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Abstract

The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum 

plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is 

associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique 

features in their cortical origins and striatal targets. In this review, we first describe axonal growth 

and synaptogenesis in the corticostriatal pathway during development, and then summarize the 

current understanding of the molecular bases of synaptic transmission and plasticity at mature 

corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been 

implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, 

and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number 

of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, 
NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, 
DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper 

corticostriatal function.
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1 | INTRODUCTION

The majority of cortical areas, including sensory, motor, and limbic cortices, send 

monosynaptic excitatory projections to the striatum (Hintiryan et al., 2016), which 

contribute to diverse sensorimotor and cognitive processing tasks (Graybiel, 2005, 2008; 

Haber, 2016; Yin & Knowlton, 2006). This glutamatergic corticostriatal pathway is strongly 

modulated by dopaminergic, cholinergic, GABAergic, and purinergic innervations, which 

underscores the complexity of this long-range circuit (Abudukeyoumu et al., 2019; Assous 

& Tepper, 2019; Gerfen & Surmeier, 2011; Mathur & Lovinger, 2012). Corticostriatal 

dysfunction has been involved in many neurological and psychiatric disorders, such as 
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amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, obsessive-compulsive 

disorder, attention-deficit hyperactivity disorder, and schizophrenia (Del Campo et al., 2011; 

Kuo & Liu, 2019; Rebec, 2018; Shepherd, 2013). This review aims to discuss current 

understanding of corticostriatal connectivity and describe its role in the context of autism 

spectrum disorder (ASD).

2 | STRUCTURE AND FUNCTION OF THE CORTICOSTRIATAL PATHWAY

The corticostriatal pathway has several unique features with regard to its cortical origin and 

striatal target. First, excitatory cortical projection neurons are classified into two distinct 

pyramidal cell types: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons 

(Reiner et al., 2010; Shepherd, 2013). IT neurons project bilaterally to the striatum, whereas 

PT neurons project ipsilaterally to it. Second, the striatum is composed of the matrix and 

striosomal compartments, which receive axonal projections from the neocortex (including 

motor, somatosensory, and visual cortices) and the limbic cortex, respectively (Deng et al., 

2015; Donoghue & Herkenham, 1986; Gerfen, 1984; Kincaid & Wilson, 1996; Ragsdale & 

Graybiel, 1990). Third, the main targets of cortical inputs in the matrix compartment are the 

spiny projection neurons (SPNs), which are also classified into two groups: SPNs of the 

direct pathway (dSPNs) that express D1 dopamine receptors (D1Rs) and project to the 

internal pallidal segment (GPi) and the substantia nigra pars reticulate (SNr), and SPNs of 

the indirect pathway (iSPNs) that express D2 dopamine receptor (D2Rs) and project to the 

external pallidal segment (GPe) (Gerfen 1989; Surmeier, Song, & Yan, 1996). A number of 

studies show that IT neurons primarily innervate dSPNs, whereas PT neurons target iSPNs 

(Lei et al., 2004; Reiner et al., 2010; but see Ballion et al., 2008; Kress et al., 2013). 

Furthermore, sensory cortex and limbic structures preferentially innervate dSPNs, while the 

motor cortex targets iSPNs (Wall et al., 2013; but see Guo et al., 2015). Such dichotomous 

properties of the corticostriatal pathway are also reflected in its distinctive development and 

the molecular composition of its synapses, as well as the properties of synaptic transmission 

and long-term plasticity.

2.1 | Development of corticostriatal synapses

2.1.1 | Axonal growth—Growth cones of corticofugal axon start to enter the developing 

striatum at embryonic day 12 (E12) (Sheth, Mckee, & Bhide, 1998). By E18, corticostriatal 

collaterals have been clearly observed to innervate the ipsilateral striatum, but callosal 

corticostriatal projections that could be clearly seen to innervate the contralateral striatum 

happen around postnatal day 3 (P3) (Sohur et al., 2014). At between P2–7, the corticostriatal 

arbors undergo a steady growth (Sheth, Mckee, & Bhide, 1998), and after P7 axonal growth 

declines, which coincides with the emergence of synapse formation (Dani, Armstrong, & 

Benowitz, 1991).

2.1.2 | Synaptogenesis—Corticostriatal synaptogenesis takes place after axons stopped 

growing. The number of dendritic spines is very few on SPNs at P6–7, and mature spines are 

first detected at P9–11 (Lee & Sawatari, 2011; Tepper et al., 1998). Then, dendritic spine 

density undergoes a marked increase until postnatal 3–4 weeks, when it stabilizes at levels 

comparable to those observed in the adult striatum (Sharpe & Tepper, 1998). In the 
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dorsolateral striatum, dendritic spine pruning also occurs during this period (Uryu, Butler, & 

Chesselet, 1999). Morphological maturation of corticostriatal excitatory synapses is 

correlated with the maturation of their functional properties. Electrical stimulation of 

cortical afferents reliably evokes excitatory postsynaptic potentials (EPSPs) in SPNs at about 

P6, and at P21 the kinetics of EPSPs is similar to that in adult (Tepper et al., 1998). 

Similarly, optogenetic excitation of corticostriatal synapses evokes synaptic currents in SPNs 

at P6–7, and synaptic currents undergo a pronounced increase until they stabilize at P20–30 

(Peixoto et al., 2016).

2.2 | Molecular bases of corticostriatal synapses

Corticostriatal excitatory synapses release glutamate from presynaptic terminals, which 

binds and open two main types of glutamate-gated ion channels: α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors 

(NMDARs). In addition to this glutamatergic input, inhibitory GABAergic SPNs also 

receive feedback inputs from other SPNs, which constitute the majority of their GABAergic 

input. Apart from SPNs, the striatum contains a diverse population of GABAergic 

interneurons (Tepper, Wilson, & Koós, 2008). Early studies uncovered four classes of 

GABAergic interneurons: parvalbumin (PV)-expressing fast spiking (FS) interneurons, 

neuropeptide Y (NPY)/somatostatin (SOM)-expressing low-threshold spiking (LTS) 

interneurons, calretinin (CR)-expressing interneurons, and tyrosine hydroxylase (TH)-

expressing interneurons (Tepper, et al., 2010). Recent investigations using 5HT3a-Cre mice 

in combination with electrophysiological and morphological approaches revealed three more 

GABAergic interneuron subtypes: neurogliaform (NGF) interneurons, fast-adapting (FA) 

interneurons, and spontaneously active bursty (SAB) interneurons (Tepper et al., 2018). It 

has been shown that among these GABAergic interneurons, FS and FA interneurons form 

strong inhibitory connections on SPNs whereas innervations of LTS and TH interneurons on 

