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Abstract
Microbially mediated processes contribute to coral reef resilience yet, despite extensive characterisation of microbial
community variation following environmental perturbation, the effect on microbiome function is poorly understood. We
undertook metagenomic sequencing of sponge, macroalgae and seawater microbiomes from a macroalgae-dominated
inshore coral reef to define their functional potential and evaluate seasonal shifts in microbially mediated processes. In total,
125 high-quality metagenome-assembled genomes were reconstructed, spanning 15 bacterial and 3 archaeal phyla.
Multivariate analysis of the genomes relative abundance revealed changes in the functional potential of reef microbiomes in
relation to seasonal environmental fluctuations (e.g. macroalgae biomass, temperature). For example, a shift from
Alphaproteobacteria to Bacteroidota-dominated seawater microbiomes occurred during summer, resulting in an increased
genomic potential to degrade macroalgal-derived polysaccharides. An 85% reduction of Chloroflexota was observed in the
sponge microbiome during summer, with potential consequences for nutrition, waste product removal, and detoxification in
the sponge holobiont. A shift in the Firmicutes:Bacteroidota ratio was detected on macroalgae over summer with potential
implications for polysaccharide degradation in macroalgal microbiomes. These results highlight that seasonal shifts in the
dominant microbial taxa alter the functional repertoire of host-associated and seawater microbiomes, and highlight how
environmental perturbation can affect microbially mediated processes in coral reef ecosystems.

Introduction

Coral reef ecosystems are being challenged by anthro-
pogenic pressures that are resulting in unprecedented rates
of decline [1–3]. The cumulative effects of climate change

(e.g. ocean warming and ocean acidification) and local
pressures (e.g. overfishing and eutrophication) reduce the
resilience of coral reef ecosystems [4, 5] and lead to a
transition from healthy, coral-dominated ecosystems to
degraded reefs, often characterised by enhanced macroalgae
biomass [6, 7]. The increase of macroalgae in coral reef
ecosystems at the expense of coral species abundance and
diversity fosters a perpetuating cycle of reef degradation,
hence, high macroalgae biomass is often considered a sign
of poor reef health [7, 8].

Microorganisms play pivotal roles in coral reefs, and the
maintenance of biogeochemical cycling and microbially
mediated ecological processes is considered critical for the
persistence of reefs under future projected climate condi-
tions [9–11]. Cumulative environmental stressors (e.g.
increased sea-surface temperatures, ocean acidification, and
eutrophication) can trigger alterations in the composition
and function of microbial assemblages associated with
corals and sponges [12–16]. Changes in the microbiome of
dominant reef-benthos can negatively impact holobiont
health, with adverse consequences for the wider reef

* Bettina Glasl
b.glasl@aims.gov.au

1 Australian Institute of Marine Science, Townsville, QLD,
Australia

2 College of Science and Engineering, James Cook University,
Townsville, QLD, Australia

3 AIMS@JCU, Townsville, QLD, Australia
4 Australian Centre for Ecogenomics, University of Queensland,

Brisbane, QLD, Australia
5 Centre of Marine Sciences, University of Algarve, Faro, Portugal

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-020-0622-6) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-0622-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-0622-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-0622-6&domain=pdf
http://orcid.org/0000-0002-6812-868X
http://orcid.org/0000-0002-6812-868X
http://orcid.org/0000-0002-6812-868X
http://orcid.org/0000-0002-6812-868X
http://orcid.org/0000-0002-6812-868X
http://orcid.org/0000-0002-4753-5278
http://orcid.org/0000-0002-4753-5278
http://orcid.org/0000-0002-4753-5278
http://orcid.org/0000-0002-4753-5278
http://orcid.org/0000-0002-4753-5278
mailto:b.glasl@aims.gov.au
https://doi.org/10.1038/s41396-020-0622-6
https://doi.org/10.1038/s41396-020-0622-6


ecosystem [15, 17, 18]. For example, elevated sea-surface
temperatures can disrupt the microbiome of both corals and
sponges, leading to disease and mortality [17, 19]. Sponges
can comprise a dominant component of the reef benthos,
where they form part of a highly efficient recycling pathway
that takes up dissolved organic matter and converts it into
cellular detritus that becomes food for higher trophic levels
[20]. Hence, the break-down of sponge-microbe sym-
bioses can have potential consequences on an ecosystem
scale (reviewed by [14]). Furthermore, the transition from
coral to macroalgae dominance in reef ecosystems enhances
the availability of labile dissolved organic carbon (DOC) in
reef waters, shifting the trophic structure towards higher
microbial biomass and energy use in degraded reefs, a
process termed microbialisation [8, 21]. Macroalgae-
derived DOC fosters the growth of copiotrophic, poten-
tially pathogenic, bacterioplankton communities that can
negatively impact the health of corals [8, 22–24]. Close
proximity of macroalgae to corals can also induce shifts in
the coral-associated microbial communities and potentially
act as a trigger for microbial diseases [19, 25–27]. As corals
perish, more space becomes available for macroalgae,
thereby creating a positive feedback loop called DDAM;
DOC, disease, algae, microorganism [8, 28].

Metagenomics is providing new insights into the func-
tional roles microorganisms play on coral reefs (e.g.
[8, 29, 30]). However, the enormous habitat complexity of
coral reefs means that microbial communities associated
with different reef niches are rarely holistically assessed
within a single study [31]. Given the strong benthic-pelagic
coupling that occurs in coral reef ecosystems, integrated
functional assessments of free-living and host-associated
microbiomes are needed to better understand the contribu-
tions of microbially mediated processes to reef ecosystem
health [31, 32]. Furthermore, recent computational advan-
ces enable precise metabolic reconstructions of microbial
genomes from complex microbial communities [33–35].
Thus, identifying how the functional potential of reef
microbiomes respond to environmental changes (e.g. tem-
perature and nutrient availability) and benthic species
composition (i.e. macroalgae and coral abundance) is now
possible at an ecosystem scale.

