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Abstract
The bHLH transcription factor Olig2 is required for sequential cell fate determination of both motor neurons and oligoden-
drocytes and for progenitor proliferation in the central nervous system. However, the role of Olig2 in peripheral sensory 
neurogenesis remains unknown. We report that Olig2 is transiently expressed in the newly differentiated olfactory sensory 
neurons (OSNs) and is down-regulated in the mature OSNs in mice from early gestation to adulthood. Genetic fate mapping 
demonstrates that Olig2-expressing cells solely give rise to OSNs in the peripheral olfactory system. Olig2 depletion does 
not affect the proliferation of peripheral olfactory progenitors and the fate determination of OSNs, sustentacular cells, and the 
olfactory ensheathing cells. However, the terminal differentiation and maturation of OSNs are compromised in either Olig2 
single or Olig1/Olig2 double knockout mice, associated with significantly diminished expression of multiple OSN matura-
tion and odorant signaling genes, including Omp, Gnal, Adcy3, and Olfr15. We further demonstrate that Olig2 binds to the 
E-box in the Omp promoter region to regulate its expression. Taken together, our results reveal a distinctly novel function of 
Olig2 in the periphery nervous system to regulate the terminal differentiation and maturation of olfactory sensory neurons.

Keywords  Basic helix–loop–helix (bHLH) transcription factors · Peripheral nervous system (PNS) · Tuj1 · Sox2 · Fabp7 
(Blbp) · Dcx

Introduction

Neuronal differentiation is a multi-step process involving 
cell fate specification, progenitor expansion, and terminal 
maturation. Transcription factors, particularly the basic 
helix–loop–helix (bHLH) transcription factors, are essen-
tial for cell fate selection at the early-phase of neuronal dif-
ferentiation [1, 2]. However, it remains poorly understood 
whether or how bHLH transcription factors play a role in 
terminal differentiation or neuronal maturation processes 
after neuronal cell fate determination. Olfactory sensory 
neurogenesis is an excellent model system to address this 
question. Generated from the basal progenitors, immature 
olfactory sensory neurons (OSNs) migrate a short distance 
toward the apical part of the olfactory epithelium (OE) 
where they express the mature OSN marker proteins and 
receptors and respond to odorants [3]. Given the continuous 
turnover of OSNs in adult vertebrates and the requirement of 
olfaction for suckling milk by neonatal rodents, proper ter-
minal differentiation and maturation of the newborn OSNs 
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is an essential step for functional olfaction and neonatal sur-
vival. Like in the central nervous system (CNS), a variety of 
bHLH factors, such as Ascl1 (Mash1), Ngn1 and Hes1, are 
identified in the olfactory progenitors and demonstrated to 
be important in controlling the proliferation and/or the dif-
ferentiation of olfactory progenitors as they do in the CNS 
[4–7]. However, the role of bHLH transcription factors in 
the later phase of OSN differentiation is poorly understood.

Olig2 is a bHLH family member originally identified as a 
crucial transcription factor for the sequential development of 
motor neurons and oligodendrocytes in the embryonic spinal 
cord [8–10]. Later, it has been proven to control the pro-
liferation of neural progenitors, and the genesis of cortical 
GABAergic neurons and white matter astrocytes [11–13]. 
All support a proliferation-stimulating or gliogenic function 
of Olig2 in CNS. In the present study, we explored the role 
of Olig2 in the differentiation of OSNs and found that Olig2 
is dispensable for the proliferation and fate determination of 
the OE progenitors, but it is specifically involved in the final 
maturation of OSNs, partially by regulating the expression 
of multiple genes, including Omp, Gnal, Adcy3, and Olfr15, 
which encode critical proteins for OSN maturation or odor-
ant transduction.

Materials and methods

Genetically modified mouse lines

The Olig2CreER knock-in mice, Olig1/Olig2 double knock-
out, and Olig2-Cre mice were previously described [9, 10, 
14]. Rosa26-LacZ mice [15] were acquired from the Jack-
son Laboratory. All animal experiments were carried out 
under protocols approved by UC Davis Animal Care and Use 
Committees and following NIH guidelines. Pregnant, timed 
mated mice were euthanized prior to cesarean section. Noon 
of the conception day was designated as E0.5.