SPNs are relatively weak. Furthermore, cholinergic interneurons generate robust tonic 

activity on SPNs (Abudukeyoumu et al., 2019), through their activation of nicotinic ACh 

receptors (nAChRs) and muscarinic ACh receptors (mAChRs). mAChRs are G protein-

coupled receptors that are classified into group I (M1, M3, M5) and group II (M2, M4) 

receptors based on their intracellular signaling pathways. Group I mAChRs are coupled to 

Gq/11, which in turn activates protein kinase C (PKC) and phospholipase C (PLC), the latter 

producing inositol-tris-phosphate (IP3), resulting in an increase in intracellular Ca2+ caused 

by its release from intracellular Ca2+ stores with IP3 receptors. Group II mAChRs are 

coupled to Gi/o, which inhibits adenyl cyclase (AC) activity, thereby reducing cyclic 

adenosine monophosphate (cAMP) levels and closing voltage-gated Ca2+ channels 

(VGCCs). M1 receptors (M1Rs) are highly enriched in both dSPNs and iSPNs, while M4Rs 

are expressed predominantly in dSPNs. M2 and M3 receptors are present in corticorstriatal 

presynaptic terminals. As discussed above, corticostriatal synapses are subject to modulation 

by D1Rs and D2Rs. At the molecular level, D1Rs are coupled to Gs/olf, which stimulates AC 

and then activates protein kinase A (PKA), whereas D2Rs stimulate Gi/o, which targets 

VGCCs by inhibiting AC (Do et al., 2012; Gerfen & Surmeier, 2011).
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2.3 | Corticostriatal synaptic plasticity

Activity-dependent long-term alterations in the strength of corticostriatal synapses underlie 

striatal learning and habit formation (Koralek et al., 2012; Lerner & Kreitzer, 2011; Yin et 

al., 2009). Two forms of synaptic plasticity have been observed in the striatum: long-term 

potentiation (LTP) and long-term depression (LTD). However, the stimulation protocols that 

induce LTP and LTD at excitatory synapses in the hippocampus result in different outcomes 

at corticostriatal excitatory synapses. For example, the typical LTP-inducing high-frequency 

stimulation (HFS) of presynaptic afferents in the presence of normal extracellular Mg2+ 

results in the induction of LTD in the striatum (Kreitzer & Malenka, 2005; Lovinger, Tyler, 

& Merritt, 1993). Moreover, synaptic plasticity in the striatum is not homogenously 

expressed. For instance, LTP is primarily observed in the dorsomedial and rostral striatum, 

whereas LTD is more common in the dorsolateral and caudal striatum (Partridge, Tang, & 

Lovinger, 2000).

2.3.1 | Corticostriatal LTP—Several approaches have been used to induce LTP at 

corticostriatal synapses in ex vivo slices of the striatum. LTP can be reliably evoked by HFS 

in the absence of Mg2+, which removes its block of the NMDAR ion channel pore 

(Calabresi et al., 1992; Kerr & Wickens, 2001). Stimulation of cortical afferents with a more 

physiologically relevant theta-burst stimulation (TBS) also induces LTP at corticostriatal 

synapses in Mg2+-containing aCSF (Hawes, et al., 2013; Park, Popescu, & Poo, 2014). 

Furthermore, different protocols of spike-timing-dependent plasticity (STDP) have been 

shown to induce corticostriatal LTP (Perrin & Venance, 2019). LTP can be induced by 

pairing presynaptic stimulation and postsynaptic action potentials in a presynaptic-

>postsynaptic order, either with a TBS pattern or at lower rate (0.1Hz) (Pawlak & Kerr, 

2008; Shen et al., 2008). On the other hand, pairing at 1Hz with a reversed order 

(postsynaptic spikes preceding presynaptic stimulation), induces LTP (Fino, Glowinski, & 

Venance, 2005; Cui et al., 2015, 2016), instead of the commonly observed LTD after low 

frequency stimulation. In addition to the difference in the rate of paired stimulation, this 

apparent inconsistency can be explained by differences in experimental conditions. Among 

them, the use of an antagonist of GABA receptors is critical, because it was later found to be 

able to reverse the direction of the plastic change (Fino et al., 2010; Paille et al., 2013; 

Valtcheva et al., 2017).

LTP at corticostriatal synapses requires proper expression levels and function of NMDARs, 

D1Rs, A2-type adenosine receptors (A2ARs), and mAChRs (Lovinger, 2010) (Figure 1). 

Pharmacological blockade or genetic deletion of NMDARs prevents different forms of LTP 

at corticostriatal synapses (Calabresi et al., 1992; Dang et al., 2006; Hawes et al., 2013; Kerr 

& Wichens, 2001; Jia et al., 2008). Selective deletion of the GluN1 subunit of NMDARs 

from cortical projecting neurons also abolishes LTP, indicating that presynaptic NMDARs 

are as important for LTP as postsynaptic NMDARs are (Park, Popescu, & Poo, 2014). D1Rs 

are involved in corticostriatal LTP (Calabresi et al., 2007), because an antagonist of D1R 

impairs LTP (Calabresi et al., 2000; Calabresi et al., 1992; Kerr & Wichens, 2001). 

Interestingly, selective blockade of D1Rs in dSPNs results in corticostriatal LTD when the 

LTP-eliciting STDP protocol is used (Shen et al., 2008). In D2R-expressing iSPNs, LTP 

requires A2ARs, which function similarly as D1Rs in dSPNs (Shen et al., 2008). Evidence 
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also suggests that ACh also plays a significant role in corticostriatal LTP: selective inhibition 

of M1R activity prevents LTP induction (Calabresi et al., 1999). The function of M1 in LTP 

could be mediated through modulation of NMDARs (Calabresi et al., 1998a). In contrast, 

inhibition of M2R activity enhances LTP (Calabresi et al., 1998b). Furthermore, activation 

of M4Rs in dSPNs prevents D1R-dependent LTP, likely through decreasing NMDAR-

mediated Ca2+ release from intracellular stores (Shen et al., 2015).