This genome-centric coral reef microbiome study
assessed microbial community shifts in response to seaso-
nal fluctuations in the environment (i.e. sea-surface tem-
perature, macroalgae abundance, and water quality
parameters) and evaluated the functional implications for
host-associated (sponge and macroalgae) and free-living
(seawater) microbiomes. Coastal inshore reef systems of
the Great Barrier Reef (GBR) are characterised by high
macroalgal abundance (particularly the canopy-forming
brown algae Sargassum spp.) and reduced coral cover
[36–38]. Sargassum biomass on inshore reefs of the GBR

fluctuates seasonally and reaches a maximum during early
summer and a minimum during mid-winter [36, 39, 40].
Macroalgae-dominated shallow inshore reefs of the GBR
are also exposed to larger temperature fluctuations com-
pared with off-shore reefs [41], with sea-surface tempera-
ture at inshore reefs frequently reaching 30 °C during
summer [42]. Hence, inshore regions of the GBR provide
an ideal system to study the effects of macroalgae biomass,
temperature, and nutrient fluctuations on the functional
potential of coral reef microbiomes.

Material and methods

Sample collection and preparation

Marine sponge (Coscinoderma matthewsi), macroalgae
(Sargassum spp.) and seawater samples for metagenomic
sequencing were collected during two sampling events
(August 2016 and February 2017) at Geoffrey Bay, Mag-
netic Island (Great Barrier Reef, Queensland, Australia).
Additional seawater samples for metagenomic sequencing
were collected in June 2016, October 2016, December 2016
and March 2017. Furthermore, seawater (2 L) was collected
at all six sampling occasions with a diver-operated Nisikin
bottle at 2 m depth for analysis of salinity and quantification
of non-purgeable organic carbon (NPOC), non-purgeable
inorganic carbon (NPIC), particulate organic carbon (POC),
total suspended solids (TSS), chlorophyll a (Chl a) and
dissolved inorganic nutrients (i.e. ammonium, nitrate,
nitrate, phosphate), particulate nitrogen (PN), and total
nitrogen (TN) concentrations. Each parameter was mea-
sured in duplicate and processed following the standard
operational procedures of the Australian Institute of Marine
Science (AIMS) [43]. Seawater temperatures specific to the
sampling site, date and depth were obtained from AIMS
long-term monitoring temperature records (http://eatlas.org.
au). Samples were collected under the permit G16/38348.1
issued by the Great Barrier Reef Marine Park Authority.

Samples (n= 3 per sample type per sampling event) for
metagenome sequencing were collected and processed fol-
lowing the standard operating procedures of the Australian
Marine Microbial Biodiversity Initiative (AMMBI) as pre-
viously described [44]. In brief, seawater was collected with
collapsible sterile bags at 2 m depth and pre-filtered (50 µm)
to remove larger particles and subsequently filtered (2 L)
onto 0.2 µm Sterivex-filters (Millipore). The sponge Cos-
cinoderma matthewsi was removed from the substrate (at
7 m depth) with sterile scalpel blades, rinsed with 0.2 µm
filter-sterilised seawater to remove loosely attached
microbes from the sponge’s tissue and subsampled into
2 mL cryogenic vials. Sargassum spp. was sampled
with sterile scalpels at 3 m depth, rinsed with 0.2 µm
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filtered-sterilised seawater to remove seawater-associated
microbes and placed into 2 mL cryogenic vials. All samples
were immediately snap frozen in liquid nitrogen and stored
at −80 °C.

Prior to DNA extraction, the macroalgal biofilm was
separated from the macroalgal tissue [44]. In brief, the
biofilm was removed from the macroalgal surface by
overnight incubation at 200 rpm in 10 mL 1 × PBS at 37 °C.
The suspended biofilm in the supernatant was transferred to
a clean tube, centrifuged for 10 min at 16,000 rcf at 4 °C
and the resulting pellet was used for DNA extraction.
Microbes within the sponge tissue were separated from
sponge host cells as described in detail by Botte et al. [45].
Briefly, sponge tissue was rinsed twice (5 min at 200 rpm on
an orbital incubation shaker) with sterile calcium- and
magnesium-free seawater (CMFSW) and homogenised
using a handheld tissue homogeniser (Heidolph Silent
Crusher M) for 10 min at 7000 rpm in CMFSW. Next,
filter-sterilised collagenase (Sigma Aldrich) was added to
the homogenised sponge tissue (final concentration of
0.5 mg/mL) and the tissue slurry incubated on ice for
30 min at 150 rpm on an incubation orbital shaker. After
incubation, the microbial cells from the sponge tissue slurry
were enriched by a series of filtration and centrifugation
steps. The final microbial pellet was recovered in 1 mL Tris-
HCl/NaCl and stored at −20 °C until required for DNA
extraction.

DNA extractions and metagenome sequencing

DNA from seawater and macroalgal biofilms was extracted
with the DNeasy PowerSoil kit (QIAGEN). DNA of
sponge-associated microbial cells was extracted with the
Dneasy PowerBiofilm kit (QIAGEN) following the manu-
facturer’s instructions. DNA extracts were stored at −80 °C
until shipment on dry ice to the Australian Genome
Research Facility (AGRF; Melbourne, Australia) for
sequencing. Libraries were prepared with the Nextera XT
Library Preparation Kit (Illumina), following the manu-
facturer’s protocol and sequenced on a HiSeq 2500 in rapid
run mode with 250 bp paired-end reads (24 samples per
flow cell resulting in ~5–6 Gbp per sample). Raw sequen-
cing data and metadata are freely available at the Bioplat-
forms Australia data portal under the Australian
Microbiome project (https://data.bioplatforms.com/organiza
tion/about/australian-microbiome) and have been deposited
under the NCBI BioProject PRJNA594068. A full list of
sample identifiers is provided in Supplementary Table S1.