Immunohistochemistry and BrdU labeling

Immunohistochemistry was conducted as described [16]. 
The embryos were immersion-fixed in 4% paraformalde-
hyde (PFA). The postnatal and adult mice were transcardi-
ally perfused and fixed by 4% PFA. 30% sucrose was used 
for cryoprotection and 12–14 µm frozen sections were made 
by a cryostat. Air-dried slides were permeabilized by 0.3% 
Tween-20 in PBS, blocked by 10% lamb serum, and incu-
bated with primary antibodies at 4  °C overnight. After 
washing in PBS, the corresponding secondary antibodies 
(Alexa Fluor 488 or 594 conjugated anti-rabbit, anti-mouse, 
anti-guinea pig, or anti-goat, 1:500, Invitrogen) were incu-
bated for 2 h at room temperature. Cell nuclei were stained 
by DAPI. The primary antibodies and dilutions are as 

following: rabbit anti-Olig2 (1:200, Millipore), mouse anti-
Sox2 (1:50, Cell Signaling Technology), rabbit anti-Fabp7 
(BLBP) (1:1000, Millipore), mouse anti-BrdU (1:50, Devel-
opmental Studies Hybridoma Bank), guinea pig anti-Dcx 
(1:1000, Millipore), and goat anti-OMP (1:1000, Wako). For 
acute BrdU labeling, pregnant mice were intraperitoneally 
injected with 10 mg/kg BrdU. Embryos were sampled after 
1-h BrdU incorporation. Frozen sections were treated by 
2 N HCl to denature DNA at 37 °C for 20 min, and by 0.1 M 
borate sodium buffer (pH 8.5) to neutralize the sections for 
subsequent immunohistochemistry with BrdU antibodies.

RNA in situ hybridization

Wholemount and section in situ hybridization were con-
ducted as described [16]. RNA probes for Omp, Gnal (Golf), 
Adcy3 (AC3), Lhx2, and Ebf1 (O/E-1) were made by EST 
clones. Other probes were made by PCR-based in vitro tran-
scription using primers listed on Allen Mouse Brain Atlas 
website, and also shown below. Olig2: forward 5′-ATA​TGG​
GAA​CCG​AAG​CAA​TG-3′, reverse 5′-GCT​CCT​GTG​CTC​TGA​
AAA​GG-3′; Ncam1: CAG​GTA​GAT​ATT​GTT​CCC​AG, GTC​
CTT​GAA​GTT​GAT​TTC​CC; Gap43: GGC​TCT​GCT​ACT​ACC​
GAT​GC, GCA​GGA​GAG​ACA​GGG​TTC​AG; Olfr15: GGC​
CTC​TTA​CTT​GTT​GAC​GC, ATG​ACG​CTT​ACT​GGG​ACC​
AC; Mecp2: AGA​CAA​GCC​ACT​GAA​GTT​TAA​GAA​G, TTG​
ACA​ACA​AGT​TTC​CCA​GG; Arfgef2: CGA​GCA​AGG​AAC​
ACT​CAA​CA, TGT​TTG​GAC​CAT​GCA​GAC​AT; Kirrel2: GCT​
TGG​TTT​CCA​CTC​AGC​TC, CAG​CAA​AGG​AAA​ACG​AGG​AG. 
Sections were counterstained by nuclear fast red.

Chromatin immunoprecipitation (ChIP) assay

ChIP assay was conducted according to the manual of the 
ChIP assay kit (Upstate) and a slightly modified protocol 
[17, 18]. Briefly, OEs of E18.5 wild-type mice were dis-
sected and fixed by 4% PFA for 15 min on ice. Sonication 
was performed to break chromatin. Rabbit anti-Olig2 (1:100, 
Millipore) was incubated with DNA–protein complex over-
night at 4 °C. Rabbit IgG at the same concentration was 
used as the negative control. The primer pairs targeting the 
E-boxes in the Omp promoter were: (1) GTG​GTT​CAG​TTA​
CAG​AGC​CC, AGA​AAC​CCT​CCT​GCT​TGA​GC; (2) TAT​GTG​
GTT​GGA​TCG​ATC​AAAC, TTA​TCA​CCA​TCA​GGA​CCC​AG; 
(3) AAC​AAA​CAA​ATA​GAA​CAG​AGC​AGG​C, ATT​GCC​AGA​
TGG​AGG​TCA​AC; (4) TGT​GTG​TGT​GTG​TGA​TGT​TC, TGT​
ATG​TGG​ACA​GAT​GGC​AG; (5) CCG​TCT​GTC​TGG​CAG​ATG​
ATTTG, TCA​TAG​CCC​CTG​TCA​GGT​CC.