2.3.2 | Corticostriatal LTD—Several protocols have been used to evoke LTD at 

corticostriatal synapses. HFS induces LTD in striatal slices in the presence extracellular 

Mg2+ (Calabresi et al., 1992; Lovinger, Tyler, & Merritt, 1993). Like for spike-timing-

dependent LTP, several STDP protocols have been shown to induce LTD. For example, 

spike-timing-dependent LTD can be induced by the conventional “postsynaptic-

>presynaptic” protocol, in which the postsynaptic spike precedes the presynaptic spike 

(Pawlak & Kerr, 2008; Shen et al., 2008); however, it can also be induced by the 

“presynaptic->postsynaptic” paring under certain conditions (Fino, Glowinski, & Venance, 

2005; Cui et al., 2015, 2016). Furthermore, LTD can be also induced by pharmacological 

activation of group I metabotropic glutamate receptors (mGluRs), mGluR1 and/or mGluR5, 

either by itself or in combination with a small postsynaptic depolarization (Gubellini et al., 

2003; Kreitzer & Malenka, 2005; Sung, Choi, & Lovinger, 1997; Wu et al., 2015). Of note, 

there is also evidence showing that group I mGluRs may be involved in LTP in dorsal and 

ventral striatum (Gubellini et al., 2003; Schotanus & Chergui, 2008). LTD requires 

retrograde signaling by endocannabinoids (eCB) (Gerdeman, Ronesi, & Lovinger, 2002; 

Ronesi, Gerdeman, & Lovinger, 2004), which are generated by two distinct biosynthetic 

pathways: (1) phospholipase D (PLD) catalyzes anandamide (AEA) to eCB, and (2) PLCβ 
and diacylglycerol lipase α (DGLα) catalyze DAG to eCB. Consistently, PLCβ is activated 

by group I mGluRs and VGCC activity. Therefore, it is plausible that LTD induction results 

in the activation of postsynaptic L-type VGCCs and mGluR5, which triggers the synthesis of 

eCBs that diffuse retrogradely to activate presynaptic CB1 receptors (CB1Rs) that in turn 

reduce presynaptic glutamate release by acting on presynaptic VGCCs. In addition to this 

eCB-dependent presynaptic form of LTD, a postsynaptic form of LTD that depends on the 

synthesis and diffusion of nitric oxide (NO) has been reported at corticostriatal synapses. 

Inhibition of NO synthesis and its downstream target cGMP hinders LTD induction 

(Calabresi et al., 1999). This NO signal may originate from striatal interneurons because 

selectively activating guanylyl cyclase (GC) and protein kinase G (PKG) in SPNs induces 

LTD (Rafalovich et al., 2015).

Whether different striatal cell types exhibit specific forms of LTD has been interrogated for 

many years; however, no decisive conclusion has been reached. Some studies show that LTD 

induced by moderate frequency stimulation of cortical afferents is expressed in D2R-

expressing iSPNs, but not in D1R-expressing dSPNs (Kreitzer & Malenka, 2005, 2007). 

However, in several other studies using HFS, LTD is induced in both cell types (Bagetta et 

al., 2011; Wang et al., 2006). Furthermore, by using an STDP protocol with electric 

stimulation, LTD can be induced in iSPNs, and also in dSPNs provided that D1R activity is 

abolished (Shen et al., 2008). Interestingly, LTD induced by pharmacological activation of 

mGluRs occurs in both dSPNs and iSPNs even in the absence of a D1R antagonist (Wu et 
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al., 2015); this study also shows that LTD induced with an STDP protocol using optogenetic 

stimuli is observed not in iSPNs but rather in dSPNs. These discrepancies are thought to be 

caused by different stimulus patterns, ex vivo slices cut at different planes, and different 

neuromodulatory systems recruited during LTD induction.

D2Rs, mAChRs, serotonin (5-HT) receptors, and opioid receptors also play a significant 

neuromodulatory role in corticostriatal LTD. Gi/o-associated D2Rs are negatively coupled to 

AC5, an intracellular enzyme that catalyzes the production of cAMP (Kheirbek et al., 2009). 

Reduced cAMP synthesis during D2R activation results in a reduction in phosphorylated 

PKA, which leads to decreased Ca2+ influx into dendritic spines through NMDARs (Higley 

& Sabatini, 2010). Furthermore, the reduction of PKA also results in decreased activation of 

regulator of G protein signaling 4 (RGS4), leading to disinhibition of mGluR signaling 

through Gq (Huang et al., 2007; Lerner & Kreitzer, 2012; Saugstad et al., 1998). In addition, 

by suppressing RGS4 activity in dSPNs, endogenous cholinergic signaling through M4Rs 

promotes LTD, while also preventing DIR-dependent LTP (Shen et al., 2015). M1Rs are also 

involved in LTD induction (Wang et al., 2006). D2R stimulation in striatal interneurons 

results in reduced release of ACh and decreased activation of M1Rs in SPNs, ultimately 

leading to disinhibition of L-type VGCC activity. In addition, activation of 5-HT receptors 

results in corticostriatal LTD, which may use similar presynaptic mechanisms as eCB 

(Mathur et al., 2011). Activation of μ or δ opioid receptors also induces LTD, but it is 

mechanistically distinct from eCB-LTD (Atwood, Kupferschmidt, & Lovinger, 2014).

3 | CORTICOSTRIATAL DYSFUNCTION AND ASD

ASD, the most prevalent neurodevelopmental disorders, is used to define a clinically 

heterogeneous group of disorders, while it generally exhibits two core symptoms, impaired 

social communication and repetitive behaviors (Bhat et al., 2014; Fakhoury, 2015). A large 

number of risk genes that are associated with ASD pathogenesis have been identified 

(Nakanishi et al., 2019; Verma et al., 2019). Studies on ASD-related genes have indicated 

altered axonal growth, imbalance of neural network excitation/inhibition, and impaired 

synaptic plasticity in the corticostriatal pathway (Fuccillo, 2016; Golden, Buxbaum, & De 

Rubeis, 2018; Kuo & Liu, 2019; Shepherd, 2013). Below we first discuss the current 

findings of corticostriatal dysfunction in experimental models of high-confidence ASD-

associated genes (Table 1). As many studies have examined the role of striatal abnormality, 

but not specifically of corticostriatal dysfunction in other ASD genes, we also describe these 

findings in the next section, which may prompt future investigations of the dysfunction of 

the corticostriatal pathway.