Read assembly, binning and de-replication

Sequence adaptors of raw reads were removed using Seq-
Purge v2018_04 [46] and adaptor-trimmed reads of samples

were assembled individually with metaSpades v3.13.0 [47]
using default settings. Coverage files for metagenomic
binning were calculated by mapping adaptor-trimmed reads
to assembled scaffolds using BamM v1.7.3 (https://github.
com/Ecogenomics/BamM) and metagenome-assembled-
genomes (MAGs) were generated with uniteM v0.0.15
(https://github.com/dparks1134/UniteM) using the follow-
ing binning tools: GroopM v0.3.4 [33], MaxBin v2.2.4 [35]
and MetaBAT v2.12.1 [34]. The quality (completeness and
contamination) of the resulting MAGs was assessed with
CheckM v1.0.12 [48]. The total recovery of MAGs with
qualities ≥50 (where quality= completeness−3 × con-
tamination) was estimated with singleM v0.12.1 (https://
github.com/wwood/singlem), which quantifies single-copy
marker genes in the adaptor-trimmed reads and calculates
the percentage of those markers recovered in the MAGs.
The total number of bins recovered from sponge, macro-
algae and seawater samples, along with bin completeness,
contamination and recovery is summarised in Supplemen-
tary Table S2. Furthermore, to calculate relative abun-
dances, MAGs from each habitat (sponge, macroalgae,
seawater) were first de-replicated separately at 95%
Average Nucleotide Identity (95% ANI) using dRep v1.0.0
to avoid arbitrary placement of reads between very similar
MAGs [49]. Secondly, adaptor-trimmed reads from samples
collected in August 2016 and February 2017 were mapped
(75% minimum alignment and 95% minimum identity)
against the de-replicated MAGs95%ANI with coverM
v0.2.0 (https://github.com/wwood/CoverM). De-replicated
MAGs95%ANI have been deposited under NCBI BioProject
PRJNA594068.

Taxonomic assignment and functional annotation of
MAGs

Taxonomy was assigned to the MAGs95%ANI using
GTDBtk v0.2.1 (https://github.com/Ecogenomics/GTDBTk,
see Supplementary Table S3) and functional annotations were
assigned with enrichM v0.4.7 (https://github.com/geronimp/
enrichM) using the Kyoto Encyclopaedia of Genes and
Genomes Orthology (KEGG; KOs). KEGG defines “mod-
ules,” which are collections of KOs that together make up a
metabolic pathway (e.g. glycolysis) or functional unit (e.g.
flagellar assembly). The completeness of KEGG Modules in
the individual MAGs95%ANI was assessed using the classify
function of enrichM v0.4.7 (https://github.com/geronimp/
enrichM) and only KEGG modules with ≥70% completeness
were kept in the analysis. Furthermore, representativeness of
the retrieved MAGs95%ANI was verified by comparing the
taxonomic composition of MAGs95%ANI with metagenomic
community profiles generated by extracting 16S rRNA gene
fragments of adaptor-trimmed metagenome reads using
GraftM v0.12.0 (https://github.com/geronimp/graftM).
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Seawater MAGs95%ANI belonging to the phylum Bac-
teroidota were further screened for the presence of Poly-
saccharide Utilisation Loci (PULs). To identify the presence
of PULs, Bacteroidota MAGs95%ANI were annotated with
enrichM v0.4.7 using the Carbohydrate Active enzyme
(CAZy) database and the Protein Family (Pfam) database to
screen for glycoside hydrolase families (GH) and SusD-like
genes (PF07980, PF12741, PF14322 and PF12771),
respectively [50].

Statistical analysis

All statistical analysis was performed in R [51] using
the following packages: vegan [52], VennDiagram [53],
DESeq [54] and phyloseq [55]. Graphs were created in R
using ggplot2 [56] and illustrations were created in Adobe
Illustrator.

Variations in the functional profiles of sponge, macro-
algae and seawater-associated MAGs95%ANI (presence/
absence of KEGG Modules) were evaluated using multi-
variate statistical approaches including Permutation Multi-
variate Analysis of Variance (PERMANOVA) and Non-
metric multidimensional scaling (NMDS). Dissimilarity
matrices of functional presence/absence profiles were gen-
erated using the binary Bray Curtis Dissimilarity Index. The
number of unique and shared KEGG Modules associated
with carbohydrate metabolism, energy metabolism and
environmental information processing among sponge,
macroalgae and seawater MAGs95%ANI were evaluated
using Venn diagrams.

Environmental metadata were z-score standardised [57]
and differences between seasons (summer vs. winter) were
assessed using t-tests. Furthermore, microbial taxa showing
significantly different relative abundances between August
(peak of winter season) and February (peak of summer
season) in sponge, macroalgae and seawater samples,
respectively, were evaluated using differential abundance
analysis in DESeq. The number of reads mapped to
MAGs95%ANI was determined at the phylum level (class for
Proteobacteria) for each sample and normalised using var-
iance stabilisation implemented in the DESeq package.

Differences in the functional profiles of microbial taxa
that varied significantly between August and February or
remained stable between sampling events were further
assessed using PERMANOVAs and NMDSs based on
binary Bray Curtis Dissimilarities. Similarity Percentage
(SIMPER with 10,000 permutations) analysis was used to
further pinpoint which KEGG Modules significantly con-
tributed to the observed dissimilarities between August vs.
February enriched taxa of macroalgae and seawater micro-
biomes, and between winter-enriched vs. stable taxa of the
sponge microbiome. Log2 fold change of significant KEGG
Modules was calculated to compare the proportional

changes between groups using the gtools package v3.8.1. in
R. In addition, the phylum (class for Proteobacteria) con-
tributing most to the observed change was assessed.

The relative abundance of seawater MAGs95%ANI and
environmental metadata were further analysed using
Bray–Curtis distance-based redundancy analysis (dbRDA).
The best model was selected using the ordistep() function of
the vegan package [52] and only significant variables (based
on anova.cca() function, p < 0.05) were kept in the dbRDA
analysis. The explanatory value (in %) of significant
environmental variables (i.e. temperature, salinity, silica,
total suspended solids and particulate organic carbon) was
assessed with a variation partitioning analysis and co-linear
environmental parameters (co-linearity threshold of >0.7 or
<−0.7) were identified using Pearson correlation. Correla-
tions between the relative abundance of individual seawater
MAGs95%ANI and individual environmental variables were
analysed using Spearman’s rank correlation.

Results

Functional-repertoire of dominant microbes
inhabiting macroalgae-dominated inshore reefs

A total of 125 MAGs95%ANI were recovered, belonging to
15 bacterial and 3 archaeal phyla (Fig. 1a and Supple-
mentary Table S3). Seawater samples yielded the highest
number of recovered microbial genomes with 67 MAGs95%
ANI (Supplementary Fig. S1), followed by the sponge tissue
with 38 MAGs95%ANI (Supplementary Fig. S2) and the
macroalgae biofilm with 20 MAGs95%ANI (Supplementary
Fig. S3). Recovery of MAGs (calculated with SingleM)
varied between habitats, with high-quality MAGs repre-
senting 63.5, 27.7 and 35.2% of the total sponge,
macroalgae and seawater microbiomes, respectively (Sup-
plementary Table S2). Comparison of taxonomic profiles of
MAGs95%ANI with metagenome-derived 16S rRNA gene
fragments confirmed that the recovered MAGs95%ANI were
representative of the most dominant taxa (Supplementary
Fig. S4). Functional profiles of the recovered microbial
genomes varied significantly between reef habitats (PER-
MANOVA F(2/122)= 5.24, p= 9.99 × 10−5, 10,000 permu-
tations, Fig. 1b). Similar differences in taxonomic and
functional diversity were observed when metagenome reads
were analysed using a gene-centric approach (Supplemen-
tary Fig. S5).

