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Abstract

Bacteria can attach to essentially all materials and form multicellular biofilms with high-level 

tolerance to antimicrobials. Detrimental biofilms are responsible for a variety of problems ranging 

from food and water contamination, bio-corrosion, to drug resistant infections. Besides the 

challenges in control, biofilms are also difficult to detect due to the lack of biofilm-specific 

biomarkers and methods for non-destructive imaging. In this article, we present a concise review 

of recent advancements in this field, with a focus on medical device-associated infections. We also 

discuss the technologies that have potential for non-destructive detection of bacterial biofilms.

Bacterial biofilms

As the oldest life form on earth, bacteria have developed remarkable capabilities to survive 

in harsh environments. One such strategy is to colonize surfaces and form biofilms, which 

are complex structures of bacterial cells embedded in an extracellular matrix comprised of 

polysaccharides, proteins, DNA and lipids produced intrinsically by these bacteria [1]. 

Biofilm cells are up to 1000 times more tolerant to antibiotics than their planktonic 

counterparts, rendering biofilm-related infections largely unresponsive to antibiotic therapies 

[2]. Thus, detrimental biofilms are of great concern especially when formed by pathogenic 

species on implanted medical devices and biomaterials such as indwelling catheters, 

orthopedic implants, cochlear implants, among others [3–6].
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Challenges in biofilm detection

Although a number of methods have become quite routine for biofilm characterization in 

controlled laboratory settings [7•], biofilm detection in clinical settings has multiple 

challenges [8–10]. In general, biofilm associated infections (BAI) are chronic and remain 

local to the infection sites such as an implant. Additionally, clinical evidence suggests that 

for long periods of time biofilms can produce occult, or subclinical, infections, in which the 

inflammatory symptoms are less pronounced than acute infections, only revealing 

themselves when biofilm cells shed off resulting in bacteremia [11]. Usually BAIs involving 

foreign bodies are not confirmed until the device is explanted and even then often a 

diagnosis of biofilm is based on anecdotal evidence [9]. When a biofilm is formed on an 

implanted medical device, it cannot be directly sampled without a surgical procedure. This 

essentially precludes the detection using standard microbiological methods such as bacterial 

culturing on agar plates until intra-operative access. Even if the cells can be sampled, slow-

growing variants of bacteria and dormant persister cells [12] may not form colonies under 

routine culturing conditions and thus cause a false negative result [13]. Culturing methods 

also face challenges with the highly heterogeneous distribution of biofilms and the 

involvement of fastidious strains and/or mixed-species biofilms that require specific growth 

factors [9]. A standardized, reliable method for the detection of biofilms in clinical settings 

is still missing. Besides BAI diagnosis in vivo, microbial detection on explanted medical 

devices is also challenging if the cells are difficult to sample (if trapped in crevices such as 

those in endo-scopes) or culture (if dormant or missing growth factors). Sampling may not 

be effective without removing bacteria using a stronger force such as sonication [14]. In this 

article, we provide a concise review of recent advancements (focusing on the past three 

years) in biofilm detection in medical settings and possible future directions (Figure 1).

Molecular methods

Compared to culturing methods, DNA-based analyses are more sensitive in detecting 

microbes including unculturable cells and samples with mixed species. Conventional 

polymerase chain reaction (PCR)-based approaches target ribosomal RNA for detection 

[15]. Inclusion of specific gene targets can reveal additional information such as antibiotic 

resistance [16••]. Compared to PCR tests that target individual genes, meta-genomic 

sequencing can reveal more information regarding antibiotic resistance, virulence factors 

and other important physiological traits. Recent development of whole-genome sequencing 

(WGS) has drastically improved the throughput and accuracy, and lowered the cost [17•]. 