Luciferase reporter assay

The promoter region of Omp was PCR amplified from 
mouse genomic DNA. Based on the ChIP data, three 
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fragments of Omp promoter were cloned into pGL2-basic 
vector (Promega, Madison, WI) to construct Luci-Omp1 
(containing E-box 1, or E1), Luci-Omp1–3 (containing 
E1–3 boxes), Luci-Omp1–6 (containing E1–6 boxes), Luci-
Omp4 (containing E4 box), and Luci-Omp6 (containing 
E6 box) (Fig. 8a). Luciferase reporter assay was conducted 
as described [19, 20]. Briefly, human embryonic kidney 
HEK293 cells were cultured to around 80% confluence. 
Luci-Omp1, Luci-Omp1–3, Luci-Omp1–6, Luci-Omp4, 
and Luci-Omp6 were co-transfected with pcDNA3.1-Olig2 
using lipofectamine 2000 for 24 h. PCR-based mutation was 
performed to construct Luci-Omp1-mutant. Luciferase activ-
ity of total cell lysates was measured using Dual-luciferase 
reporter assay system (Promega). The Renilla-luciferase 
reporter pRL vectors (5 ng/well) were used as an internal 
control.

Real‑time PCR

OEs of E18.5 embryos were dissected under microscope. 
RNA was extracted using Trizol reagent. cDNA was made 
by iScript™ cDNA Synthesis Kit (BIO-RAD). PCR was 
performed using SYBR GREEN PCR master mix (Ther-
mofisher). The mRNA levels of Fabp7 and Omp were 
normalized to the mRNA level of the house-keeping gene 
Gapdh to allow comparisons among different experimental 
groups using the ΔCt method. The primer sequences are as 
following: Omp, TCC​GTC​TAC​CGC​CTC​GAT​TT, CGT​CTG​
CCT​CAT​TCC​AAT​CCA​; and Fabp7 (Blbp), TTG​ATG​AGT​
ACA​TGA​AAG​CTC​TGG​, CTT​GAA​TGT​GCA​TTG​TGT​CC.

Cell counting and statistical analyses

Cells positive for immunolabeling of Olig2, Sox2, Dcx, 
Omp, BrdU, and Fabp7; and in situ hybridization signals 
of Omp, Gnal, Olfr15, Arfgef2, Kirrel2, Adcy3, Ncam1, and 
Gap43 were counted under microscope along OE lining 
the nasal septum from dorsal to ventral in three sections for 
each animal. The in situ hybridization “positive” cells were 
identified if the positive signal is localized in cytoplasm sur-
rounding a nucleus which was counterstained by fast red. 
The littermate control and mutant OE sections were mounted 
on the same slide for subsequent in situ hybridization and 
immunohistochemistry under the same condition. OE length 
was determined by tracing the outline of the epithelium basal 
lamina using Slidebook software. For OE thickness, the ver-
tical distance from the basal cell layer to apical surface were 
measured in six points with 100-μm intervals along the nasal 
septum on each of three sections per embryo. At least three 
mutants and three littermate control embryos were included 
for each quantitative analysis. The morphological analysis 
was performed by a researcher blind to genotypes. The quan-
titative data were represented as mean ± SE (standard error). 

Two-tailed Student’s t test was used for comparisons of the 
wild-type control vs. knockout samples. One-way ANOVA 
was used for three-group comparisons. P ≤ 0.05 is consid-
ered significant. Related statistical details are included in the 
figure legends or results.

Results

Olig2 is expressed in newly differentiated 
Sox2(−);Tuj1(+) OSNs of the peripheral olfactory 
system

As soon as the nasal pit forms, Olig2 is expressed in the 
olfactory epithelium of E10.5 and E11.5 mouse embryos 
(Fig. 1). Considering the function of Olig2 in the CNS neu-
ral progenitors [21] and the basal localization of olfactory 
neural progenitors [22], we asked whether Olig2 is expressed 
by olfactory progenitors. Double fluorescent immunohisto-
chemistry demonstrates that Olig2-positive cells are scat-
tered in the early developing OE at E11.5, but they do not 
express Sox2, a marker for neural stem cells and progenitors 
[23], which are widely and uniformly expressed throughout 
the E11.5 OE on the same tissue section (Fig. 1d–f). In con-
trast, all Olig2-positive OE cells express the neuron-specific 
class III β-tubulin Tuj1 (Fig. 1g–i). These unexpected results 
suggest that Olig2 is not expressed in the OE progenitors but 
in newly differentiated OSNs during early gestation.