3.1 | Role of ASD genes in corticostriatal dysfunction

3.1.1 | FMR1—Mutations in the human FMR1 gene cause Fragile X Syndrome (FXS), 

the most common inherited form of intellectual disability (Bagni & Oostra, 2013). FXS 

individuals suffer from cognitive impairment, delayed language development, hyperactivity, 

epilepsy, repetitive behavior, and social withdrawal. FMR1 encodes the fragile X mental 

retardation protein 1 (FMRP1), an RNA-binding protein that regulates cellular localization 

and translation of a large number of mRNAs encoding synaptic proteins. Impaired FMRP1 
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function results in immature dendritic spines, excitation/inhibition imbalance, and altered 

mGluR-mediated LTD in many brain regions in mouse models of FXS, including the 

hippocampus and cerebellum (Dahlhaus, 2018). FMRP1 is abundantly expressed in the 

cortex and striatum (Bonaccorso et al., 2015). Neuroimaging studies in FXS children or 

adults show an abnormal growth of gray matter volumes in the caudate and an increased 

density of fibers of the ventral frontostriatal pathway, as compared with age-matched 

controls (Hallahan et al., 2010; Hass et al., 2009; Hoeft et al., 2010). Functional MRI brain 

imaging demonstrates that the frontostriatal circuit normally associated with response 

inhibition is dysfunctional in FXS patients (Menon et al., 2004). The corticostriatal circuitry 

that processes sensory information is hypoactive in Fmr1 knockout (KO) mice (Zerbi et al., 

2018). Furthermore, an enhancement in GABAergic synaptic transmission occurs in the 

striatum due to elevated presynaptic GABA release (Centonze et al., 2008). In these mice, 2-

AG biosynthesis is compromised, leading to impaired mGluR-LTD in the ventral striatum 

(Jung et al., 2012). FXS patients treated with cannabidiol, an exogenous phytocannabinoid, 

show significant improvements in motor coordination, social anxiety and avoidance, and 

sensory processing (Targaglia, Bonn-Miller, & Hagerman, 2019). In addition, Fmr1 KO 

mice show lower expression levels of M1Rs in the striatum; restoration of these receptors 

and inhibition of acetylcholinesterase activity by pharmacological treatments alleviate their 

locomotor hyperactivity (Qiu et al., 2016). Studies characterizing the functional state of the 

corticostriatal pathway in FXS animal models are lacking.

3.1.2 | KMT2A—The lysine (K) methyltransferase 2a (KMT2A) gene located on 

chromosome 11 encodes the H3K4 methyltransferase enzyme, which plays a key epigenetic 

role for gene transcription in the brain (Hyun et al., 2017). Gene sequencing studies have 

identified the correlation of de novo KMT2A variants with ASD occurrence (C Yuen et al., 

2017; Lelieveld et al., 2016; Shen et al., 2014). Conditional KO (cKO) of Kmt2a in neurons 

of the mouse prefrontal cortex results in altered methylation at multiple genes important for 

emotion and cognitive function (Jakovcevski et al., 2015). Layer V pyramidal neurons in the 

medial prefrontal cortex in Kmt2a cKO mice show impaired short-term synaptic plasticity 

and temporal summation of synaptic responses. STDP-LTP evoked by stimulation of the 

anterior commissure is absent in SPNs of the ventral striatum (Shen et al., 2016). These 

mice also show heightened anxiety, which is consistent with increased expression of anxiety-

related genes. Virally-mediated Kmt2a deletion in the ventral striatum is sufficient to 

replicate the ASD-like phenotypes, suggesting the involvement of Kmt2a in proper striatal 

function.

3.1.3 | GRIN2B—The GluN2B subunit encoded by GRIN2B is a major component of 

NMDARs that mediates excitatory synaptic transmission in the brain (Sun et al., 2018). 

Variants and de novo mutations in the human GRIN2B gene have been identified in several 

neurodevelopmental and psychiatric disorders, including ASD (Hu et al., 2016). Grin2b is 

highly expressed during the prenatal period and starts to decline after birth in mice, which 

suggest that it plays an important role in neuronal migration and differentiation, 

synaptogenesis, and circuit formation (Monyer et al., 1994). Indeed, Grin2b deficiency 

results in delayed migration, increased dendritic length and branching, and impaired 

developmental synapse elimination in the developing cortex (Jiang et al., 2015; Ohno et al., 
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2010). Conditional deletion of Grin2b in the hippocampus results in NMDAR-mediated 

excitatory postsynaptic currents (EPSCs) with altered kinetics, impaired synaptic plasticity, 

reduced synapse density, and learning deficits (Brigman et al., 2010), while its 

overexpression in the forebrain enhanced LTP at excitatory hippocampal synapses and 

spatial memory (Tang et al., 1999). It was reported that NMDARs containing the GluN2B 

subunit modulate action selection in corticostriatal system (Brigman et al., 2013). Both 

postsynaptic and presynaptic NMDARs are shown to be equally important for the induction 

of LTP at corticostriatal synapses (Park, Popescu, & Poo, 2014), although it is unclear 

whether GluN2B-containing NMDARs in presynaptic terminals are involved in this 

plasticity.

3.1.4 | SCN2A—Mutations in the human SCN2A gene encoding for the voltage-gated 

sodium channel Nav1.2 have been identified as a prominent cause of ASD (Sanders et al., 

2018). Nav1.2 localizes to the axon initial segment and is involved in the initiation and 

propagation of action potential in neurons. Expressing the adult isoform of SCN2A in 

neonatal neurons results in increases in action potentials, seizure susceptibility, and risk-

taking behavior (Gazina et al., 2015). In addition to its role in modulating neuronal 

excitability in early development, Nav1.2 loss in mature neurons reduces action potential 

backpropagation and dendritic excitability, and impairs synaptic efficacy in a cell-

autonomous fashion (Spratt et al., 2019). Scn2a haplodeficiency in mice results in deficit in 

spatial memory (Middleton et al., 2018). These mice also show impaired corticostriatal 

synaptic transmission, while the cortico-thalamic circuit is unaffected. Such altered 

corticostriatal synaptic transmission has been recognized as the cellular mechanism 

underlying absence seizures; however, whether it is also a mechanism responsible for motor 

and cognitive dysfunction in ASD has not been studied (Miyamoto et al., 2019).

3.1.5 | NLGN1—The NLGN1 gene encodes a cell adhesion molecule that is primarily 

localized at excitatory synapses (Song et al., 1999). Copy number variants (CNV) analysis 

has implicated NLGN1 as a susceptibility gene for ASD (Glessner et al., 2009). Mouse 

models deficient in Nlgnl or carrying missense variants demonstrate ASD-relevant 

behavioral abnormalities including repetitive grooming and social impairment (Blundell et 

al., 2010; Nakanishi et al., 2017). Nlgnl KO results in a decrease in NMDA/AMPA ratio in 

the dorsal striatum, which is correlated with repetitive behaviors (Blundell et al., 2010). 

Such reduction mainly results from decreased expression of GluN2A-containing NMDARs, 

and occurs exclusively at synapses between cortical afferent and dSPNs (Espinosa et al., 

2015). No apparent difference in short-term plasticity at corticostriatal synapses was found 

in direct and indirectly pathways, but whether long-term plasticity such as LTP and LTD 

remains unaltered was not determined.