DNA-based technologies do have limitations, one being the lack of information about the 

viability of cells and not being able to distinguish whether the organisms are in a biofilm or 

planktonic phenotype (if the cells cannot be separated during sampling). Combining DNA 

detection with messenger RNA analysis for biofilm-specific gene expression may be able to 

distinguish the phenotype of the organisms. However, contaminating DNA from the clinical 

environment (including the patient’s skin, surgical instruments, gloves and irritants) are also 

a concern.
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Biofilm associated biomarkers

Although biofilms formed on implanted devices cannot be directly sampled, biofilm growth 

may produce unique molecules, or stimulate biofilm-specific host responses, that can be 

detected using standard methods. Antibodies may not be detectable during acute infections, 

but can be used to help with chronic BAI diagnosis. For example, alpha defensin, an 

antimicrobial peptide produced by the body to fight infection, has been found in the synovial 

fluid of infected hip and knee joints and shows good sensitivity and specificity for 

periprosthetic joint infection (PJI) [18•]. However, like antibody tests, alpha defensin is not 

biofilm specific.

Besides host factors, identifying biofilm-specific markers on bacterial cells will enable 

effective detection of biofilms. Since the discovery of biofilm-associated protein (Bap) in 

Staphylococcus aureus, Bap homologs have been found in many bacterial species. These 

proteins are present on bacterial surfaces and many are involved in biofilm formation [19] 

and chronic infection in mammary glands [20]. Recombinant subunits of Acinetobacter 
baumannii Bap has been shown to stimulate an immune response in mice [21]. However, bap 
was not detected in S. aureus isolates from patients with urinary tract infections (UTI) [22]. 

Further studies are needed to identify markers that are unique to bacterial biofilms, 

especially those present in multiple bacterial species.

In addition to cellular targets, biofilm matrix components provide potential markers of 

biofilms and may offer species identification. One of such possible biomarkers is cellulose, a 

major component of the biofilm matrix of uropathogenic Escherichia coli (UPEC). Antypas 

et al. [23•] developed an assay based on optotracing that can detect cellulose in urine in less 

than 45 min, which can help determine if biofilm is involved in UTI. Similarly, 

exopolysaccharide (EPS) is a possible marker for detecting biofilm as has been 

demonstrated for Histophilus somni biofilms [24]. Chronic lung infection by mucoid 

Pseudomonas aeruginosa biofilms leads to an IgG antibody response against P. aeruginosa 
components including alginate, lipopolysaccharides and proteins, which is currently used for 

diagnosis [25•]. Interestingly, many species of bacteria incorporate their own extracellular 

DNA (eDNA) into the matrix; and thus, cell-free DNA analysis [26] in combination with 

polysaccharide analysis [27] might provide evidence of biofilm and identify the species 

involved. Another possibility is to quantify biomass by measuring proteins in biofilms. For 

example, Guan et al. [28••] modified the o-phthalaldehyde (OPA) protein assay to achieve 

extraction-free detection of biofilms.

Quorum sensing (QS) is a well-known system found in numerous microbial species, which 

enables the cells to regulate cell density-dependent activities by sensing and responding to 

signaling molecules named autoinducers [29]. For lung infection by P. aeruginosa, QS signal 

profiling has been shown to be a potential biomarker for biofilm detection [30]. QS signals 

are also known to alter the level of immune factors and immune cell proliferation [31,32], 

which may help identify new biomarkers for biofilm detection. The chronic nature of BAIs 

indicates that host immunity is unable to eradicate biofilm cells. Thus, it is believed that the 

innate and acquired immune responses coexist [33•]. Deciphering the types and dynamics of 
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immune factors involved in such infections may provide new biomarkers for better 

diagnosis.

Biofilm imaging

Laboratory methods for biofilm culturing, imaging and analysis have been well summarized 

in recent reviews [7•]. Confocal laser scanning microscopy (CLSM), fluorescence in situ 
hybridization (FISH), and later improved peptide nucleic acid (PNA)-FISH [34] and locked 

nucleic acids (LNA)-FISH [35], can provide spatial information about biofilms and the 

location of different species. But these advanced imaging techniques require a clear line of 

sight with the specimen, which are destructive and not applicable for in situ detection/

diagnosis. Similar issues exist for scanning electron microscopy (SEM), time-of-flight 

secondary ion mass spectrometry (TOF-SIMS), transmission electron microscopy (TEM) 

and Mass Spectrometry Imaging (MSI).