KEGG Modules involved in carbohydrate metabolism,
energy metabolism and processing of environmental infor-
mation represented on average more than half of all KEGG
Modules annotated in sponge, macroalgae and seawater
MAGs95%ANI (Fig. 1c). The relative abundance of KEGG
Modules associated with these three categories was highly
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similar between habitats (Fig. 1c). The functional category
“biosynthesis of other secondary metabolites” was only
found in macroalgae MAGs95%ANI (Fig. 1c) and more spe-
cifically, referred to the ability of Firmicutes MAGs95%ANI

to biosynthesise bacilysin (Supplementary Fig. S6).
To further explore functional similarities between

sponge, macroalgae and seawater MAGs95%ANI, the number
of shared and unique KEGG Modules of the three main
categories (carbohydrate metabolism, energy metabolism
and environmental information processing processes) of
each habitat was enumerated (Fig. 1d and Supplementary
Fig. S6). In total, 85% of annotated KEGG Modules relat-
ing to carbohydrate metabolism were shared between
sponge, macroalgae and seawater MAGs95%ANI (Fig. 1d and
Supplementary Fig. S6). KEGG Modules of the central
carbohydrate metabolism (i.e. glycolysis, pentose phosphate
pathway, Entner–Doudoroff pathway, citrate cycle) showed
100% overlap between habitats (Supplementary Fig. S6). In

contrast, only 41 and 35% of KEGG Modules related to
energy metabolism and environmental information proces-
sing, respectively, were shared between sponge, macroalgae
and seawater MAGs95%ANI (Fig. 1d and Supplementary
Fig. S6). Carbon fixation (such as Calvin cycle and
Arnon–Buchanan cycle, also referred to as reductive citric
acid cycle) and ATP synthesis KEGG Modules were highly
conserved between habitats (Supplementary Fig. S6). A
higher variability between habitats was observed in the
potential to metabolise methane (i.e. formaldehyde assim-
ilation and methane oxidation), nitrogen (i.e. assimilatory
and dissimilatory nitrate reduction) and sulphur (i.e.
assimilatory and dissimilatory sulphate reduction, and sul-
phate oxidation) as well as the potential to gain energy
through photosynthesis (Supplementary Fig. S6). The
highest number of unique environmental information pro-
cessing KEGG Modules was observed in the algae
MAGs95%ANI (Fig. 1d). These unique KEGG Modules are
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based on 95% average nucleotide identity (MAGs95%ANI) asso-
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a Total number of MAGs95%ANI discovered within each bacterial and
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mainly involved in antibiotic resistance and antibiotic
transport, the transfer of sugar molecules via phosphoryla-
tion (phosphotransferase system) and two-component reg-
ulatory systems for chemosensory, virulence and antibiotic
biosynthesis (Supplementary Fig. S6). Environmental
information processing KEGG Modules exclusively asso-
ciated with sponge MAGs95%ANI (Fig. 1e and Supplemen-
tary Fig. S6) included copper-processing transport system,
antibiotic transport and resistance, cationic antimicrobial
peptide (CAMP) resistance, type IV secretion systems and
two-component regulatory systems (i.e. nitrogen fixation,
nitrate respiration, metal and copper tolerance, and quorum
sensing). KEGG Modules exclusively associated with sea-
water MAGs95%ANI included transporters for Glycerol and
N-Acetylglucosamine and two-component regulatory sys-
tems for glutamine utilisation, C4-dicarboxylate transport,
type four fimbriae synthesis, and tricarboxylic acid trans-
port. KEGG Modules ubiquitously present in seawater,
sponge and macroalgae MAGs95%ANI were the ABC-2 type
transport systems, aminoacyl tRNA metabolism, twin-
arginine translocation (Tat) system, Sec (secretion) sys-
tem, phosphate transport system as well as a phosphate
starvation response two-component regulatory system.

Seasonal variation in environmental conditions

Seawater temperature significantly changed (t-test; p=
0.0039) between winter and summer at the sampling loca-
tion (Supplementary Fig. S7) and ranged between 23 °C in
August and 30 °C in February (Supplementary Fig. S8).
Ammonium (NH4

+) concentration and nitrite plus nitrate
(NO2

−:NO3
−) concentration were positively correlated with

increasing seawater temperature (Pearson correlation >0.7;
Supplementary Fig. S9). In contrast, total suspended solids
(TSS) were negatively correlated with seawater temperature
(Pearson correlation <−0.7; Supplementary Fig. S9). Fur-
thermore, Sargassum spp. abundance was highest during
summer (personal observation) and followed previously
described seasonal growth-decay patterns typical for this
sampling site and for inshore reefs of this region [36, 40].
Macroalgae cover at the sampling site has been reported to
reach up to 54.8% [36].

Shifts in microbial taxa alter the functional potential
of reef microbiomes

Sponge-affiliated microbial taxa remained highly stable
between winter and summer sampling events (Fig. 2a and
Supplementary Fig. S2), with only 1 of 11 taxa varying
significantly (based on differential relative abundance
analysis using DESeq). The phylum Chloroflexota (9
MAGs95%ANI) was significantly enriched in winter samples
and reduced by 85% in summer (Fig. 2b and Supplementary

Table S4a). In conjunction, functional profiles of the phy-
lum Chloroflexota differed significantly from the stable
microbial community, comprised of microbial taxa that
remained equally abundant between sampling time points
(PERMANOVA F(1/36)= 9.56, p= 9.99 × 10−5, 10,000
permutations; Fig. 3). KEGG Modules driving the sig-
nificant functional dissimilarity between winter and stable
summer microbial taxa (based on SIMPER) were pre-
dominantly affiliated with Chloroflexota MAGs95%ANI

(Fig. 4). A substantial reduction in Chloroflexota within the
sponge could have implications for the microbiome’s ability
to metabolise carbohydrates such as glucose and fructose,
and for the ability to transfer sugar molecules between the
microbiome and the host (decrease in saccharide transport
systems; see Fig. 4). In addition, the pentose phosphate
shunt, a glucose oxidation pathway, was significantly linked
with Chloroflexota MAGs95%ANI. Other KEGG Modules
significantly affiliated with Chloroflexota MAGs95%ANI

were vitamin B1 (thiamine) transport system, antibiotic
transport systems (fluoroquinolone) and metal transport
systems (e.g. manganese, zinc and iron).

