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Sir,

We thank Sperber and Dadashi (2020) for their interest in

our recent paper (Cohen et al., 2019) and the techniques of

lesion network mapping (Boes et al., 2015) and coordinate

network mapping (Darby et al., 2019) more generally. In

their letter, they highlight two methodological concerns: the

size of the normative connectome and the threshold for

defining a region as ‘functionally connected’ (Sperber and

Dadashi, 2020). At present, both parameters represent ‘re-

searcher degrees-of-freedom’ for which there is no accepted

standard or single correct answer (Simmons et al., 2011;

Wicherts et al., 2016). As such, these parameters have varied

across our published studies, raising concern that they were

chosen in an arbitrary manner. However, when organized

chronologically, trends in this variability are apparent

(Table 1). Over time, we have moved to a larger connec-

tome, increased statistical power, and increased statistical

rigor. Further, many of our papers have used multiple

thresholds or even different normative connectomes to en-

sure our conclusions were robust to these parameter choices.

However, this variability raises good questions about

which parameters investigators should choose if they seek to

implement lesion network mapping in their own laboratories.

As such, we thank Sperber and Dadashi for the opportunity

to discuss these issues in greater detail.

Variability in normative
connectome size

Our earliest lesion network mapping studies used resting

state functional connectivity data from 98 healthy young

controls to identify connectivity with each lesion location

(Boes et al., 2015; Fischer et al., 2016; Laganiere et al.,

2016; Darby et al., 2017; Fasano et al., 2017). We chose

this connectome dataset for convenience, as it was high-

quality, locally available, and part of a large ongoing data

collection initiative (Holmes et al., 2015).

To combine connectivity measures for these 98 subjects,

we used a random effects analysis to generate a ‘T map’ that

reflected the statistical probability of connectivity with the le-

sion location, accounting for variance across subjects. An al-

ternative we considered was to average connectivity maps

across the 98 subjects, generating an average ‘r-map’ of

Pearson’s correlation coefficients. This r-map would be con-

sistent across connectomes with differing number of subjects,

but it ignores the variability across subjects and does not

allow one to easily assess the statistical significance of identi-

fied connections represented in the T map.

As this connectome dataset grew in size, we upgraded our

network mapping pipeline to take advantage of an expanded

1000-subject connectome (Darby et al., 2018a, b; Joutsa
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et al., 2018a, b, 2019; Cohen et al., 2019; Corp et al., 2019;

Ferguson et al., 2019; Kim et al., 2019; Padmanabhan et al.,

2019; Weil et al., 2019; Burke et al., 2020; Snider et al.,

2020). Our first lesion network mapping paper using this

expanded connectome compared results to those obtained

using our original 98 subject cohort (Darby et al., 2018a).

Lesion networks generated using both normative connec-

tomes were very similar, with nearly identical spatial distri-

butions of positive and negative connectivity (Darby et al.,

2018a). Average r maps using the 98 and 1000 subject con-

nectomes were also nearly identical, consistent with other

work showing that group connectivity estimates stabilize

above 150–200 subjects (Cremers et al., 2017; Dansereau

et al., 2017; Cui and Gong, 2018; Turner et al., 2018;

Varoquaux, 2018). However, t-values were much larger

using our larger connectome, reflecting the increase in statis-

tical power. When seeking to highlight only the most signifi-

cant connections, a higher t-value threshold was required

(Darby et al., 2018a).

Taking advantage of this increased statistical power, we

found that a range of statistically significant t-value thresh-

olds could be used, as has been done for years with func-

tional MRI activation results, to focus on only the strongest

findings or a broader network of slightly less significant

findings (Darby et al., 2018a, b; Joutsa et al., 2018a, 2019;

Cohen et al., 2019; Corp et al., 2019; Ferguson et al., 2019;

Kim et al., 2019; Padmanabhan et al., 2019; Weil et al.,

2019; Burke et al., 2020; Snider et al., 2020). We also began

using improved statistical methods, including family-wise

error rate (FWE) multiple comparison correction, non-

threshold dependent specificity analyses, and non-parametric

permutation testing for assessing statistical significance

(Winkler et al., 2014; Eklund et al., 2016).

Now, efforts are underway to generate human connectomes

from 100 000 subjects (Miller et al., 2016). Using this connec-

tome for lesion network mapping would again result in

increased t-values, to the point that almost every voxel would

likely be considered ‘statistically significant’. As more and

larger connectomes become available, it will be important to

re-examine approaches for combining connectivity maps

across large cohorts of subjects; and the notion of a ‘statistic-

ally significant’ connection may become irrelevant. Instead,

metrics such as the ‘top 25%’ of connections may become

more useful, an approach that has been used in graph theory

analyses (Bullmore and Sporns, 2009; Power et al., 2011).

Variability in the t-value threshold

As noted above, we have used different t-value thresholds

across different papers using the 1000 subject connectome

to define a region as ‘connected’. This threshold variability is

not unique to lesion network mapping, but is an issue

for many types of functional connectivity analyses

(Reijneveld et al., 2007; Stam and Reijneveld, 2007;

Buckner et al., 2009; Bullmore and Sporns, 2009; Rubinov

and Sporns, 2010; Wang et al., 2010; Power et al., 2011;

Fornito et al., 2015).

Given the difficulty inherent in choosing a threshold, it is

worth asking why we use a threshold at all. When we first

introduced lesion network mapping (Boes et al., 2015), our

primary goal was to show that the method added value

compared to traditional lesion mapping. Using a threshold

for lesion network maps (connected or not), facilitated com-

parison to traditional lesion mapping (lesioned or not). By

binarizing lesion network maps, we were able to use the

same statistical tools used in traditional lesion mapping and

directly compare the two results (Boes et al., 2015).

