Skip to main content
. 2020 May 11;16(5):e1007885. doi: 10.1371/journal.pcbi.1007885

Fig 8. Divergence of scale-specific signal variance from global similarity bounds accounts for age differences in coarse-scale entropy.

Fig 8

(A, B) A global similarity bound does not reflect the spectral shape, thus leading to disproportionally liberal criteria at coarse scales following the successive removal of high-frequency variance (see Fig 2C–2E for the schematic example). Scale-dependent variance is more quickly reduced in older compared to younger adults (A) due to the removal of more prevalent high-frequency variance in the older group (B). This leads to a differential bias across age groups, as reflected in the differentially mismatched distance between global and scale-dependent similarity bounds at coarser scales. (C) Removing this bias by adjusting the similarity bounds to the scale-dependent signal is associated with increases in coarse-scale entropy. This shift is more pronounced in older adults following the removal of a more prevalent bias. (D) With global similarity bounds, coarse-scale entropy strongly reflects high frequency power due to the proportionally more liberal similarity threshold associated. Low frequency power < 8 Hz was not consistently related to coarse-scale entropy (log10-power as in D; YA: r = .12; p = .419; OA: r = .36, p = .009). Data in A and B are global averages, data in C and D are averages from frontal ‘Original’ effect cluster (see Fig 7A) at entropy time scales below 8 Hz.