In contrast to the sponge microbiome, macroalgae biofilm
MAGs95%ANI varied significantly between sampling events
(Fig. 2a and Supplementary Fig. S3), with all 9 microbial
taxa significantly enriched in either winter or summer
samples (Fig. 2b; based on differential abundance analysis
using DESeq). During winter the phyla Spirochaetota
(1 MAG95%ANI), Verrucomicrobiota (1 MAG95%ANI), Bac-
teroidota (4 MAGs95%ANI), Chloroflexota (1 MAG95%ANI)
and the class Alphaproteobacteria (2 MAGs95%ANI) were
significantly enriched, whereas the phyla Actinobacteriota
(1 MAG95%ANI), Firmicutes (8 MAGs95%ANI), Cyanobacteria
(1 MAG95%ANI) and the class Gammaproteobacteria (1
MAG95%ANI) were significantly enriched during summer
(Fig. 2b and Supplementary Table S4b). The significant
variation in microbial taxa within the macroalgae biofilm
also had implications for the underlying functional reper-
toire (February vs. August, PERMANOVA F(1/18)= 4.92,
p= 9.99 × 10−5, 10,000 permutations; Fig. 3). Firmicutes,
for example, were significantly enriched during summer
(Fig. 2b) and were the primary contributors to the observed
functional dissimilarities between sampling time points
(Fig. 5). KEGG Modules associated with Firmicutes
MAGs95%ANI included degradation of carbohydrates (i.e.
galactose and glucose) and the uptake of carbohydrates upon
phosphorylation (phosphotransferase system - PTS). The
observed PTSs were specific to galactitol and cellobiose.
Saccharide and polyol transport systems were also enriched
in Firmicutes MAGs95%ANI (Fig. 5). Furthermore, dissim-
ilatory nitrate reduction (nitrate respiration) and a two-
component regulatory system activating aerobic and anae-
robic respiration genes were found in summer-enriched
Firmicutes MAGs95%ANI. Firmicutes-dominated biofilms
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were also enriched in KEGG Modules encoding for anti-
biotic and multidrug resistance and transport systems as well
as two-component regulatory systems for antibiotic resis-
tance, behaviour control, sporulation control and stress
response (Fig. 5).

Seawater samples, like the macroalgae biofilm, displayed
high variability in abundant members between sampling
events, with 8 of 11 microbial taxa varying significantly (based
on differential relative abundance analysis using DESeq)
between winter and summer sampling events (Fig. 2 and
Supplementary Fig. S1). The bacterial phyla Bacteroidota (18
MAGs95%ANI), SAR324 (2 MAGs95%ANI), Marinisomatota (1
MAG95%ANI), Plancotmycetota (3 MAGs95%ANI) were sig-
nificantly enriched during summer, while the bacterial phyla
Verrucomicrobiota (5 MAGs95%ANI), Cyanobacteriota
(1 MAGs95%ANI), Proteobacteria (class Alphaproteobacteria;
15 MAGs95%ANI) and the archaeal phylum Thermoplasmatota
(8 MAGs95%ANI) were significantly enriched in winter (Fig. 2b
and Supplementary Table S4c). Seawater temperature
(and co-varying ammonium, NH4

+, and nitrite plus nitrate,
NO2

−:NO3
−), total suspended solid concentration (TSS),

non-purgeable organic carbon (NPOC) concentration, and
silica (SiO2) concentration in the seawater explained 96.6% of
the observed variation in the MAGs95%ANI community profiles
(Variation Partitioning Analysis; Supplementary Fig. S10).
Seawater microbial taxa enriched in winter, summer, and the
stable microbial community (August vs. February vs. Stable)
also exhibited significant differences in their functional profiles
(PERMANOVA F(2/64)= 4.79, p= 9.99 × 10−5, 10,000 per-
mutations; Fig. 3). These results suggest that seasonal shifts of
microbial taxa (Fig. 2) lead to significant changes in the
functional potential of pelagic reef microbiomes (Fig. 3).
Functional dissimilarities between sampling time points were
mainly attributed to winter-enriched Alphaproteobacteria
MAGs95%ANI and archaeal Thermoplasmatota MAGs95%ANI,
and the summer-enriched Bacteroidota MAGs95%ANI (Fig. 6).
Furthermore, the relative abundance of Bacteroidota MAGs95%
ANI was positively correlated with an increase in sea-surface
temperature, ammonium (NH4

+), phosphate (PO4
3-), nitrite

(NO2
−), nitrite plus nitrate (NO2

−:NO3
−), and silica (SiO2)

concentration in the seawater (Supplementary Fig. S11). In
contrast, alphaproteobacterial MAGs95%ANI of the order
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Fig. 2 Compositional stability of microbiomes associated with
sponge tissue, macroalgae biofilms and seawater between winter
(August) and summer (February). a Relative abundances of
metagenome-assembled genomes based on 95% average nucleotide
identity (MAGs95%ANI) on phylum (class for Proteobacteria) level in

the sample replicates collected in August 2016 and February 2017.
b Log2 fold change of significantly enriched microbial phyla (class for
Proteobacteria) between winter and summer sampling events based on
differential abundance analysis (DESeq).
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Rhodobacterales and Pelagibacterales, as well as MAGs95%ANI

of the phylum Thermoplasmatota were positively correlated
with total suspended solids (TSS), salinity, and non-purgeable
organic carbon (NPOC; Supplementary Fig. S11). The
increase of Bacteroidota MAGs95%ANI led to an increase in
KEGG Modules potentially linked to virulence and pathogens.
For example, Bacteroidota MAGs95%ANI were enriched in the
biosynthesis of polyketide sugars (dTDP-L-rhamnose bio-
synthesis), KDO2-lipid A biosynthesis (Raetz pathway), lipo-
protein releasing system and the twin-arginine translocation
(Tat) system. Furthermore, Bacteroidota MAGs95%ANI showed
genomic potential for phosphatidylethanolamine (PE) bio-
synthesis. Aromatic amino acid metabolism (tryptophan
metabolism) and methionine degradation (sulphur-containing
amino acid) were also enriched during summer. In addition,
Bacteroidota MAGs95%ANI were all equipped with SusD-like
genes and glycoside hydrolase (GH) families (Supplementary
Tables S5 and S6), indicating their ability to degrade poly-
saccharides via the PUL machinery. The GH 16 family was the
most abundant GH in the Bacteroidota MAGs95%ANI.

