorithm, PM scoring method http://proline.physics.iisc.ernet.in/pocketmatch/

PARIS 29 Convolution kernel based method http://cbio.ensmp.fr/paris/paris.html

BSAlign 30 Subgraph algorithm http://www.aungz.com/BSAlign/index.htm

PharmMapper 31 Kabsch Algorithm http://59.78.96.61/pharmmapper/

TRAP 32 MD simulation, ARDR and PCA http://trapp.h-its.org/trapp/

GANDI 33 Genetic algorithm with tabu search http://www.biochem-caflisch.uzh.ch/download/

AutoT&T 34 Automatic tailoring and transplanting algorithm http://www.sioc-ccbg.ac.cn/software/att2/

ReCore 35 Geometric rank searching algorithm https://www.biosolveit.de/ReCore/

AutoGrow 36 Click chemistry assisted evolutionary algorithm http://autogrow.ucsd.edu

Ligand-based Methods

SEA 37 Chemical similarity, Kruskal’s algorithm http://sea.bkslab.org

TarPred 38
Extended-connectivity fingerprint 4 (ECFP4), 
Tanimoto Coefficient http://www.dddc.ac.cn/tarpred

SuperPred 39
Extended-connectivity fingerprint 4 (ECFP4), 
Tanimoto Coefficient http://prediction.charite.de

SwissTarget 40 Chemical and structure similarity http://www.swisstargetprediction.ch

System Biology Methods

Cmap 41 Pattern matching https://www.broadinstitute.org/cmap/

STITCH11, 42 Text mining http://stitch.embl.de/

LINCS Canvas Browser43 LINCS database browser http://www.maayanlab.net/LINCS/LCB/

Ingenuity Pathway Analysis ® Pathway analysis http://www.ingenuity.com/

cBIOPortal44, 45
A web portal to visualize genomics and proteomic 
data http://www.cbioportal.org/
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