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Epidemiologic and genomic studies have progressively improved our
understanding of the causation of hypertension and the complex rela-
tionship with diet and environment. The majority of Mendelian forms
of syndromic hypotension and hypertension (HTN) have all been
linked to mutations in genes whose encoded proteins regulate salt-
water balance in the kidney, supporting the primacy of the kidneys
in blood pressure regulation. There are more than 1,477 single nucle-
otide polymorphisms associated with blood pressure and hyperten-
sion and the challenge is establishing a causal role for these variants.
Hypertension is a complex multifactorial phenotype and it is likely to
be influenced by multiple factors including interactions between diet
and lifestyle factors, microbiome, and epigenetics. Given the finite ge-
netic variability that is possible in humans, it is likely that incremental

The major risk factor underpinning cardiovascular (CV)
diseases is hypertension which directly accounts for up to
10.5 million of the 18 million CV deaths that occur annu-
ally or 12% of total global deaths.! By 2025, hypertension
is projected to affect more than 1.5 billion people globally
and modeling indicates that effective control of hyper-
tension through improving treatment rates and lifestyle
measures could save more lives than any other clinical in-
tervention.? Epidemiologic and genomic studies have pro-
gressively improved our understanding of the causation of
hypertension and the complex relationship with diet and en-
vironment. Family studies have consistently demonstrated
a genetic component influencing blood pressure (BP)
and hypertension (HTN). The Montreal adoption study®
demonstrated correlation coefficients of 0.38 and 0.16 be-
tween biological and adoptive sibs, respectively, indicating
that 61% of the population correlation for systolic BP was
due to shared genes and 39% to environment shared by both
parents and children. The heritability of clinic systolic BP
and diastolic BP is around 15-40% and 15-30%, respectively,
whereas for ambulatory night-time systolic and diastolic BP
the heritabilities are, respectively, 32-70% and 32-50%.*°
The identification of rare mutations in genes causing
monogenic forms of HTN come from linkage analysis of
pedigrees exhibiting a Mendelian pattern of inheritance of
the BP phenotype. The study of monogenic syndromes has
expanded our understanding of some of the pathways that

gains from single marker analyses have now plateaued and a greater
leap in our understanding of the genetic basis of disease will come from
integration of other omics and the interacting environmental factors.
In this review, we focus on emerging results from the microbiome
and metabolomics and discuss how leveraging these findings may
facilitate a deeper understanding of the interrelationships between
genomics, diet, and microbial ecology in humans in the causation of
essential hypertension.
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regulate blood pressure. Table 1 summarizes the different
forms of monogenic hypertension, their key features, and
causal genes and they are detailed in recent authoritative
reviews.®8 The majority of Mendelian forms of syndromic
hypotension and HTN have all been linked to mutations
in genes whose encoded proteins regulate salt-water bal-
ance in the kidney, supporting the primacy of the kidneys
in BP regulation.® While these monogenic mutations are
germline mutations which are inherited, there is now rec-
ognition of somatic mutations that cause aldosteronism and
hypertension. A gain-of-function somatic mutation in a K*
channel, KCNJ5, which results in membrane depolarization
and enhanced aldosterone production, is a common genetic
defect noted for ~40% of aldosterone-producing adenomas
(APAs).> Mutations in three other genes, encoding the
a-subunit of Na*-K*-ATPase (ATP1A1); ATP2B3, a plasma
membrane Ca?*-ATPase homologous to the sarcoplasmic
endoplasmic reticulum Ca?*-ATPases (SERCA); and
CACNAID, encoding an L-type Ca?" channel CaV1.3, are
observed in ~7% of the cases.®

The era of genome-wide association studies (GWAS)
commenced in 2007, resulting in 4,346 publications and
166,103 associations for a wide range of polygenic traits in-
cluding hypertension and BP (https://www.ebi.ac.uk/gwas/
home). The hypothesis underlying GWAS is that common
variations (single nucleotide polymorphisms (SNPs))
can have significant impact on common traits and thence

Correspondence: Sandosh Padmanabhan (sandosh.padmanabhan@
glasgow.ac.uk).

Initially submitted January 26, 2020; date of first revision February 10,
2020; accepted for publication February 11, 2020; online publication
February 15, 2020.