Discussion

The contribution of microbes to the health of reef holo-
bionts has been the focus of much recent research
[9, 11, 58], and microbial involvement in the perpetuating

cycle of reef degradation via the DDAM feedback loop
further highlights the central role of microorganisms in
coral reef ecosystem health and resilience [8, 28]. However,
the function of individual microorganisms across different
coral reef habitats and across seasons remains poorly
understood. Here we identify the functional potential of
different members of sponge, macroalgae and seawater
microbiomes using genome-centric metagenomics. We
show that shifts in the relative abundance of individual
taxonomic groups between winter and summer can have
implications for the functional potential of a microbiome
and hence, the stability of reef holobionts and ecosystems.

Planktonic Bacteroidota MAGs95%ANI (i.e. family Flavo-
bacteriaceae and Cryomorphaceae, see Supplementary
Table S3) were significantly enriched during summer, cor-
responding with peaks in sea-surface temperature, ammo-
nium (NH4

+) concentration, nitrite plus nitrate (NO2
−:NO3

−)
concentrations (Supplementary Figs. S7–S9), and the abun-
dance of canopy-forming brown algae on inshore reefs of the
GBR [36, 40, 42]. Furthermore, the relative abundance of
individual planktonic Bacteroidota MAGs95%ANI was posi-
tively correlated with sea-surface temperature and nutrient
concentration (i.e. ammonium, phosphate, nitrate, nitrite:
nitrate, and silica concentrations) in the seawater (Supple-
mentary Fig. S11). Recent 16S rRNA gene-based studies
have reported similar increases in Flavobacteriaceae and
Cryomorphaceae in macroalgae-dominated reefs [8], and in

Fig. 3 Functional profiles of metagenome-assembled genomes
based on 95% average nucleotide identity (MAGs95%ANI) asso-
ciated with sponge tissue, macroalgae biofilm and seawater. Non-
Metric Dimensional Scaling plot based on binary Bray Curtis Dis-
similarities displaying variations in the functional profiles (KEGG
Module presence/absence) between MAGs95%ANI. Colour represents

phylum of MAGs95%ANI (class for Proteobacteria) and shape represent
whether a phylum (class for Proteobacteria) was significantly enriched
during a sampling time point (August vs. February) or stable between
sampling time points (Stable). Hulls represent the multivariate t-
distribution of groups (August, February, Stable).
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inshore-reefs of the GBR, particularly when sea-surface
temperatures are high [44]. Marine Bacteroidota are known to
degrade macroalgae-derived polysaccharides via a unique
machinery referred to as polysaccharide utilisation loci

(PULs, [59]) and are major responders to phytoplankton
blooms in temperate waters [50]. The summer-enriched
Bacteroidota MAGs95%ANI were all equipped with glycoside
hydrolase (GH) families and SusD-like genes
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Fig. 4 Sponge-associated microbial functions were significantly
associated with the winter-enriched phylum Chloroflexota. KEGG
Modules significantly (p < 0.05) driving the observed functional dis-
similarities of enrichment groups (August vs. Stable) were evaluated
with Similarity Percentages (SIMPER). The enrichment of significant

KEGG Modules is displayed as log2 fold change. Colour of the bar
chart indicates the microbial taxa contributing most to the observed
function and the number of Chloroflexota MAGs95%ANI (in percent)
harbouring the individual KEGG Modules is provided between
brackets.
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(Supplementary Tables S5 and S6), revealing their genomic
potential to degrade a diverse range of polysaccharides via
the PUL machinery. The most abundant GH in the Bacter-
oidota genomes was the GH16 family (Supplementary
Table S5), which includes enzymes specific for the degra-
dation of marine polysaccharides [60]. For example, the
GH16 contains the enzyme laminarinase which is known to
hydrolyse the β-1,3-d-linked main chain of laminarin into
glucose and oligosaccharides [61]. The ubiquitous presence

of genes encoding for the GH16 family in Bacteroidota
MAGs95%ANI suggests that planktonic Bacteriodota are cap-
able of degrading macroalgae-derived polyschacharides such
as laminarin, a common storage ß-glucan of brown algae
[62]. Furthermore, the laminarinase enzyme was recently
shown to be ubiquitously present in genomes of marine
Bacteroidota [50], hence, increased Bacteroidota in the sea-
water microbiome may be directly linked to increased mac-
roalgal biomass in the reef ecosystem. Interestingly,
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Fig. 5 Macroalgae associated microbial functions were sig-
nificantly associated with summer-enriched taxa. KEGG Modules
significantly (p < 0.05) driving the observed functional dissimilarities
of enrichment groups (August vs. February) were evaluated with
Similarity Percentages (SIMPER). The enrichment of significant

KEGG Modules is displayed as log2 fold change. Colour of the bar
chart indicates the microbial taxa contributing most to the observed
function and the number of Firmicutes MAGs95%ANI (in percent)
harbouring the individual KEGG Modules is provided between
brackets.
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Bacteroidota were also recently shown to be enriched in coral
microbiomes when experimentally exposed to increased
macroalgal cover [19]. Elevated seawater temperatures can
enhance the exudation of macroalgae-derived poly-
saccharides [63] which may also be contributing to the
summertime enrichment of Bacteroidota. However, experi-
mental validation is required to confirm the direct response of
planktonic Bacteroidota to macroalgae proliferation, high
seawater temperatures, and nutrient concentrations in coral
reef ecosystems.