In comparison, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) 

offer non-destructive molecular detection with high sensitivity [36•]. By detecting the 

photons that change energy when scattering off a material (Raman scattering), Raman 

spectroscopy is highly sensitive in detecting low-abundant biomolecules, e.g. 5 ppb of P. 
aeruginosa pyocyanin in sputa [37] and quorum sensing signals in P. aeruginosa biofilms in 

mice [38].

For preoperative and intraoperative guidance, imaging techniques that can ‘see’ through 

tissues into the body will arguably have the greatest medical utility. A useful tool for non-

invasive biofilm detection is Near Infra-Red (NIR) imaging. Systems with such capabilities 

have been commercialized. For example, the Spectrum In Vivo Imaging System (IVIS) from 

PerkinElmer combines 2D optical imaging and 3D NIR tomography, achieving 3D tracking 

of bioluminescence and fluorescence signals. Combining IVIS with biofilm-specific markers 

may improve biofilm diagnoses.

Hyperspectral imaging is a label-free method that has been used in wound monitoring and to 

detect biofilms in the natural environment. This technology provides visible and near-IR 

spectra in a 2D image and may have future potential for detecting color changes associated 

with biofilms themselves or reaction of the host tissues to biofilms.

While signs of infection can be diagnosed from observing host tissues in X-rays, direct 

detection of biofilm will likely require a contrast agent. For example, with appropriate 

contrast agents such as iron sulfate, X-ray tomography can differentiate biofilm from 

surrounding water and allow 3D quantification of biofilm structures[39••]. Further 

improvement in biofilm characterization can be achieved using X-ray micro-force computed 

tomography (μCT), which has been used for non-destructive analysis of biofilm grown in 

central venous catheters (CVC) [40]. Sellmyer et al. [41] synthesized [18F] fluoropropyl-

trimethoprim and showed it can label bacteria but not inflammatory or cancer cells in 

rodents, allowing direct visualization of infection using positron emission tomography 

imaging. Future work to improve sensitivity and reduce background signals from bowel and 

bone uptake may bring exciting opportunities for non-invasive imaging of biofilm infections.
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Currently medical imaging modalities do not have the spatial resolution to detect biofilms 

which can exist as aggregates with a diameter of 10–100 μm diameter. If biofilm specific 

labels can be found, radiolabeling has the potential to increase sensitivity in signal detection 

and would also offer theranostic potential, in which localized imaging is combined with a 

therapeutic benefit [42].

Unconventional methods

Bio-impedance based sensing

Biofilm formation on an implant and associated inflammation can significantly alter the 

environment near the device surface and device-host tissue interface, which provides an 

opportunity for biofilm-specific sensing. One approach to characterize such changes is to 

use electric impedance, which represents the retardation of a circuit under alternating 

current/voltage applied at specific frequencies [43]. Previous improvements in 

instrumentation and data analysis [44,45] have made EIS a promising technology for biofilm 

detection.

Recently, a CMOS on-chip impedance analysis system was engineered using lithography. 

These devices are highly sensitive, compact, and can be reproduce data large scale by 

modern fabrication processes [46]. Single-frequency impedance spectroscopy has been 

developed as a label-free system for monitoring biofilm growth and treatment [43,47]. EIS 

could become a promising monitoring method in the future since it does not require sample 

preparation and can be done continuously without physically sampling the biofilm, a major 

advantage over many other methods.

Recent advances have also made it possible to integrate impedimetric sensors with existing 

electronic medical devices. The most important addition in such an integration is the 

electrode/probe, which has been demonstrated in the form of a microfluidic chip [48••]. This 

device combines real-time monitoring and a threshold activated treatment. It was later 

adapted by the same group into a wireless monitoring enabled urinary catheter [49]. It is 

worth noting that synergy between antibiotics and electrochemical treatment has been 

reported to have significant effect on killing biofilms including persister cells [50–52]. With 

the capability to combine treatment and monitoring, it is possible to engineer smart medical 

devices that can deliver on-demand control of biofilms.