'Department of Twin Research, King’s College London, London SE1 7EH,
UK; 2Institute of Cardiovascular and Medical Sciences, University of
Glasgow, Glasgow G12 8TA, UK.

© American Journal of Hypertension, Ltd 2020. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

American Journal of Hypertension 33(6) June 2020 473


https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/home
mailto:sandosh.padmanabhan@glasgow.ac.uk?subject=
mailto:sandosh.padmanabhan@glasgow.ac.uk?subject=
http://orcid.org/0000-0003-3869-5808

Louca et al.

Table 1. Monogenic forms of hypertension and hypotension

Aldosterone Serum K*  Catecholamines Treatment

Syndrome Gene BP  Renin
Liddle syndrome SCNN1B Tt L
MIM 177200 - SCNN1G
Gitelman syndrome SLC12A3 by Tt
MIM 263800
Bartter syndrome SLC12A1 Ll Tt
MIM 601678, 241200, KCNJ1
602522, 613090, 300971 CLCNKB
BSND
CLCNKA
CLCNKB
MAGED?2,
MAGED,
BARTS5
Familial hyperaldosteronism CYP11B1 t1 ("
KCNJ5
MIM 103900, 605635,
613677
“glucocorticoid remediable
aldosteronism”
Apparent mineralocorticoid HSD11B2 Tt L
excess (AME)
MIM 218030
Pseudohypoaldosteronism NR3C2 0 Tt
WNK4
MIM 177735, 614491, WNK1 L
614492, 614495, 614496  KLHL3
“Gordon syndrome” CUL3
Sporadic aldosterone- KCNJ5 t1 L
producing adenoma ATP1A1
(APA), or primary CACNA1D
aldosteronism ATP2B3
Hypertension exacerbation NR3C2 t1 0d
in pregnancy
MIM 605115
11B-hydroxylase CYP11B1 t1 e
MIM 202010
3B-hydroxysteroid HSD3B2 t1 Iy
dehydrogenase
OMIM 613890
17a-hydroxylase CYP17A1 t1 L
deficiency
MIM 202110
21-Hydroxylase deficiency CYP21A2 t1 Iy
MIM 201910
Hypertension and PDE3A Tt —
brachydactyly syndrome
MIM 112410
“Bilginturan syndrome”
Paragangliomas (PGL1-5) SDHD t1 —
MIM 168000, 601650, SDHAF2
605373, 115310, 614165 SDHC
SDHB
SDHA
von Hippel-Lindau VHL Tt —
syndrome
MIM 193300
Multiple endocrine RET t1 —
neoplasia, type IIA
MIM 171400
NOS3-pregnancy-induced NOS3 Tt —

hypertension
MIM +163729
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Amiloride or triamterene

Oral potassium
and magnesium
supplementation with
adequate salt and water

Potassium supplementation
and use of
cyclooxygenase inhibitors,
angiotensin converting
enzyme (ACE)-
inhibitors and potassium
sparing diuretics

Dexamethasone

Low sodium diet and
spironolactone

Thiazide diuretics,
prostaglandin inhibitors,
alkalizing agents, and
potassium-binding resins

Surgery, aldosterone
antagonists

Spironolactone
contraindicated; sodium
chloride treatment

Glucocorticoid therapy

Glucocorticoid therapy

Glucocorticoid therapy,
potassium sparing
diuretics

Glucocorticoid therapy

Possible role for PDE3
inhibition

Surgery, adrenergic blockers
(alpha blockade followed
by beta-blockade)
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human health (common disease/common variant hypo-
thesis). There are more than 1,477 SNPs associated with
blood pressure, but these SNPs account for about a third of
the estimated 30-50% heritability of blood pressure and ex-
plain just about 5.7% of the population phenotypic variance
of SBP.#? Multiple reasons have been invoked to explain the
missing heritability of blood pressure including gene-gene
interactions, gene—environment interactions, diet and life-
style factors, microbiome, and epigenetics. Furthermore,
establishing a causal role for common SNPs from GWAS in
essential hypertension has been challenging. Hypertension
is a complex multifactorial phenotype and it is likely to be
influenced by multiple factors including interactions be-
tween these factors. Genome-wide association studies which
only look at single marker associations are blind to this
complex aspect of hypertension pathogenesis. Given the fi-
nite genetic variability that is possible in humans, it is likely
that incremental gains from single marker analyses have
plateaued and a greater leap in our understanding of the
genetic basis of disease will come from integration of other
omics and the interacting environmental factors.!?