3.1.6 | NLGN3—The X-linked NLGN3 gene, another family member of NLGN, is 

associated with ASD (Quartier et al., 2019). Both NLGN3 deletion and point mutations 

result in deficits in social behaviors, and repetitive and stereotyped movements (Rothwell et 

al., 2014; Tabuchi et al., 2007). NLGN3 plays a critical role in the development and 

plasticity of excitatory and inhibitory neurons, by interacting its presynaptic partner neurexin 

(Südhof, 2008). In the striatum, Nlgn3 KO does not impair excitatory synaptic function in 
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dSPNs and iSPNs (Rothwell et al., 2014). However, Nlgn3 deletion causes a decreased 

inhibitory synaptic transmission onto dSPNs but not iSPNs in the ventral striatum. It remains 

unaffected in the dorsal striatum. Furthermore, LTD induced by pharmacological activation 

of CB1R was found to be normal in excitatory and inhibitory synapses in striatal dSPNs and 

iSPNs. However, HFS-LTD is affected at dorsal striatum excitatory synapses, which can be 

partially rescued by pretreatment of CB1R activation (Martella et al., 2018). These findings 

suggest that the effect of Nlgn3 dysfunction on striatal function varies, depending on brain 

regions, synapse types, and experimental protocols.

3.1.7 | MET—MET is an ASD risk gene that encodes receptor tyrosine kinase required 

for many signaling events during neurodevelopment (Campbell et al., 2006, 2007). SNP in 

the MET promoter and CNVs lead to social and communication phenotype (Campbell et al., 

2010). Mapping of MET expression in the brain shows high levels of the receptor in the 

cortex, hippocampus, and amygdala (Judson et al., 2009). Synaptic mapping in the anterior 

frontal cortex Met cKO mice shows stronger excitatory input to layer V corticostriatal 

neurons from layer M/III neurons, when compared with the local circuit in WT controls (Qiu 

et al., 2011). The intracortical hyperconnectivity is likely to impact downstream pathways in 

the subcortical region. Indeed, SPNs that receive corticostriatal afferents have a markedly 

increase in dendritic arborization and spine volume, although they do not express MET 

(Judson et al., 2010). Nonetheless, whether the morphological alteration is accompanied by 

changes in synaptic transmission and plasticity in this pathway remains unknown.

3.1.8 | CNTNAP2—Contactin-associated protein-like 2 (CASPR-2) is a neural 

transmembrane protein that belongs to the neurexin family (Dean & Dresbach, 2006) and is 

crucial for dendritic arborization and dendritic spine formation (Anderson et al., 2012). 

Genetic variants in the human CNTNAP2 gene have been found in individuals with ASD 

(Klein et al., 2017; Varghese et al., 2017). Deletion of Cntnap2 results in impaired cortical 

neuronal migration, decreased number of cortical interneurons, and altered neural network 

activity in the hippocampus and cortex (Penagarikano et al., 2011). Dendritic spine density 

is lower in Cntnap2 KO mice, which is accompanied by lower synaptic levels of the 

AMPAR subunit GluA1 (Varea et al., 2015). Cntnap2 is highly expressed in the striatum 

during development. Profiling the genome-wide 5-hydroxymethylcytosine (5hmC) in the 

striatum of Cntnap2 KO mice discovered that this epigenetic modification is largely 

disrupted in many ADS-associated genes including RELN (Papale et al., 2015). In addition, 

the number of striatal PV-positive interneurons is lower in Cntnap2 KO mice, which disturbs 

proper cortico-striato-thalamic circuitry activity important for language and speech, reward, 

and executive function (Lauber, Filice, & Schwaller, 2018).

3.1.9 | FOXP2—FOXP2, a member of the Fox family, has been shown to be associated 

with ASD; individuals with FOXP2 mutations manifest spoken language disability (Vargha-

Khadem et al., 2005). FOXP2 interacts with several ASD risk genes, including CNTNAP2 
and MET (Mukamel et al., 2011; Vernes et al., 2008). In the mouse striatum carrying 

homozygous human FOXP2 mutations, SPNs exhibit increased dendritic length and 

increased corticostriatal LTD (Enard et al., 2009). On the contrary, mice heterozygous for 

FOXP2 mutations show impaired LTD at corticostriatal synapses and impaired motor skill 
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learning (Groszer et al., 2008). The modulation of corticostriatal synapse formation by 

FOXP2 may be through its negative interaction with the synapse suppressor gene myocyte 
enhancer factor 2C (Mef2c), as the function of Mef2c can be repressed by FOXP2 (Chen et 

al., 2016). However, irrespective of homozygous or heterozygous deletion of Foxp2, the 

modulation of synaptogenesis by FOXP2 is positively regulated. Further investigation of 

how the deficiency of FOXP2 affects corticostriatal synaptic plasticity is necessary.

3.1.10| TSHZ3—The teashirt zinc finger homeobox 3 (TSHZ3), encoding the 

transcription factor TSHZ3, has an essential role in cortical development (Kang et al., 2011). 

A genome-wide association study indicates that TSHZ3 is a susceptibility gene for ASD 

(Hussman et al., 2011). Postnatal Tshz3 cKO from cortical projections induces altered 

expression of a large number of genes, many of which have the human orthologue known to 

be involved in ASD (Chabbert et al., 2019). In the corticostriatal synapses of these mice, 

presynaptic release probability is decreased and the ratio of NMDAR- and AMPAR-

mediated synaptic transmission is enhanced, the latter of which may be responsible for LTD 

deficit but spare LTP (Chabbert et al., 2019). In contrast, constitutive Tshz3 heterozygous 
mice demonstrate some opposite synaptic features, increased release probability, normal 

NMDA/AMPA ratio, and enhanced LTP (Caubit et al., 2016). These discrepancies may be 

due to the induction difference of Tshz3 loss and the involvement of the compensatory 

mechanism.

3.1.11| SHANK3—The SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene 

encodes the protein SHANK that is localized at the core of the postsynaptic density (Sheng 

& Kim, 2000). SHANK3 mutations have been implicated in ASD because its 

haploinsufficiency causes ~1% of all individuals with ASD (Uchino & Waga, 2013). Shank 

regulates excitatory synapse structure and function by interacting with scaffolding proteins 

and glutamatergic receptors via protein binding domains (Ehlers, 1999). Consistently, lower 

dendritic spine density and impaired function of AMPARs and NMDARs are common 

deficits in mice with Shank3 mutations (Jaramillo et al., 2016; Sala et al., 2015). In Shank3 
KO mice, surface expression of several glutamate receptors is downregulated in the striatum 

(Heise et al., 2018). Consistently, corticostriatal synaptic transmission is reduced in these 

mice (Peca et al., 2011); unexpectedly, this study also shows increased dendritic complexity. 