In addition to their proposed role in degradation of
macroalgae-derived polysaccharides on reefs, planktonic
Bacteroidota MAGs95%ANI were also enriched in putative
virulence and pathogenic marker genes (Figs. 6 and 7). For

example, Bacteroidota MAGs95%ANI have genomic potential
to biosynthesise polyketide sugars (dTDP-L-rhamnose
biosynthesis) and KDO2-lipid A biosynthesis (Raetz path-
way). Polyketide sugars are integrated into the lipopoly-
saccharide (LPS) layer of gram-negative bacteria and can
help pathogens escape host detection [64]. KDO2-lipid A is
an essential component of the LPS layer, which can sti-
mulate a host immune response and modulate virulence
[65]. Furthermore, the lipoprotein releasing system and the
twin-arginine translocation (Tat) system (releasing system
of folded-proteins) were enriched in summer-elevated
Bacteroidota MAGs95%ANI. Lipoproteins play key roles in
adhesion to host cells, modulation of inflammatory pro-
cesses and translocation of virulence factors into host cells
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M00093__Phosphatidylethanolamine (PE) biosynthesis, PA => PS => PE.....(67%)

M00116__Menaquinone biosynthesis, chorismate => menaquinol.....(56%)

M00119__Pantothenate biosynthesis, valine/L−aspartate => pantothenate.....(78%)

M00120__Coenzyme A biosynthesis, pantothenate => CoA.....(78%)

M00140__C1−unit interconversion, prokaryotes.....(87%)

M00846__Siroheme biosynthesis, glutamate => siroheme.....(67%)

phylum/class

Alphaproteobacteria

Bacteroidota

Thermoplasmatota

KEGG Module Level 1

Amino acid metabolism

Biosynthesis of terpenoids and polyketides

Carbohydrate metabolism

Energy metabolism

Environmental information processing

Genetic information processing

Glycan metabolism

Lipid metabolism

Metabolism of cofactors and vitamins

Arginine and proline metabolism

Aromatic amino acid metabolism

Branched-chain amino acid metabolism

Cysteine and methionine metabolism

Other amino acid metabolism

Serine and threonine metabolism

Polyketide sugar unite biosynthesis

Central carbohydrate metabolism

ATP synthesis

Carbon fixation

ABC-2 type and other transport systems

Bacterial secretion system

Drug efflux transporter/pump

Phosphate and amino acid transport system

Saccharide, polyol, and lipid transport system

Two-component regulatory system

DNA polymerase

Proteasome

Ribosome

Lipopolysaccharide metabolism

Fattyacid biosynthesis and degradation

Lipid metabolism

Cofactor and vitamin metabolism

1 53

Feb-17

log2 fold change

Fig. 6 Seawater microbial functions were significantly associated
with winter and summer-enriched taxa. KEGG Modules sig-
nificantly (p < 0.05) driving the observed functional dissimilarities of
enrichment groups (August vs. February) were evaluated with Simi-
larity Percentages (SIMPER). The enrichment of significant KEGG

Modules is displayed as log2 fold change. Colour of the bar chart the
microbial taxa contributing most to the observed function and the
number of Alphaproteobacteria, Thermoplasmatota, and Bacteroidota
MAGs95%ANI (in percent) harbouring the individual KEGG Modules is
provided between brackets.

Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes 1445



and can be released via the Tat system [66]. The genomic
potential to biosynthesise phosphatidylethanolamine (PE),
an unsaturated fatty acid, was also enriched in Bacteroidota
MAGs95%ANI. This may allow members of the phylum
Bacteroidota to tolerate higher temperatures as the increase
of unsaturated fatty acids in the LPS significantly con-
tributes to membrane fluidity [67].

In contrast to Bacteroidota-driven processes during
summer, Alphaproteobacteria and Thermoplasmata
MAGs95%ANI were enriched in reef waters during winter
(Figs. 3, 7, and Supplementary Fig. S11) when sea-surface
temperatures and nutrient concentrations are low and mac-
roalgae essentially disappears from inshore GBR reefs
[36, 40, 42]. An increase in the relative abundance of the
alphaproteobacterial families Pelagibacteraceae and Rho-
dobacteraceae has previously been described for inshore
GBR waters during winter [44, 68] and is also more gen-
erally associated with increased coral cover [8, 69]. The
archaeal Thermoplasmata (Marine Group II) have pre-
viously been reported as abundant members of the plank-
tonic microbial community of the GBR, with increasing
relative abundances in off-shore reef locations and in reefs
with high coral cover [68].

Collectively, our findings support previous studies
reporting increased copiotrophic microorganisms (i.e. Bac-
teroidota) and virulence factors on reefs with high macro-
algal cover [8] and with predictions based on the DDAM
feedback loop [28]. Hence, we propose that increased
Bacteroidota to Alphaproteobacteria ratios in reef waters

may act as an indicator of enhanced macroalgal growth,
increased nutrient levels, and the onset of microbialisation
in coral reefs. However, in contrast to the previously
described shift in central carbohydrate metabolism (i.e.
Embden–Meyerhof pathway, Entner–Doudoroff pathway,
and pentose phosphate pathway) between coral and
macroalgae-dominated reefs [8], the potential to metabolise
carbohydrates remained relatively stable between Alpha-
protebacteria and Bacteroidota (Supplementary Fig. S12).
The only exception being the Entner–Doudoroff pathway
which was more prominent in the winter-enriched Alpha-
proteobacteria compared with summer-enriched Bacter-
oidota genomes (Fig. 6). Given the importance of
microbially mediated carbohydrate metabolism in coral
reefs, identifying changes in the central metabolic pathways
of Alphaproteobacteria and Bacteroidota using sensitive
transcriptome/proteomic approaches is warranted.