In this review, we focus on emerging results from the
microbiome and metabolomics and discuss how leveraging
these findings may facilitate a deeper understanding of the
interrelationships between genomics, diet and microbial
ecology in humans in the causation of essential hypertension
and identify new interventions to manage hypertension.

INSIGHTS FROM GENOMICS AND DIET ON HYPERTENSION

There is consistent epidemiologic evidence between die-
tary sodium intake and blood pressure.!''? The majority of
the Mendelian forms of hypertension and hypotension exert
their effect by perturbing renal sodium handling pathways
(Table 1).8 A classic example is Gitelman syndrome (GS),
which is a salt-losing tubulopathy characterized by hypo-
kalemic metabolic alkalosis with hypomagnesemia and
hypocalciuria.!* With a prevalence at 1-10 per 40,000, and
potentially higher in Asia, GS is arguably the most frequent
inherited tubulopathy. GS is caused by biallelic inactivating
mutations in the SLCI2A3 gene encoding the thiazide-
sensitive sodium chloride cotransporter (NCC), is usually
detected in adolescence or adulthood and exhibits high phe-
notypic variability.!* Affected individuals have low blood
pressure and may present with salt craving (i.e., preference
for salty food or a salted treat during childhood) or in many
cases diagnosed incidentally in asymptomatic adults. The
first GWAS of gene-salt interaction was conducted in 1,876
Chinese participants of the Genetic Epidemiology Network
of Salt-Sensitivity (GenSalt) study with dietary salt intake
imputed from overnight urine collections."* Single SNP
and gene-based analyses identified signals in the following
genes—UST, CLGN, MKNK1, C20rf80, EPHA6, SCOC-ASI,
SCOC, MGAT4D, ARHGAP42, CASP4, and LINC01478 for
gene-sodium intake interaction. A cross-sectional study of
2,728 male Japanese adults where dietary salt consumption
was estimated using electronically collected meal purchase
data from cafeteria showed a nominally significant associ-
ation between salt consumption and the rs5063 SNP in the
NPPA gene."

The most compelling example of gene-salt interaction on
blood pressure comes from a GWAS study that identified
a 5'-promoter SNP, rs13333226 near the Uromodulin gene
(UMOD) which is almost exclusively expressed in the
thick ascending limb of the loop of Henle in the kidney.!®
The minor G allele of this SNP, rs13333226, was associ-
ated with a lower risk of hypertension and reduced uri-
nary UMOD excretion. The main sodium transporter in
thick ascending limb is NKCC2 which is blocked by the
commonly used loop-diuretic furosemide. Trudu et al.'”
showed furosemide treatment significantly enhanced na-
triuresis and reduced BP levels both in the transgenic
mice and in the hypertensive individuals homozygous for
the UMOD increasing allele. This has identified a novel
pathway of blood pressure and renal function regulation
through possible interaction with the sodium transporter
NKCC?2 in the thick ascending limb of the loop of Henle.
This is now the basis of a clinical trial (www.clinicaltrials.
gov, NCT03354897) to reposition a loop diuretic in the hy-
pertension care pathway.

There are only a few studies that looked at diet-gene
interactions. A study of 723 obese adults showed the risk
allele (rs16147-C) in neuropeptide Y (NPY) gene was as-
sociated with a greater reduction of BP phenotypes in re-
sponse to low-fat diet, whereas an opposite genetic effect was
observed in response to high-fat diet.!s

THE MICROBIOME AND HYPERTENSION

The human body is colonized by hundreds of trillions of
microbes, which collectively possess hundreds of times as
many genes as coded in the human genome and is collec-
tively referred to as the “microbiome.”!® The microbiota is
involved in energy harvest and storage, as well as in a variety
of metabolic functions such as fermenting and absorbing
undigested carbohydrates and interaction with the immune
system, providing signals for the normal development of im-
mune functions. Advances in high-throughput sequencing
technology has allowed for the identification of human-
associated microorganisms without the need for culturing.?
Under physiological conditions, there is a balance between
the intestinal bacteria and the host. Disruption of this intri-
cate system (dysbiosis) has been implicated in many human
diseases, including cardiometabolic diseases and hyperten-
sion.?!~2® The gut microbiota can produce a range of bio-
active metabolites, such as enzymes, peptides, antibiotics,
amino acids, hormones, and vitamins that can mediate host
receptor activation, signaling, and immunomodulatory
effects and several of these metabolites have been linked
with CV diseases and drug response.?®2°-3! There is compel-
ling evidence that the gut microbiome is modified by diet
and this has implications on both health and precision med-
icine strategies of this is of relevance in hypertension.*>%