From mid-late gestation, Olig2-positive cells distribute 
mainly in the basal part of OE, through postnatal ages to 
adult (Fig. 1b, c). The seeming localization changes of the 
Olig2-positive cells at different ages may reflect the cellular 
reorganization following OE development and maturation. 
In the late embryonic stage, the cellular organization of 
OE becomes similar to the adult OE. Therefore, we further 
examined the details of Olig2 expression in E18.5 OE. Dou-
ble immunolabeling of Olig2 with Sox2, which is expressed 
in olfactory stem cells of the basal OE and in sustentacular 
glial cells of the apical OE during late gestation and adult-
hood [16, 24], shows that the basal Olig2-positive cells are 
localized immediately atop the basal Sox2-positive cells 
and away from the Sox2-positive sustentacular apical OE 
(Fig. 2a). As with E11.5, no Olig2-positive cells express 
Sox2 in E18.5 OE (Fig. 2a). Double immunolabeling of 
Olig2 with the immature and migrating OSN marker Dcx 
shows that approximately 60.91 ± 0.81% of Olig2-positive 
cells (counted 489 from total 3 embryos) are Dcx positive 
(Fig. 2b). Double immunolabeling with the mature OSN 
marker Omp shows that approximately 11.17 ± 1.39% of 
Olig2-positive cells (counted 403 from total 3 embryos) are 
Omp positive (Fig. 2c). These results suggest that Olig2 is 
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transiently expressed in the newly differentiated OSNs and 
it is down-regulated following OSN maturation.

Dispensable role of Olig2 in the proliferation 
of olfactory progenitor and gliogenesis in OE

Because a key role of Olig2 in CNS is to instruct the motor 
neuron and oligodendrocyte lineage cell fates, and approx-
imately 30% of the Olig2-positive cells in the basal part 
of OE are neither Dcx nor OMP positive (Fig. 2), we then 
asked whether Olig2 plays a role in gliogenesis or the pro-
liferation of peripheral olfactory progenitors, and whether 
Olig1 plays a synergetic role with Olig2 in olfactory sen-
sory neurogenesis. In  situ hybridization demonstrates 
that Olig1 is also expressed in the embryonic OE, with a 
similar expression pattern as Olig2 (Fig. 3a, d). We fur-
ther addressed aforementioned questions on Olig2 single- 
and Olig1/Olig2 double-deficient OE at E18.5 due to the 
neonatal lethality of these mutant mice. Olig1 expression 
is not affected in the Olig2-deficient OE (Fig. 3b). Mor-
phologically, the mutant OE looks normal in either single 

Olig2−/−or double Olig1−/−;Olig2−/− mutants at E18.5 
(Fig. 3b, c, e, f). There is no significant difference of OE 
thickness between Olig2−/− (159.07 ± 11.35 μm) and wild-
type (171.16 ± 5.72 μm) embryos at E18.5 (n = 3 embryos for 
each genotype, Student’s t test, T value − 0.046, P = 0.966). 
Acute BrdU incorporation and TUNEL staining are adopted 
to evaluate proliferation and apoptosis, respectively (Fig. 4a, 
b). Apical Sox2 and Fabp7 (Blbp) expression are used as 
glial-like cell markers for sustentacular and olfactory 
ensheathing cells (OECs), respectively [16, 24] (Fig. 4c, 
d). Unexpectedly, the results show no differences in all of 
these parameters between the wild-type and Olig2−/− OE at 
E18.5 (Fig. 4), indicating that Olig2 is neither involved in 
progenitor proliferation nor gliogenesis in the OE, at least 
at the embryonic stage. 

OSN‑restricted cell lineage of Olig2‑expressing OE 
cells

In CNS, Olig2-expressing cells generate not only neurons 
and oligodendrocytes, but also white matter astrocytes and 

Fig. 1   Expression of Olig2 in embryonic, postnatal, and adult olfac-
tory epithelia (OE). a Wholemount in situ hybridization demonstrates 
Olig2 mRNA expression (white arrows) in the nasal pit (np) as early 
as E10.5. Asterisk indicates the high expression of Olig2 in the ven-
tral forebrain as expected. b Immunolabeling of Olig2-positive cells 
(green, counterstained with DAPI in blue) in P5 OE. c Olig2-positive 
cells (brown, counterstained with hematoxylin and eosin in purple) in 
the adult OE. d–f Double immunofluorescence of Olig2 and Sox2 in 

E11.5 OE. Arrows indicate representative Olig2-positive cells that are 
Sox2 negative. g–i Double immunofluorescence of Olig2 and Tuj1 in 
E11.5 OE. Arrows indicate representative Olig2-positive cells with 
co-immunolabeling of Tuj1. BC basal cell layer, LP laminar propria, 
np nasal pit, OE olfactory epithelium, OSN olfactory sensory neuron 
layer, Sus sustentacular cell layer. Scale bars = 200 µm (a), 20 µm (b), 
50 µm (c), 20 µm (d–i)
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even reactive astrocytes after injury [25]. We next exam-
ined whether Olig2 expressing cells in OE generate olfac-
tory glial cells by genetic fate mapping. Olig2-Cre mice 

[14] were crossed with the reporter Rosa26-LacZ mice 
[15]. X-gal and Fabp7 (Blbp) staining were performed at 
E14.5 and P7 (Fig. 5). The results show that, at both time 