A second motivation for using a threshold is that it can

help simplify result interpretation, especially when presenting

a new technique or concept. Concluding that ‘95% of lesion

locations causing symptom X are connected to region Y’ is

easy to understand. This result also means that connectivity

with region Y (at the same threshold) defines a brain net-

work that encompasses 95% of lesion locations causing

symptom X. While this number is threshold-dependent and

could change to 98% with a lower t-threshold or 90% with

a higher t-threshold, choosing a threshold can help illustrate

the lesion network mapping concept.

Finally, there are statistical advantages to binarizing a

lesion network map. Because of the spatial autocorrelation

inherent to seed-based connectivity analyses, a lesion net-

work will have extremely high ‘connectivity’ at the lesion lo-

cation itself. This results in high variance at each lesion

location when a cohort of different lesion locations causing

the same symptom is combined. As such, using a one-sample

t-test to combine these maps, as suggested by Sperber and

Dadashi (2020), is biased away from the lesion sites them-

selves, which are likely important locations within the

affected network (Rorden and Karnath, 2004). By threshold-

ing and binarizing lesion network maps prior to combining

them, commonalities across a group of lesions can be identi-

fied without penalizing the lesion locations themselves.

Given that there is potential value in using a t-value

threshold, yet multiple different thresholds could reasonably

be used and values will change with the size of the connec-

tome, how does one choose a threshold? Below we provide

some recommendations:

Methodological recommendations
for lesion network mapping

First, use normative connectomes large enough to provide

stable group-level connectivity estimates, ideally larger than

150 subjects. If possible, we recommend trying to match the

size of the connectome used in prior work, as this allows for

more direct comparisons across studies.

Second, ensure any conclusions based on threshold-

dependent analyses hold true across a range of different

thresholds. We have used this approach in almost all recent

papers, including Cohen et al. (2019), which is demonstrated

visually in Fig. 1. Consistent with this principle, results that

do not hold true across different thresholds should be made

Letter to the Editor BRAIN 2020: 143; 1–6 | e41



explicit and de-emphasized relative to results that are more

robust, an approach we have also used in prior papers

(Fischer et al., 2016; Laganiere et al., 2016; Fasano et al.,
2017).

Third, for simplicity, we often use a single threshold for

presenting our ‘primary’ lesion network overlap results, and

we include results at other thresholds as secondary analyses.

When deciding which threshold to use for the ‘primary’

Figure 1 Lesion network mapping of prosopagnosia is consistent across a range of thresholds. Regions of peak lesion network over-

lap in the fusiform face area (FFA), anterior prefrontal cortex (APFC), middle frontal gyrus (MFG), anterior cingulate cortex (ACC), and superior

frontal gyrus (SFG) are consistent across a range of t-value thresholds. At higher thresholds the percentage overlap decreases, but the topog-

raphy of the lesion network and central findings remain unchanged. L = left; R = right.

e41 | BRAIN 2020: 143; 1–6 Letter to the Editor



analysis, we choose the highest threshold that still demon-

strates the relevant finding, as this will improve specificity.

For example, in Cohen et al. (2019) we could have chosen a

lower t-threshold that was still ‘statistically significant’ and

obtained the same result (Fig. 1); however, the resulting

prosopagnosia network would have been slightly less specific

to prosopagnosia lesions. This principle is responsible for

much of the variation in t-value threshold across our recent

studies (Table 1).

Fourth, complement any threshold-dependent analysis

with a threshold-independent analysis. In the vast majority

of our papers we use unthresholded maps for assessing the

specificity of lesion network mapping results (Table 1). For

example, the conclusion that ‘95% of lesions causing symp-

tom X are connected to region Y’ may be threshold depend-

ent, but the conclusion that ‘lesions causing symptom X are

significantly more connected to region Y then lesions not

causing symptom X’ is not dependent on this parameter.

Fifth, whenever possible, analyse data from multiple inde-

pendent cohorts to test whether lesion network mapping

results, which may have used an arbitrary threshold, are re-

producible across cohorts, independent of thresholds, e.g.

Fig. 8 in Cohen et al. (2019).

Finally, if one is uncomfortable with choosing a threshold

for lesion network analyses, one can avoid using a threshold

at all, a choice we have made in some recent lesion network

mapping reports (Padmanabhan et al., 2019; Snider et al.,

2020). One study used logistic regression to identify connec-

tions that covaried with the severity of loss of consciousness

(Snider et al., 2020) while another focused on connections

that varied significantly with the presence or severity of de-

pression (Padmanabhan et al., 2019). This latter study is

also notable for confirming reproducibility across five inde-

pendent datasets (Padmanabhan et al., 2019).

Future considerations

We anticipate that as the field of lesion network mapping

and coordinate-based network mapping grows, there will be

parallel growth in methodological studies seeking to identify

the best approaches, similar to what has occurred for the

field of functional connectivity in general (Ciric et al., 2017;

Murphy and Fox, 2017; Parkes et al., 2018).

In summary, we thank Sperber and Dadashi for their

interest in lesion network mapping and for the opportunity

to discuss these methodological issues. There is no simple, or

single, solution to the question of how ‘best’ to perform le-

sion network mapping. Presently, we feel that thresholding

lesion connectivity maps provides some utility; however, we

look forward to methodological advances that may circum-

vent this researcher degree of freedom.
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