Metabolomics studies have so far identified numerous
circulating metabolites (Supplementary Table) associated
with BP and HTN in cohorts of different ethnicities, gender,
and age range. The metabolites identified fall into these
broad classes: 39% lipids, 27% amino acids, 19% xenobiotic,
7% carbohydrates, 2% energy, 2% nucleotide, 2% peptide,
and 2% cofactors and vitamins?®?34-4, These include 24
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metabolites produced by the gut microbiome and released
into the blood stream. We now describe the most promising
metabolites.

HEXADECANEDIOATE

The dicarboxylic acid hexadecanedioate was significantly
associated both with BP and mortality indicating a sustained
detrimental effect of higher levels of the metabolite through
increased BP* Evidence for a causal role was obtained
by feeding this compound to rats resulting in significant
increases in BP, indicating that it is not a by-product, but a
cause of high blood pressure. Higher hexadecanedioate are
associated with stroke in the Women’s Health Initiative co-
hort** and the Atherosclerosis Risk In Communities study.*®
GWAS showed hexadecanedioate levels to be associated
with genetic variants in ADHIB and SLC01BI,**® In vitro
studies confirmed hexadecanedioate was a novel substrate of
OATP1B1 (encoded by SLCO1B1) as well as OAT1 and OAT3
indicating that is an endogenous biomarker of OATP1BI
function.”” A single copy of a loss-of-function variant in
SLCO1BI increased serum hexadecanedioate levels and
resulted in a 29% increased risk of heart failure incidence in
an African American cohort.>® A potential pharmacogenetic
application of hexadecanedioate is suggested by correlations
observed between BP reduction after amlodipine adminis-
tration with reductions in plasma hexadecanedioate levels.”!
Hexadecanedioic acid is a long chain dicarboxylic acid
which is generated during fatty acid w-oxidation and thence
metabolized by B-oxidation in peroxisomes. w-oxidation is
a minor metabolic pathway that occurs in the smooth en-
doplasmic reticulum and also contributes to 5-10% of total
fatty acids metabolism in the liver. Human w-hydroxylases
are all members of the cytochrome P450 family specifically
CYP4A and CYP4E Following addition of the w-hydroxyl
group, the fatty acid becomes a substrate for alcohol de-
hydrogenase (ADH) which generates an oxo-fatty acid,
followed by generation of the corresponding dicarboxylic
acid via the action of aldehyde dehydrogenases (ALDH).
Furthermore, gene expression of ADHIA, ADHIB and CYP4
involved in w-oxidation pathways were strongly correlated
to hexadecanedioate levels indicating a endogenous bio-
marker for alcohol’s effect on BP.3%5253 Tang et al.> recently
associated hexadecanedioate with Lachnospira, a specific
microbial taxon, and linked the metabolite with vitamin E,
folate, lutein, zeaxanthin, cheese, and tomato intakes.