Notably, SHANK3 mediates mGluR5 signaling in the striatum, and pharmacological 

enhancement of this pathway rescues behavioral deficits in Shank3 KO mice (Vicidomini et 

al., 2017). The striatum is also known to specifically contribute to preservative exploratory 

behaviors, which is different from the cortex where the grooming behavior is expressed (Bey 

et al., 2018). Furthermore, a report shows the indirect, but not the direct, striatal pathway is 

involved in repetitive behaviors (Wang et al., 2017). At the molecular level, proteomic 

analysis striatal samples from Shank3 KO revealed a downregulation of several proteins that 

are encoded by ASD susceptibility genes (Reim et al., 2017).

3.2 | Role of ASD genes in striatal abnormality

3.2.1 | PTEN—Phosphatase and tensin homolog (PTEN) dephosphorylates 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) to generate PIP2, thereby suppressing the 

activity of phosphoinositide 3-kinase (PI3K) pathway (Sun et al., 1999). The human PTEN 
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gene, located on chromosome 10q23, has been identified as the susceptibility gene for 

macrocephalic ASD (Hobert et al., 2014). Consistently, mice deficient in Pten have 

increased cell number and size, and abnormal social interactions (Groszer et al., 2001; Kwon 

et al., 2006). Conditional deletion of Pten in Purkinje cells (PCs) also results in autistic-like 

features in adult mice, and these PCs show altered morphology and impaired synaptic 

function (Cupolillo et al., 2016). In addition, PTEN acts as regulator of DAergic signaling in 

an animal model of Parkinson’s disease induced by 6-OHDA (Stavarache et al., 2015). 

However, it is unknown whether PTEN dysregulation alters the functional state of the 

corticostriatal pathway.

3.2.2 | CHD8—Chromodomain helicase DNA-binding protein 8 (CHD8) is an ATP-

dependent chromatin remodeling protein that plays a critical role in transcriptional 

regulation during development (Barnard, Pomaville, & O’Roak, 2015). The human CHD8 
gene has been identified as one of the most consistently replicated ASD genes (Ayhan & 

Konopka, 2019; Tammimies, 2019). Whereas homozygous deletion of Chd8 is 

embryonically lethal in mice as a result of severe apoptosis (Nishiyama et al., 2009), Chd8 
haploinsufficiency mouse models display the large brain volume and mild social deficits 

reminiscent of some features of individuals with ASD harboring CHD8 mutations (Gompers 

et al., 2017; Katayama et al., 2016; Suetterlin et al., 2018). Gene expression studies in Chd8 
haploinsufficiency mice have demonstrated widespread upregulation and downregulation of 

many genes known to be important for cell cycle regulation, and chromatin and histone 

modification (Durak et al., 2016; Gompers et al., 2017; Katayama et al., 2016). Notably, 

Chd8 deficiency results in altered activation of the RE-1 silencing transcription factor 

(REST) and lower levels of Wnt-β-catenin signaling. In utero knockdown of Chd8 in 

embryonic cortical neurons results in altered neural proliferation, reduced complexity of 

dendritic arborization, and lower dendritic spine density (Durak et al., 2016). Mice carrying 

human mutant CHD8 show sexually dimorphic changes in excitatory and inhibitory synaptic 

transmission, and neuronal firing (Jung et al., 2018). RNAi-mediated Chd8 knockdown 

results in delayed neuronal migration, altered callosal projection, and reduced axonal and 

dendritic arborization (Xu et al., 2018). Synaptic dysfunction was also found in SPNs of the 

ventral striatum. Chd8 loss-of-function mice show increased excitatory and decreased 

inhibitory activity in the striatal circuitry (Platt et al., 2017). Interestingly, although 

locomotion is reduced in these mice, acquired motor learning is improved, which has been 

observed in other ASD mouse models (Rothwell et al., 2014); however, whether synaptic 

activity in the dorsal corticostriatal pathway is dysfunctional was not determined. To date, 

the consequences of enhanced excitation and impaired inhibition in the striatum on specific 

ASD-like behaviors is unknown.

3.2.3 | MECP2—Methyl-CpG binding protein 2 (MeCP2) is the founding member of the 

family of methyl-DNA-binding proteins, and initially described as a transcriptional repressor 

of genes with methylated CpG islands in their promoter regions (Guy et al., 2011). Loss-of-

function mutations in the human MECP2 gene, located on chromosome Xq28, are the cause 

of Rett syndrome (RTT), a neurodevelopmental disorder with severe neurological and 

cognitive deficits, including ASD-like features during the regression phase of the disease 

(Neul et al., 2010). Because of the severity of their neurological symptoms, boys 
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hemizygous for MECP2 mutations perish during early infancy, while girls heterozygous for 

these mutations due to X-chromosome inactivation survive longer, albeit with RTT. 

Individuals with RTT develop typically until 6–18 months when a constellation of 

neurological and cognitive symptoms begins to develop (Li & Pozzo-Miller, 2012; Neul et 

al., 2010). Mouse models of Mecp2 deletion and loss-of-function result in subtle changes in 

the morphology and function of brain cells and synapses, but with profound consequences 

on neural network activity (Li & Pozzo-Miller, 2012). A wealth of evidence has pointed to 

the involvement of striatal dysfunction in the pathogenesis of RTT. Volumetric analyses from 

MRI brain imaging studies in RTT individuals revealed reductions in the caudate nucleus, a 

major component of the striatum (Dunn et al., 2002; Naidu et al., 2001; Reiss et al., 1993; 

Subramaniam, Naidu, & Reiss, 1997). Consistently, Mecp2-based mouse models of RTT 

exhibit characteristic hind limb clasping and reduced striatum volume (Chen et al., 2001; 

Guy et al., 2001). Selective Mecp2 deletion in the striatum is sufficient to cause the same 

RTT-like motor deficits that occur in constitutive Mecp2 KO mice, while Mecp2 re-

expression locally in the striatum improves motor function (Su et al., 2015). Expression 

levels of AMPARs, NMDARs, and GABARs are affected in the striatum of RTT individuals 

(Blue, Naidu, & Johnston, 1999). In RTT, the levels of D2Rs and DAT are altered in the 

caudate nucleus and putamen, but D1Rs are not affected (Chiron et al., 1993; Harris et al., 

1986; Wenk, 1995; Wong et al., 1998). In addition, the striatum of Mecp2 KO mice 

expresses lower levels of the dopamine synthetic enzyme TH (Panayotis et al., 2011), and 

dopamine release from afferent axons of substantia nigra pars compacta (SNpc) into the 

striatum is reduced in Mecp2 KO mice (Gantz et al., 2011). Despite these early observations, 

however, it is currently unknown whether the cortical input to SPNs is altered in Mecp2-

based mouse models.