Fig. 2   Double immunofluores-
cence of Olig2 with repre-
sentative OE lineage markers 
at E18.5. a–a′′′ At the late 
embryonic age, Olig2-positive 
cells (green) are closely located 
atop the Sox2 (red)-positive 
basal cell layer and away from 
the Sox2-positive sustentacular 
cell layer. They do not overlap 
each other. Dashed rectangle in 
a is enlarged in a′–a′′′ for better 
resolution. b–b′′′ More than one 
half of the Olig2-positive cells 
(green) are Dcx positive (red). 
Six strongly co-immunolabeled 
cells are marked in b′–b′′′. 
c–c′′′ A small portion of Olig2-
positive cells are Omp positive 
(red). Two co-immunolabeled 
cells are marked in c′–c′′′. 
Nuclei are counterstained by 
DAPI (blue). Scale bars = 50 µm 
(a, b,c) and 20 µm (a′–c′′′)

Fig. 3   Section in situ hybridiza-
tion for Olig1/Olig2 mRNAs 
in the normal and mutant OE 
at E18.5. a–c Olig1 is also 
expressed in OE of the wild-
type (WT) and the single Olig2-
KO embryos, which is ablated 
in the Olig1;Olig2 double KO 
OE. d–f Olig2 expression shows 
a similar pattern with Olig1 
in the WT, which is ablated in 
either single Olig2-KO or dou-
ble Olig1;Olig2 double KO OE. 
OE sections are counterstained 
with fast red. BC basal cell 
layer, LP laminar propria, OSN 
olfactory sensory neuron layer, 
Sus sustentacular cell layer
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points, only neuronal progeny are detected. X-gal stain-
ing is neither seen in the sustentacular cell layer nor the 
Fabp7-positive OECs (Fig. 5a–d). These results are in 
agreement with the restricted expression of Olig2 in the 
newly differentiated and Tuj1-positive OSNs (Figs. 1, 2).

Requirement of Olig2 for the terminal 
differentiation and maturation of OSNs

To address the role of Olig2 in peripheral sensory neuro-
genesis, we analyzed OSN differentiation in Olig2−/− OE 
by examining the expression of several critical marker genes 
for OSN maturation and function. In  situ hybridization 
shows that Olig2 depletion does not affect the expression 
of a pan OSN marker Ncam1 and an immature OSN marker 
Gap43 (Fig. 6a, b). However, expression of the mature OSN 
marker Omp is significantly decreased in the Olig2−/− OE 
(Fig. 6c). Immunohistochemistry shows that regardless of 
Olig2 depletion, Tuj1-positive OSNs are conserved in the 
E18.5 Olig2−/− OE (Fig. 6d). Consistent with the in situ 

hybridization result, Omp immunolabeling shows a notable 
reduction at the protein level (Fig. 6e).

We then examined critical genes associated with OSN 
odorant signaling functions. Adcy3 (AC3), encoding the 
type III adenylyl cyclase, is required for olfaction [26]. Gnal 
(Golf), encoding a stimulatory G protein alpha subunit, is 
required for odorant signaling and postnatal survival [27]. 
Both Adcy3 and Gnal mRNAs are dramatically diminished 
in the Olig2−/− OE (Fig. 7a, b). Moreover, the number of 
olfactory sensory neurons which express olfactory receptor 
Olfr15 is significantly decreased in Olig2−/− OE (Fig. 7c). 
These data indicate that the maturation and function of 
OSNs are impeded by Olig2 deficiency.

We next asked whether Olig2 selectively affects the 
maturation of certain subgroup of OSNs. According to the 
expression of axonal guidance factors, OSNs can be roughly 
grouped as Arfgef2 (Big2)-positive and Kirrel2-positive 
[28]. In situ hybridization shows a similar reduction of both 
Arfgef2- and Kirrel2-positive cells, indicating a general role 
of Olig2 in the terminal differentiation of OSNs (Fig. 7d, e).

Fig. 4   Unchanged proliferation, 
apoptosis, and gliogenesis in the 
Olig2-deficient OE. a, a′ BrdU 
(red) immunolabeled OE sec-
tions and positive cell numbers 
in the basal and apical OE of 
the E18.5 wild-type (WT) and 
Olig2−/− embryos show no sig-
nificant changes. n = 3 embryos 
for each genotype; Student’s 
t test. T value: 1.128 (basal) 
and − 0.873 (apical). P = 0.463 
(basal) and 0.432 (apical). b, 
b′ No significant changes of 
TUNEL-labeled apoptotic cells 
in Olig2-deficient OE compared 
to the WT (n = 3 each genotype). 
Student’s t test, T value: 0.194, 
P = 0.856. c, c′ Sox2 (green) 
immunolabeled OE sections 
and positive cell numbers have 
no significant changes (n = 3 
each). Student’s t test, T value: 
− 0.745 (basal) and 0.955 
(apical), P = 0.497 (basal) and 
0.394 (apical). d, d′ Fabp7 
(Blbp) (green) immunolabeled 
OE and qPCR results show no 
significant changes (n = 3 each). 
Student’s t test, T value: 0.1178, 
P = 0.304. Scale bar = 50 µm
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We further examined the expression of Zfp423, Lhx2, 
Mecp2, and Ebf1 (OE-1), which encode transcription factors 
involved in the terminal differentiation of OSNs [29–32]. 
No differencein the expression of all these factors is found 
between the wild-type and Olig2−/− OE by in situ hybridiza-
tion (Fig. 8).