SHORT-CHAIN FATTY ACIDS

Short-chain fatty acids (SCFA) are microbially mediated
metabolic by-product of dietary fiber fermentation in the
colon subsequently absorbed into the bloodstream of the
host.>> SCFAs can bind to and activate host receptors (Gpr41,
Gpr43, Gprl09a, and Olfr78), thereby acting as a route of
“communication” between gut microbial metabolism and host
physiology. The most common SCFA are acetate, propionate,
and butyrate, which account for ~80% of all SCFAs and are of
significant biological interest, as they have very tangible roles
in modulating direct and indirect BP pathways.>® Studies in
animal models with interventions that manipulated levels of
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SCFAs showed that an increase in SCFA was associated with
lower BP2*57 Decreases in bacterial taxa thought to produce
short chain fatty acids have been reported in two different
rat models of hypertension to increase BP*® while another
study found that rats which received a microbial transplant
which increased blood pressure had higher levels of plasma
acetate.>® Chronic acetate intake in animal models was shown
to reduce both SBP and DBP by 21 mm Hg, and improved
cardiac function in line with the mitigation of inflamma-
tory disorders.?* Propionate has been shown to increase BP
in animal models by stimulating renin secretion through
Olfr78 and Gpr41.”” When wild-type and Olfr78 KO mice
were treated with a mixture of antibiotics with blood pressure
measurements, wild-type mice had a mild increase in blood
pressure on antibiotics, Olfr78 KO mice had a much more
dramatic increase indicating Olfr78 and Gpr41 normally act
in physiologically opposite roles and balance out wide swings
in BP% Additionally, there is evidence for GPR109A and
GPR43 activation by SCFAs in controlling inflammation and
promoting epithelial repair in the colon with implications for
BP regulation through inflammatory pathways.>® Thus, the
role of SCFAs in blood pressure regulation is multi-faceted,
involves at least two different SCFA receptors, multiple species
of bacteria, and multiple host tissues.®® There is data showing
variants in the host genome can influence the composition of
the gut microbiota®! and causal role for SCFA in metabolic
disease was evaluated using Mendelian randomization that
showed host genetic-driven increase in gut production of the
SCFA butyrate is associated with improved insulin response
following an oral glucose test.5 This opens possibilities for
studies to assess the causal relationship between SCFA and
blood pressure in the future.

TRIMETHYLAMINE N-OXIDE

Similar to SCFAs, trimethylamine N-oxide (TMAO)
is generated by gut microbes from choline, betaine, and
carnitine through dietary phosphatidylcholine oxidation.
The plasma level of TMAO is determined by several factors
including diet, gut microbial flora, drug administration and
liver flavin monooxygenase activity.%® There is accruing evi-
dence that TMAO is associated with inflammation and ath-
erosclerosis, though it is unclear whether it is proatherogenic
or just a biomarker of increased cardiovascular disease.®*”
In Sprague-Dawley rats, infusion of TMAO did not affect
BP in normotensive animals, but it prolonged the hyperten-
sive effect of Ang I1.%8 Genomic studies indicate that TMAO
levels are not determined by genetic variation, rather they
reflect the influence diet and gut microbiota.®

4-HYDROXYHIPPURATE

A microbial metabolite of benzoate, 4-hydroxyhippurate,
is the most widely detected urinary metabolite of host-
microbial origin in humans and its urinary concentrations
are modulated by diet, stress, disease, and microbial pres-
ence or activity.’* Zheng et al.*® showed 4-hydroxyhippurate
was associated with incident hypertension in a small study of
896 black normotensive subjects.
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INDOLES

Indoles are products of gut bacterial metabolism of trypto-
phan and have been shown to impact homeostatic processes
including inflammatory pathways,”® gut barrier permea-
bility,”! and impact arterial blood pressure pathways via the
inhibition of serotonin receptor blockers.”

PHENYLACETYLGLUTAMINE

Phenylacetylglutamine is involved in amino acid metab-
olism and has been associated with CV disorders including
diastolic blood pressure, incidence of heart failure,” carotid
femoral pulse wave velocity,”* and overall mortality in chronic
kidney disease patients.”> However, findings appear to be de-
pendent on kidney status and glomerular filtration rate.

Gut microbiota and blood pressure

Studies in animal models of HTN have been instrumental
in understanding the role of gut microbiota and metabolites
and its association with hypertension (Figure 1).247¢ High
salt intake affects the gut microbiome in mice, particularly
by depleting Lactobacillus murinus and treatment of mice
with L. murinus prevented salt-sensitive hypertension by
modulating TH17 cells.”” Rat models of HTN showed a
reduction in the proportion of Bacteroidetes and an in-
crease in Firmicutes in the gut with a corresponding shift
of the metabolic profile.?® In humans, a greater percentage
of Prevotella and reduced abundance of Bacteroidetes
were observed in patients with HTN and prehyperten-
sion compared with healthy controls along with a dif-
ferent metabolic profile.”” In particular, the metabolites
3,4,5-trimethoxycinnamic and S-carboxymethyl-L-cysteine
were lower in prehypertension and HTN compared with
controls. 3,4,5-Trimethoxycinnamic acid suppresses cell ad-
hesion molecules in vascular endothelium protecting against
dysregulated inflammatory disorders. S-carboxymethyl-
L-cysteine, on the other hand, has been shown to mitigate
inflammatory damage.?”’® In the Coronary Artery Risk
Development in Young Adults (CARDIA) study, gut micro-
bial diversity was inversely associated with both hyperten-
sion and systolic BP.”® Finally, antibiotic therapy in the Dahl
salt-sensitive (S) rat and the spontaneously hypertensive rat
(SHR) appeared to increase systolic BP in the former but de-
crease in the latter accompanied by significant alterations in
gut microbiota.®® This highlights potential interactions be-
tween host genome and interventions that modify the gut
microbiome and blood pressure. These results illustrate the
interconnection between potential hypertensive pathways
and microbial metabolites that merit further validation and
elucidation of underpinning mechanisms.