3.2.4 | DYRK1A—Dual-specificity tyrosine phosphorylation-regulated kinase 1A 

(DYRK1A) modulates various intracellular signaling cascades by interacting with 

cytoskeleton proteins in the cytoplasm (Hämmerle, Elizalde, & Tejedor, 2008), and its gene 

is highly conserved and located in the Down syndrome regions of chromosome 21. In 

addition, DYRK1A mutations have emerged as a high-confidence cause for ASD that 

manifests with microcephaly, intellectual disability, speech impairments, seizures, and 

abnormal gait (Courcet et al., 2012; van Bon et al., 2011). Homozygous DyrklA KO mice 

die in the mid-gestational phase, while DyrklA heterozygous mice survive into adulthood, 

but exhibiting delayed brain development and motor impairments (Fotaki et al., 2002, 2004). 

DyrklA gene dosage is critical for neuron development, because both its overexpression and 

loss-of-function result in impaired dendritic complexity and lower dendritic spine density in 

cortical neurons (Benavides-Piccione et al., 2005; Martinez de Lagran et al., 2012). Mice 

carrying one copy of human DYRK1A gene show altered bidirectional synaptic plasticity in 

the hippocampus, as well as impaired spatial learning (Ahn et al., 2006). Also, mice 

harboring a frame-shift mutation in DyrklA show DYRK1A haploinsufficiency and as a 

result exhibit deficits in ultrasonic commutations and social contacts (Raveau et al., 2018). 

Intriguingly, reducing Dyrk1a levels only in the striatum is sufficient to rescue several 

corticostriatally-dependent phenotypes, such as hypoactive behavior, coordination 

impairments, and sensorimotor gating (Oritz-Abalia, et al., 2008).
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3.2.5 | RELN—The large secreted glycoprotein Reelin binds to the extracellular domains 

of very-low-density-lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 

(APOER2), and their signaling is then transduced to intracellular adaptor protein Disabled-1 

(DAB1). Phosphorylated DAB1 can activate many downstream effectors, including the 

kinases PI3K and AKT. Thus, the Reelin-DAB1 signaling pathway plays a critical role in 

controlling neuronal migration and aggregation, and neurite branching and synaptic function 

(Hirota & Nakajima, 2017; Wasser & Herz, 2017). Several single nucleotide polymorphisms 

(SNPs) in the human RELN gene, located in chromosome 7 (Armstrong, Anderson, & 

McDermott, 2019), are associated with an increased risk of ASD (Lammert & Howell, 

2016). Homozygous Reln mutant mice show abnormal social behavior (Salinger, Ladrow, & 

Wheeler, 2003). Reelin, VLDLR, APOER2, and DAB1 are all highly expressed in the 

striatum (Sharaf et al., 2015). In heterozygous Reln mice, the expression levels of D2Rs are 

higher in the striatum, while 5-HT levels are lower (Nullmeier et al., 2014; Varela et al., 

2015). However, the role of Reelin in corticostriatal synaptic dysfunction in ASD models is 

unclear.

3.2.6 | FOXP1—FOXP1, a member of the Fox family, encodes the transcriptional factor 

FOXP1 (Kaestner, Knochel, & Martinez, 2000). Foxpl is highly expressed in multiple brain 

regions, including the striatum (Ferland et al., 2003), and especially in precursor and mature 

SPNs where it is responsible for their differentiation and expression of the characteristic 

biomarker DARPP-32 (Precious et al., 2016). Individuals with deletions, point mutation, or 

translocations in the human FOXP1 gene have delayed development, speech, and motor 

activity (Bowers & Konopka, 2012). Constitutive Foxpl KO mice die at the embryonic phase 

(Wang et al., 2004), while conditional Foxpl deletion in neurons results in altered 

morphology, excitability, and increased synaptic transmission in the striatum and 

hippocampus (Bacon et al., 2015). Foxpl deficiency results in altered neuron proliferation-

related pathways in the striatum, as well as increased dendritic branching, impaired social 

behavior, repetitive behavior, and hyperactivity. Furthermore, FOXP1 directly regulates 

ASD-relevant genes in the striatum, and differentially influence excitability of dSPNs vs. 
iSPNs (Araujo et al., 2015). However, the role of FOXP1 in corticostrial synaptic 

transmission and plasticity is still unclear.

3.2.7 | SYNGAP1—SynGAP1 is a postsynaptic protein that is encoded by SYNGAP1 
and functions downstream of NMDARs and the scaffolding protein postsynaptic density-95 

(PSD-95). Its activity is regulated by Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) (Kim et al., 1998). SynGAP1 acts to restrict the insertion of AMPARs by 

negatively regulating RAS-GTPase activity. Mutations in the human SYNGAP1 are 

common in sporadic ASD (Berryer et al., 2013; Parker et al., 2015). Heterozygous Syngapl 
KO mice display significant behavioral abnormalities, including reduced seizure threshold, 

hyperactivity, stereotypic behaviors, and learning and cognitive deficits. Syngapl deficiency 

is associated with accelerated maturation of glutamatergic synapses and enhanced synaptic 

transmission (Clement et al., 2012). SynGAP1 is highly expressed in both glutamatergic and 

GABAergic neurons in the striatum (Porter et al., 2005). One study reports that there is no 

alteration in seizure threshold, anxiety levels, and learning in Syngapl cKO mice lacking 

SynGAP1 only in GABAergic interneurons, including SPNs (Ozkan et al., 2014); however, 
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it was not tested whether corticostriatal synaptic function and ASD-related phenotype are 

altered in these Syngapl cKO mice.