Surface acoustic waves

Surface Acoustic Waves (SAW) are referred to a form of vibrational wave propagating 

through a solid material affected by its elasticity. Combing with Love Waves (LW), which 

travel across a surface, LW-SAW devices can provide label-free real-time monitoring of 

high-molecular weight molecules with high sensitivity [53].

LW-SAW sensors have been developed for early-detection of biofilm formation on surfaces 

with pg level sensitivity and real-time biofilm monitoring [54]. Using gold nanoparticles as a 

signal enhancer, LW-SAW can also be used to detect antigen at pg/mL level [55]. Such high 

sensitivity might be useful for detecting biofilm markers in the future.
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A new device based on SAW was engineered recently, which can be clamped onto a liquid 

filled tube and act as an actuator to monitor soft layer deposition on the tube surface. This 

device is capable of distinguishing between a soft layer such as biofilm or a hard layer such 

as limescale in a metal tube [56]. This adaptable device has possible applications in piping 

inspection and medical catheter check-ups, demonstrating an alternative to integrating into 

devices. Instead of putting SAW sensor onto the surface of interest, it rather turns the said 

surface into a substrate for analysis. Besides sensing, SAW has also been used in biofilm 

treatment [57], presenting a future possibility to engineer smart devices.

Other approaches

With advancements in analytic biotechnology and device fabrication, researchers 

continuously push the boundary towards more sensitive and portable detection systems. For 

example, a disposable sensor consisting of a small segment of optical fiber and antibody 

surface coating developed for C-reactive protein sensing has a consistent linear response to 

the target protein between 0.01–20 μg/mL [58]. Meanwhile, Zhang et al. [59] reported the 

capability to monitor biofilm formation and treatment in real time using surface plasmon 

resonance waveguide mode. Cantilever technology can be used to form an array sensor, and 

achieve simultaneous detection of multiple targets of interest [60]. Although some of these 

are not directly applicable to biofilm monitoring in vivo, they have potential for biomarker 

detection and analysis of explanted medical devices. Future development in this field will 

also benefit from new technologies that combine molecular markers with advanced imaging 

[61•], and more in-depth understanding of biofilm physiology [62].

Conclusions

With the increasing challenges associated with microbial biofilms, there is an urgent need to 

develop the capability for non-destructive real-time detection of microbial biofilms. 

However, the patchy nature, size scale and lack of biofilm specific targets provide obstacles 

in meeting this goal. Conventional methods for microbial detection are largely based on 

culturing methods and the detection of immunoglobulin antibodies in the blood or other 

bodily fluids. Although these methods are effective in diagnosing acute infections, they 

commonly fail in diagnosing BAIs. Similar challenges exist in detecting microbes from 

explanted medical devices. Many of the future development will rely on the discovery of 

new biomarkers and engineering more sensitive detection systems. Most BAIs are culturing 

negative and involve multiple species, which require universal biomarkers rather than 

species-specific molecules for detection. It is also important to improve the knowledge of in 
vivo biofilm formation, which has significant differences than that in in vitro pure-culture 

systems. Understanding the dynamics and inter-species interactions will be essential for 

identifying the right bio-markers. Achieving effective biofilm detection also requires low-

cost, easy-to-manufacture, portable/wearable/implantable devices that have a long-life span 

and require minimal maintenance. Addressing these challenges will bring exciting new 

technologies for safer medical devices and better healthcare.
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Figure 1. 
Schematic of biofilm formation and potential targets for detection. Biofilm formation causes 

significant changes in bacterial gene expression and metabolism, triggers host immune 

response, and alters the chemical/physical properties of the substrate material. These 

changes are potential targets for biofilm detection.

Xu et al. Page 11

Curr Opin Biotechnol. Author manuscript; available in PMC 2020 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Bacterial biofilms
	Challenges in biofilm detection
	Molecular methods
	Biofilm associated biomarkers
	Biofilm imaging
	Unconventional methods
	Bio-impedance based sensing
	Surface acoustic waves
	Other approaches

	Conclusions
	References
	Figure 1