Dietary interventions to modify the microbiome and blood
pressure

Gut microbiota composition and function is shaped from
infancy and persists into adulthood, but it retains some de-
gree of flexibility that allows modulation through exposure

Microbiome
Microbiome Marker marker BP trait Ref
trend
Acetanaerobacterium HTN 4
Acetobacteroides HTN &
Acidaminobacter HTN 2
Adlercreutzia HTN L
Adlercreutzia o TN o
equolifaciens
Aeromicrobium 9 HN 8
massiliense
Alistipes HTN &
Anaerotruncus HTN v
Asteroleplasma HTN £
Bacteroidales N3 HTN LJ
Bacteroides ¥ SBP & DBP 2
Bacteroides HTN i
Bacteroides (genus) N HTN £
Bacteroides (genus) 9P HTN £
Bacteroides
cellulosilyticus L Gay ®
Bacteroides dorei ¥ HTN =
Bacteroides eggerthii N HTN L
Bacteroides nordii N3 HTN &8
Bacteroides uniformis ¥ HTN &
Barnesiella HTN L
Bifidobacterium (genus) N HTN £
Bifidobacterium dentium N3 HTN &
Bilophila N Pre-HTN z
Blautia N SBP & DBP &
Blautia hansenii N3 HTN 8
Blautia product N HTN &
Butyricimonas (genus) N HTN L
Clostridiaceae N3 SBP & DBP ®
Clostridiales ¥ HTN e
Clostridium citroniae ¥ HTN b
Clostridium hathewayi & HTN £
Clostridium IV HTN o
Collinsella aerofaciens ¥ HTN £
Coprococcus N Pre-HTN 2
Desulfovibrio HTN &
Dorea 4 Pre-HTN &
Dorea longicatena N HTN L
Eggerthella lenta 4p HTN &
Eisenbergiella HTN &
Enterobacter ¥ HTN &
Enterococcaceae ) HTN %
Faecalibacterium v — =
prausnitzii
Faecalitalea HTN e
Faecalitalea HTN i
Faecalitalea (genus) N HTN &8
Flavonifractor plautii 0 HTN L
Fusobacterium (genus) & HTN £
Guggenheimella HTN &
Haevmcphllus 0 HIN &
parainfluenzae
Holdemania filiformis N3 HTN =
Intestinibacter bartlettii ¥ HTN £
Intestinimonas HTN w
Klebsiella (genus) N HTN £
Klebsiella (genus) 4qp HTN &8
Klebsiella (genus) 7 HTN =
Klebsiella pneumoniae ) HTN £
Klebsiella variicola 4 HTN &
Lachnoclostridium ¥ Pre-HTN i
Lactobacillaceae ) HTN %0
Lactobacillus HTN 2
Macellibacteroides HTN 2
Megasphaera (genus) N HTN &8
Megasphaera (genus) & HTN L
Megasphaera ¢ = =
micronuciformis
Mitsuokella HTN o
Mitsuokella multacida 1 HTN &
Mollicutes ¥ HTN e
Odoribacter N SBP & DBP &
Odoribacteraceae N3 SBP & DBP )
Olsenella HTN bt
Olsenella HTN &
Parabacteroides HTN o
Parabacteroides HTN &
Parabacteroides merdae t HTN 88
Paraprevotella HTN L4
Paraprevotella HTN b/
Parasutterella HTN &2
Prevotella HTN &
Prevotella (genus) N HTN L
Prevotella (genus) N HTN e
Prevotella bivia N HTN e
Proteiniborus HTN o
Pyramidobacter piscolens qr HTN -
RF3 ¥ HTN &
Robinsoniella ¥ SBP %
Romboutsia HTN i
Roseburia hominis ¥ HTN =
Roseburia intestinalis N HTN =
Roseburia intestinalis N3 HTN &
Ruminococcus HTN o
Ruminococcus (genus) & HTN 8
Shanon index N3 HTN %)
Sporobacter HTN &
Sporobacterium HTN &
Streptococcaceae 4y HTN %0
Streptococcus (genus) qp HTN e
Streptococcus (genus) qp HTN e
Streptococcus infantarius L HTN Ld
Streptococcus 1 I .
pasteurianus
Streptococcus salivarius N HTN 8
Sutterella HTN &
Sutterella HTN &
Sutterella
wadsworthensis & HTN *
Vampirovibrio HTN 8
Victivallis HTN L4