Sargassum spp., a canopy-forming brown algae, under-
goes an annual cycle of growth, reproduction and senes-
cence [70]. In inshore regions of the GBR, Sargassum
grows rapidly between October and February, followed by a
period of senescence during which it sheds most of its
fronds [70]. During summer, Firmicutes dominate the
macroalgal biofilm (up to 91.4% of the microbiome), hav-
ing the genomic capacity to generate a hostile environment
via production of antibiotics (i.e. Bacilysin) which may
hinder opportunistic and biofouling microbes from colo-
nising the macroalgae’s surface (Figs. 2 and 7). Further-
more, Firmicutes MAGs95%ANI had the potential to take up

macroalgae

seawater

sponge

Alphaproteobacteria
Bacteroidota
Chloroflexota
Spirochaetota
Verrucomicrobiota
Others

Actinobacteriota
Cyanobacteriota
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Chloroflexota
Stable

Alphaproteobacteria
Cyanobacteriota
Thermoplasmatota
Verrucomicrobiota
Stable
Others

Bacteroidota
Marinisomatota
Planctomycetota
SAR324
Stable
Others

Chloroflexota
Stable

- Biosynthesis of secondary metabolites
- Ability to metabolise carbohydrates 
  (i.e. fructose & glucose)
- Reductive pentose phosphate shunt
- Antibiotic (Fluoroquinolone) transport system
- Vitamin B1 (Thiamine) transport system
- Saccharide transport systems
- Metal transport systems (detoxification)

 

- Degradation of carbohydrates 
  (i.e. galactose & glucose)
- Dissimilatory  NO3

- reduction
- Antibiotic (Bacilysin) production
- Antibiotic and multidrug resistance 
  and transport systems
- Phosphotransferase PTS system
- Saccharide transport systems
- Two-component regulatory systems 
  (i.e. antibiotic resistance,antimicrobial peptide 
  response, chemotaxis, multicellular behavior control,
  sporulation control, stress response) 

 

- Algae-derived polysaccharide degradation 
  via Polysaccharide utilization loci (PUL)
- Lipoprotein−releasing system 
- Twin−arginine translocation (Tat) system
- Lipopolysaccharide export system (LPS)
- Biosynthesis of secondary metabolites
- Multidrug resistance
- Phosphatidylethanolamine (PE) biosyntheis

 

winter summer

temperature + nutrients + macroalgae cover

Fig. 7 Conceptual overview of seasonal changes in coral reef
microbiomes. Elevated seawater temperature, increased macroalgal
abundance, and nutrient concentrations during summer are correlated

with a shift in the taxonomic composition of seawater, macroalgae and
sponge microbiomes and an associated increase in microbial functions
associated with opportunistic/pathogenic and copiotrophic process.
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various saccharides (i.e. cellobiose, galactitol, fructose,
mannose and mannitol) via the PTS; with the sugar alcohol
mannitol being characteristic for Sargassum [71]. The PTS
is a common feature of Firmicutes and in addition to its
primary metabolic function, it is recognised for its reg-
ulatory role in biofilm formation, virulence and nitrogen
utilisation [72]. In contrast, Bacteroidota predominated in
the biofilm during winter (Figs. 2 and 7), when Sargassum
is reduced to a holdfast with one or two short primary axes
[70]. A significant role for seaweed-associated microbes in
host morphogenesis has previously been reported [73–75]
and the Firmicutes to Bacteroidota ratio may also play a
direct role in the growth-decay cycle of Sargassum. Based
on the observed shift in biofilm-associated microbial taxa
between summer and winter, we hypothesise that the Sar-
gassum spp. biofilm undergoes a microbial succession
synchronised with the seasonal growth-decay cycle of the
host and possibly with the availability of sugars. However,
high temporal resolution sampling over multiple years
would be needed to validate the links between the state of
the Sargassum spp. biofilm and the annual cycle of growth,
reproduction and senescence of the host. In addition, mac-
roalgal surfaces may provide a seed bank for planktonic
Bacteroidota thriving on algal-exudates (detection of four
seawater Bacteroidota genomes in macroalgae samples; see
Supplementary Table S7) as well as potentially antagonist
bacterial taxa for corals. For example, macroalgal contact
can destabilise the coral microbiome and facilitate growth
of many conditionally rare taxa [19]. Firmicutes and Bac-
teroidota have been shown to significantly increase in corals
exposed to short-term stress including elevated temperature
and macroalgae-abundance [19, 25, 27, 76]. Hence,
understanding the functional roles of Bacteroidota and
Firmicutes on coral reefs and assessing their potential to
invade carbohydrate-rich niches (e.g. coral mucus) is
critical.

Marine sponges are a highly diverse component of coral
reefs [77] where they provide a vital trophic link between
the benthic and pelagic realms by removing dissolved
organic matter from the reef seawater, making it available to
benthos-dwelling life forms as particulate material [20]. The
health of a sponge holobiont is underpinned by its micro-
biome [14, 58, 78]. High microbial abundance (HMA)
sponges, such as C. matthewsi commonly associate with
Chloroflexota [79]. The Chloroflexota MAGs95%ANI in this
study showed genomic potential to biosynthesise secondary
metabolites such as dTDP-L-rhamnose (Fig. 4), a polyke-
tide sugar and O antigen in the bacterial cell wall, which is
hypothesised to help sponge amoebocytes differentiate
between symbiont and food bacteria [64, 80]. A reduction in
sponge-associated Chloroflexota could have adverse con-
sequences for host nutrition (carbohydrate metabolism),
B-vitamin availability, detoxification (heavy metal

detoxification), waste product removal (urea cycle), and the
overall health of the sponge holobiont (Figs. 4 and 7). The
observed reduction in Chloroflexota during summer may
reflect a shift in substrate availability (e.g. increased
ammonium (NH4

+) concentration and nitrite plus nitrate
(NO2

−:NO3
−) concentration) and/or a temperature-induced

loss of a putative symbiont (Figs. 2 and 7), as has been
reported in other sponge species under thermal stress [17].
However, other biological variables (e.g. sponge physiol-
ogy) not measured in this study could have also contributed
to the observed variation in the sponge microbiome.

Conclusions

Genome-centric metagenomic analysis of host-associated
and free-living microbiomes has revealed the functional
potential of dominant microbial taxa within an inshore coral
reef on the GBR. Further, comparative analysis across
seasons allowed to us to identify four bacterial groups
(Bacteroidota, Alphaproteobacteria, Firmicutes and Chlor-
oflexota) whose genomic repertoire (Supplementary
Figs. S12–S14) and correlation to environmental fluctua-
tions (e.g. seawater temperature, macroalgae abundance and
nutrient availability) suggests a key role in coral reef eco-
systems processes. We, therefore, propose that future reef
research should employ sensitive metatranscriptome/meta-
proteome and stable isotope-based approaches to (i) validate
macroalgae, nutrient, and temperature-related shifts in
Bacteroidota to Alphaproteobacteria ratios in reef seawater,
(ii) investigate the direct/indirect roles of Firmicutes in the
health of reef holobionts and (iii) validate the impacts of
environmentally driven fluctuations in symbiont abundance
on host health.
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