Considering that Olig1 is expressed in Olig2−/− OE 
(Fig. 3), we asked whether functional redundancy between 
Olig1 and Olig2 may occur in the OE as in the spinal cord 
[9, 33]. The OSN differentiation was then investigated in the 
Olig1/Olig2 double knockout embryos [9] (Fig. 5). In situ 
hybridization of all aforementioned OSN marker genes 
in Olig1/Olig2 double knockout OE demonstrates almost 
identical phenotypes as seen in the Olig2 single knockout 
(Figs. 6, 7, 8), suggesting the requirement of Olig2, not 
Olig1 in terminal differentiation and functional maturation 
of OSNs.

Direct regulation of Omp expression by Olig2

To address the mechanism of Olig2 in regulation of critical 
OSN maturation genes, we conducted in vitro molecular bio-
logical analyses. As a bHLH transcription factor, Olig2 regu-
lates its downstream factors by binding to the E-box sequences 
on the promoter of the target genes [34]. Among the signifi-
cantly down-regulated OE genes in the Olig2−/− mutants, 
Omp plays a crucial role in the final maturation of OSNs 
and also is a widely used early marker for mature OSNs [35, 

36]. Therefore, we choose Omp as an exemplary candidate of 
downstream target genes to address whether it is directly regu-
lated by Olig2. We searched the promoter region of Omp and 
found six E-boxes (E1, CAC​CTG​, − 534 bp; E2, E3, CAG​ATG​
, − 592 bp, − 623 bp; E4, E5, CAT​CTG​, − 845 bp, − 1043 bp; 
E6, CAC​GTG​, − 1247 bp from ATG​, respectively) (Fig. 9a). 
Chromatin immunoprecipitation assay shows that Olig2 is 
bound to E1, E4 and E6 among six E-boxes, indicating that 
Olig2 may directly regulate Omp expression (Fig. 9b). Real-
time RT-PCR confirms that the Omp mRNAs are decreased 
significantly in the Olig2−/− OE (Fig. 9c). To identify which 
E-box may contribute to the Olig2-regulated Omp expres-
sion, we co-transfected Olig2 full-length cDNAs with three 
Omp luciferase reporter constructs (Luci-Omp1 containing 
E1, Luci-Omp1–3 containing E1–3, and Luci-Omp1–6 con-
taining E1–6) (Fig. 9a). The results demonstrate that Olig2 
significantly activates the transcriptional activity of all of these 
luciferase reporter constructs at the similar level (Fig. 9d), 
suggesting that E4 and E6 might be dispensable for Olig2-
regulated Omp expression. Indeed, co-transfection of Olig2 
with constructs containing individual E4 (Luci-Omp4) or E6 
(Luci-Omp6) shows no significant effects of both constructs 
on Omp expression as compared to pGL2 control (Fig. 9e). On 
the other hand, the construct with mutated E1 box dramati-
cally abolishes the Olig2-induced Omp transcription (Fig. 9f). 
Collectively, these results suggest that Olig2 directly regulates 
the Omp expression by binding to the E1 box, which might 

Fig. 5   Genetic fate mapping of 
Olig2 progeny in the periph-
eral olfactory system. X-gal 
staining (green) for Olig2-
Cre;Rosa26lacZ cell lineages 
and immunolabeling for Fabp7 
(Blbp)-positive ensheathing 
cells (brown) are shown on the 
OE sections of E14.5 (a, b) and 
P7 (c, d) mice. b, d Enlarged 
from the dashed squares in a 
and c, respectively. Arrowhead 
in d indicates a Fabp7-positive 
ensheathing cell that is adjacent 
to the X-gal-positive axonal fib-
ers (arrow). BC basal cell layer, 
LP laminar propria, OE olfac-
tory epithelium, OB olfactory 
bulb, OSN olfactory sensory 
neuron layer, S nasal septum
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partially account for the compromised OSN maturation in the 
Olig2-deficient OE.