Figure 1. Gut microbiome and blood pressure traits.
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to a variety of environmental factors, the most important of
which is diet.?82

The Mediterranean diet is understood to exert a
cardioprotective effect, including mitigating blood pressure.
This beneficial effect may be partially dependent on changes
to the gut microbiome, two recent studies suggest that
adhering to a Mediterranean diet is associated with a more
favorable gut microbiome composition and increased SCFA
generation potential (increased Faecalibacterium prausnitzii
and Clostridium cluster XIVa).®

The OmniHeart study was a randomized crossover
study of three dietary patterns—OmniCarb diet (58% kcal
from carbohydrates, 15% from protein, and 27% from fat),
OmniProt (10% of the kcal from carbohydrates replaced by
mainly vegetable sourced protein), or OmniMFA (10% of the
kcal from carbohydrates replaced by unsaturated fat).’® An
inverse association was observed for proline-betaine with
SBP and DBP in OmniCarb and OmniMFA diets. Carnitine
was directly associated with SBP in OmniProt, hippurate
with both SBP and DBP in OmniCarb. Comparisons be-
tween OmniProt and OmniMFA diets identified in-
verse associations for BP with 4-cresyl sulfate and with
phenylacetylglutamine, metabolites of tyrosine, and phen-
ylalanine. A metabolite of tryptophan-NAD, N-methyl-2-
pyridone-5-carboxamide was also inversely associated in the
OmniCarb diet compared with baseline.*®

Derkach et al.3 randomly assigned 119 participants a
12-week DASH diet or a 12-week typical American diet (con-
trol). Each participant was randomly assigned high-, me-
dium-, or low-versions of their respective diets, crossing over
after 30 days. They identified six metabolic pathways associ-
ated with higher sodium intake. The strongest associations
were generated from fatty acid, benzoate, methionine, and
tryptophan pathways. Moreover, switching from high- to
low-sodium intake had a greater effect on metabolites in
comparison to switching from high- to medium-sodium,
this effect was particularly apparent for metabolites involved
in the y-glutamyl amino acid pathway® The enzyme re-
sponsible for y-glutamyl metabolite formation y-glutamyl
transferase has previously been positively associated with
prehypertension.®® The key finding from the study does not
relate to BP and comes from the strongest associated me-
tabolite 4-ethylphenylsulfate, which increased with sodium
restriction. This metabolite is generated by gut bacteria and
related to numerous disorders, highlighting this gut-diet-
health interaction.

Lee et al.3¢ investigated serum metabolites associated with
incident HTN within a Korean cohort (n = 1,529), grouping
participants into tertiles of MUFA intake. They reported an
inverse association between the highest MUFA intake group
and risk of HTN when compared with the lowest MUFA in-
take. Moreover, researchers associated MUFA intake with
metabolite concentration, higher MUFA intake was associ-
ated with an increase in the metabolite phosphatidylcholine-
diacyl (PC aa) C 38:1.

CONCLUSIONS

Advances in high throughput genomics, metabolomics
and other omics have vastly increased our understanding
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of the complex architecture of BP and hypertension. The
burgeoning list of genomic variants associated with BP
and hypertension provides a realistic basis for refining the
molecular taxonomy of hypertension, but this requires in-
corporation of other characteristics including lifestyle and
environmental influences in addition to molecular and ge-
nomic information. This step is critical in realizing the
potential of genomics and other omics in precision hyper-
tension prevention and therapy.

SUPPLEMENTARY MATERIAL

Supplementary data are available at American Journal of
Hypertension online.
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