3.2.8 | NRXN—Neurexins are heterophilic cell adhesion molecules present in presynaptic 

terminals that bind ligands such as neuroligins (NLGN1) and cerebellin/GluD complexes 

localized in postsynaptic compartments and mediate trans-synaptic signaling during synapse 

differentiation and maturation (Südhof, 2017). The human Neurexin (NRXN) gene consists 

of NRXN1, NRXN2, and NRXN3, each encoding α-neurexin and β-neurexin under control 

of different promoters (Kasem, Kurihara, & Tabuchi, 2018). CNVs and point mutations in 

NRXN (particularly in NRXN1) have been associated with ASD (Reichelt, Rodgers, & 

Clapcote, 2012). Nrxn2α-deficient mice exhibit impaired social interaction and heightened 

anxiety (Born et al., 2015). α-Neurexin is also required for presynaptic Ca2+-triggered 

transmitter release and VGCC function (Dudanova et al., 2006), and its deletion results in an 

impairment of neurotransmitter release at both excitatory and inhibitory synapses. A single-

cell mRNA profiling study shows that a spliced isoform of neurexin1 is preferentially 

expressed in dSPNs of the ventral striatum (Fuccillo et al., 2015). Whether this specific 

expression pattern contributes to a unique role for corticostriatal circuitry in ASD models 

has not been determined yet.

4 | CONCLUSION

The corticostriatal pathway that conveys sensory, motor, limbic information to the striatum 

plays a critical role in motor control, action selection, and reward. Dysfunction of this 

pathway is associated with many neurological and psychiatric disorders. However, the study 

elucidating its role in ASD is in their infancy. When the repertoire of ASD-related genes is 

expanded, finding a convergent neuronal pathway that underlies such a heterogeneous 

etiology can be efficiently targeted by therapeutics. Interrogating the synaptic, cellular and 

network mechanisms of corticostriatal pathway dysfunction in experimental models of ASD 

is thus a fundamental undertaking for ASD research.
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Significance

The majority of cortical areas send monosynaptic excitatory projections to the striatum, 

which contribute to diverse sensorimotor and cognitive processing tasks. This 

glutamatergic corticostriatal pathway is strongly modulated by dopaminergic, 

cholinergic, GABAergic, and purinergic signaling. Corticostriatal dysfunction has been 

involved in many neurological and psychiatric disorders. This review summarizes current 

the understanding of corticostriatal connectivity and describes its functional role in the 

context of autism spectrum disorders.
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FIGURE 1. 
Molecular mechanisms of corticostriatal synaptic plasticity. Accumulating evidence suggests 

that LTP and LTD can be induced in both dSPNs and iSPNs, and that signaling interplays in 

this opposite synaptic plasticity. Note that lines that end with arrowheads indicate signaling 

activation whereas lines that end with perpendicular bars indicate inhibition. In dSPNs, 

stimulation of D1Rs results in activation of the AC5-cAMP-PKA pathway via Gs/olf, which 

in turn activates RGS4 that is involved in LTP. LTP involves NMDAR activity, which can be 

induced by M1Rs and PKA. LTP can be repressed by activation of postsynaptic M4Rs via 

Gi/o and presynaptic M2Rs. LTD was also found to be induced by mGluR5 activation in 

dSPNs, which is likely involved in eCB synthesis and release, and presynaptic activation of 

CB1Rs. In iSPNs, LTP involves the same signaling pathway as in dSPNs, but it is initiated 

by A2AR stimulation. LTD in iSPNs is well known to be involved in eCB signaling that is 

initiated by mGluR5 via Gq. eCB can be synthesized by two pathways: PLD catalyzes AEA 

to eCB, and PLCβ and DGLα catalyze DAG to eCB. PLCβ activation is controlled by 

VGCC activity in addition to mGluR5. Additionally, D2R activity is responsible for LTD by 

inhibiting the AC5-cAMP-PKA pathway via Gi/o. LTD can be prevented by activation of this 

pathway via RSG4.
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Table 1.

Striatal pathogenesis in ASD

Gene Loci Protein function Striatal function, pathology and phenotype

FMR1 Xq27.3 Regulating cellular mRNA localization 
and translation

Increased fiber density in frontostriatal pathway; hypoactive 
corticostriatal circuitry; elevated GABA release; impaired mGluR-
LTD; decreased M1R expression

KMT2A 11q23.3 Modulation of gene transcription Impaired STDP-LTP; anxiety and depression

GRIN2B 12p13.1 NMDAR subunit; mediating excitatory 
synaptic transmission Impaired action selection

SCN2A 2q24.3 Initiation and propagation of action 
potential Reduced corticostriatal synaptic transmission; absence seizures

NLGN1 3q26.31 Cell adhesion molecule Reduced NMDA/AMPA ratio; repetitive behaviors

NLGN3 Xq13.1 Cell adhesion molecule Reduced inhibitory synaptic transmission onto dSPNs; HFS-LTD 
defect in excitatory synapses

MET 7q31.2 Receptor tyrosine kinase Increased dendritic arborization and spine volume

CNTNAP2 7q35-q36.1 Modulation of cell adhesion; dendritic 
arborization and spinogenesis

Reduced PV-positive interneurons; disturbed cortico-striato-thalamic 
circuitry

FOXP2 7q31.1 Transcriptional factor; interacting with 
MEF2C

Increased dendritic branching and LTD in Foxp2 homozygous mice 
but impaired LTD in heterozygous striatum; hyperactivity; altered 
dSPN and iSPN excitability

TSHZ3 19q12 Transcription factor; modulation of 
cortical development

Decreased release probability, increased NMDAR- and AMPAR-
mediated transmission, and LTD deficit in cKO; increased release 
probability, normal NMDA/AMPA ratio, and increased LTP in 
constitutive heterozygous mice

SHANK3 22q13.33 Regulation of excitatory synapse structure 
and function

Altered mGluR5 signaling; reduced expression of ASD 
susceptibility genes; impaired preservative exploratory behavior

PTEN 10q23.31 Suppressing PI3K pathway Altered PC morphology and impaired PC synaptic function

CHD8 14q11.2 Chromatin remodeling protein Increased excitatory but decreased inhibitory activity; reduced 
locomotion; improved acquired motor learning

MECP2 Xq28 Chromatin modification; processing 
mRNA

Reduced striatal volume; altered levels of AMPARs, NMDARs, 
GABARs, D2Rs, DAT, and TH

DYRK1A 21q22.13 Modulation of intracellular signaling 
cascades

Hypoactive behavior; impaired coordination; aberrant sensorimotor 
gating

RELN 7q22.1 Activating kinases PI3K and AKT Increased D2R levels; low TH

FOXP1 3p13 Transcriptional factor; modulation of cell 
differentiation

Increased dendritic branching; hyperactivity; altered dSPN and 
iSPN excitability

SYNGAP1 6p21.32 Postsynaptic protein; restricting AMPAR 
restriction Highly expressed in both glutamatergic and GABAergic neurons

NRXN 2p16.3
Modulation of synapse differentiation and 
maturation; regulation of transmitter 
release and VGCC function

Expressed in dSPNs of the ventral striatum
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