Discussion

The bHLH transcription factors have been well documented 
as cell fate instructors, but they are poorly studied in the 
late stages of neurogenesis. In the present study, we dem-
onstrate a novel role of Olig2 in the terminal differentiation 
of sensory neurons by analyzing the cell identity of Olig2-
positive cells in the OE and the phenotypes of Olig2 single 
and Olig1/Olig2 double knockout mutants during peripheral 
sensory neurogenesis.

In CNS, Olig2 is expressed by neural progenitors 
from early embryonic stage. Our data show that Olig2 
is expressed in the nascent olfactory placode as early 
as E10.5 in mice. Although distributed sparsely, Olig2 
expression is restricted to the newly differentiated 

Tuj1-positive OSNs, without expression in the Sox2-pos-
itive OE progenitors at E11.5. The co-immunolabeling 
of Olig2 with Tuj1 has also been shown in rat E14.5 OE 
[37]. In late gestation of mouse embryos, the Olig2-pos-
itive cells become layered and locate atop Sox2-positive 
progenitors in the basal cell layer. Our double immunola-
beling of Olig2 with Dcx and Omp further reveals that it 
is expressed by the newly differentiated OSNs and down-
regulated with the maturation of OSNs. The neuronal lin-
eage-restricted expression of Olig2 in newly differentiated 
OSNs and its absence in OE progenitors/glial lineage cells 
suggest a distinctly novel role of Olig2 in PNS develop-
ment. Given that Olig2-positive cells give birth to both 
neurons and glia in CNS, the solely neuronal progeny of 
Olig2 fate mapping in OE is in line with its expression 
pattern, and further suggests a potential role of Olig2 in 
late stages of peripheral sensory neurogenesis.

To determine the new role of Olig2 in peripheral neu-
rogenesis, we examined alterations of the proliferation, 

Fig. 6   Expression of representative OSN lineage mark-
ers in Olig2 single- and Olig1;Olig2 double-deficient OE at 
E18.5. a–c In  situ hybridization and quantification of Ncam1, 
Gap43, and Omp. Only Omp-expressing cells are signifi-
cantly reduced in the single or double mutants. n = 3 embryos 
each genotype. One-way ANOVA. For Ncam1: F value, 0.206; 

POlig2KO vs. WT = 0.891, POlig1/2KO vs. WT = 0.562. For Gap43: F value, 
0.038; POlig2KO vs. WT= 0.822, POlig1/2KO vs. WT = 0.815. For Omp: F 
value, 11.241; *POlig2KO vs. WT = 0.007, *POlig1/2KO vs. WT = 0.006. Dou-
ble immunofluorescence of Olig2 with Tuj1 (d) and Omp (e) dem-
onstrates ablation of Olig2, conserved Tuj1, and consistently reduced 
Omp-positive cells in the Olig2-deficient OE
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apoptosis, and differentiation of the OE in Olig2-deficient 
mutants. Because Olig2-KO mice die shortly after birth, 
we conducted analysis at E18.5. In line with the expres-
sion pattern and fate-tracing results, Olig2 deficiency does 
not affect the proliferation of progenitors and the generation 
of glial cells in the OE. Interestingly, the expression of the 
pan OSN markers (Tuj1 and Ncam1) and immature marker 
(Gap43) remains unchanged, but the expression of multiple 
critical genes (Omp, Gnal, Adcy3, and Olfr15) required for 
OSN maturation and odorant signaling transduction is sig-
nificantly reduced in Olig2-deficient OE.

Considering that Olig2 expression in the olfactory 
placode starts as early as E10.5, and the requirement of 
olfaction for the suckling behavior of neonatal pups, it is 
necessary that OSN maturation must occur before birth. 
Our data, therefore, suggest a key role of Olig2 in the 
maturation process of OSNs during embryonic develop-
ment, in preparation of functional readiness of olfaction 
for neonatal survival in rodents. The neuronal maturation 
role of Olig2 is indirectly supported by a previous study 
reporting an essential role of another bHLH transcription 
factor NeuroD1 in terminal differentiation of subventricu-
lar zone-derived neurons in the olfactory bulb, which act 

Fig. 7   In situ hybridization and quantification of representa-
tive OSN differentiation marker genes Acdy3 (AC3) (a), Gnal (b), 
Olfr15 (c), Arfgef (d), and Kirrel2 (e) demonstrate declined expres-
sion of these differentiation marker genes in Olig2 single and Olig1/
Olig2 double knockout OEs at E18.5. Sections from three embryos 
per genotype were used for each marker. One-way ANOVA. 

For Acdy3 (AC3): F value, 421.256; **POlig2KO vs. WT < 0.0001, 
**POlig1/2KO vs. WT < 0.0001. For Gnal: F value, 16.811; 
*POlig2KO vs. WT = 0.003, *POlig1/2KO vs. WT = 0.002. For Olfr15: F value, 
24.873; *P Olig2KO vs. WT = 0.001, *POlig1/2KO vs. WT = 0.001. For Arfgef: 
F value, 25.067; *POlig2KO vs. WT = 0.002, *POlig1/2KO vs. WT = 0.001. For 
Kirrel2: F value, 9.865; *POlig2KO vs. WT = 0.005, *POlig1/2KO vs. WT = 0.029
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through different molecular mechanisms [38]. Among the 
significantly down-regulated factors in Olig2-deficient OE 
as demonstrated in the current study, the GTP-binding G 
protein Golf (encoded by Gnal) and the type III adenylyl 
cyclase AC3 (encoded by Adcy3) are located in the olfac-
tory cilia of the mature OSNs to transduce odorant sign-
aling through the Golf-AC3-cAMP cascade [26, 39, 40]. 
Together, these factors strongly support a novel role of 
Olig2 in functional maturation of OSNs during embryonic 
development.

The half reduction of Omp in Olig2−/− OE promoted us 
to assess if there is a redundant function of Olig1 with Olig2 
in peripheral sensory neurogenesis. Indeed, Olig1 is also 
expressed in embryonic OE in a similar pattern with Olig2 
expression. However, the similar defects of OSN maturation 
in Olig1/Olig2-double knockout OE suggest a dispensable 
or minimal role of Olig1 in embryonic OE development, 
but its function remains to be determined in the future. 
Olig1 and Olig2 have been shown to play distinct roles in 
postnatal CNS development and disease [41]. Therefore, it 
is highly possible that Olig1 and Olig2 also play different 
roles in postnatal and adult olfactory sensory neurogenesis 

in normal and pathological conditions and during regenera-
tion processes.

The incomplete decline of OSN maturation in Olig2-defi-
cient OE is quite intriguing, as both Arfgef2- and Kirrel2-
positive subgroups of OSNs are diminished by about 50%. 
It remains to be explored whether Olig2 is responsible for 
maturation of all or certain subgroups of OSNs, or other 
bHLH transcription factors may play a synergistic role with 
Olig2 in OSN maturation. Previous studies have reported 
that transcription factors Zfp423, Lhx2, Mecp2, and Ebf1 
are involved in the terminal differentiation of OSNs [6, 
29, 30, 32]. However, the expression of these transcription 
factors remains unchanged in the Olig2-deficient OE, indi-
cating that these transcription factors are not regulated by 
Olig2, but they may work with Olig2 together or in parallel 
to regulate OSN terminal differentiation and maturation. For 
instance, co-transfection of Olig2 and Nkx2.2 can induce 
oligodendrocytes, and co-transfection of Olig2 with HB9 
but not Ngn2 can increase the motor neuron marker Isl1/2 
from adult human olfactory epithelial-derived progenitors 
[42, 43]. Olig2 and Sox10 induce oligodendrocyte differen-
tiation through reciprocal interactions and dosage-dependent 

Fig. 8   Unchanged expres-
sion of transcription factors 
associated with the terminal 
differentiation of OSNs in Olig2 
single and Olig1/Olig2 double 
knockout OEs at E18.5. In situ 
hybridization of Zfp423, Ebf1 
(OE-1), Lhx2, and Mecp2 were 
examined on sections from three 
embryos per genotype
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mechanisms in embryonic chicken spinal cord [44]. The 
interactive and regulatory mechanisms of Olig2 with other 
transcription factors during sensory neurogenesis remain to 
be investigated.

During peripheral sensory neurogenesis, OSNs express 
several critical genes in the following sequence: from Gap43 
to Adcy3 then Omp within 6–8 days after cell mitosis in 
postnatal and young adult mice [36, 45]. Adcy3 acts down-
stream of Gnal during odorant signaling transduction [40]. 
Omp plays a crucial role in the final maturation of OSNs 
and also is an early marker for mature OSNs [35, 36]. 
Based on results showing unaltered Gap43 and significantly 
diminished Gnal, Adcy3, and Omp expression in the Olig2-
deficient OE, it is logical to propose that Olig2 directly or 
sequentially regulates Gnal, Adcy3, and Omp to promote 
OSN maturation. In the current study, chromatin immuno-
precipitation and luciferase reporter assays demonstrate the 

direct regulation of Olig2 for one of these genes, Omp. It is 
highly possible that Olig2 also directly regulates additional 
downstream target genes, at least Gnal and Adcy3 during 
OSN maturation. Therefore, how the expression of whole 
profile of the mature OSN-associated genes is regulated by 
Olig2, and whether Olig2 plays conserved or pleiotropic 
roles in neurogenesis of PNS remain to be studied.
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