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Abstract
Understanding when and why new species are recruited into microbial communities is a formidable problem with
implications for managing microbial systems, for instance by helping us better understand whether a probiotic or pathogen
would be expected to colonize a human microbiome. Much theory in microbial temporal dynamics is focused on how
phylogenetic relationships between microbes impact the order in which those microbes are recruited; for example, species
that are closely related may competitively exclude each other. However, several recent human microbiome studies have
observed closely related bacteria being recruited into microbial communities in short succession, suggesting that microbial
community assembly is historically contingent, but competitive exclusion of close relatives may not be important.
To address this, we developed a mathematical model that describes the order in which new species are detected in microbial
communities over time within a phylogenetic framework. We use our model to test three hypothetical assembly modes:
underdispersion (species recruitment is more likely if a close relative was previously detected), overdispersion (recruitment
is more likely if a close relative has not been previously detected), and the neutral model (recruitment likelihood is not
related to phylogenetic relationships among species). We applied our model to longitudinal human microbiome data, and
found that for the individuals we analyzed, the human microbiome generally follows the underdispersion (i.e., nepotism)
hypothesis. Exceptions were oral communities and the fecal communities of two infants that had undergone heavy antibiotic
treatment. None of the datasets we analyzed showed statistically significant phylogenetic overdispersion.

Introduction

A central question in microbial community assembly,
especially in the human microbiome, is when and why
microbes are recruited into communities. If there are patterns
or general rules for which taxa have higher probabilities of
recruitment, these rules can guide habitat restoration pro-
jects, help us better understand whether probiotics or
pathogens will colonize, and better exploit disturbance as a
tool for managing microbial systems related to human health
and disease. Recruitment of new species can be studied by
evaluating the order in which species are empirically
detected in time-series experiments, given data such as
which species have already been detected or what changes
occur in an environment over time [1, 2]. Although a
changing environment clearly selects for new species, it has
also been shown that microbial community structure is often
historically contingent on previous states of that community
[1–5]. This reflects not only that microbial communities are
temporally autocorrelated (gradual change over time), but
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also that the recruitment of a given species is a function of
which species in the community are already present or have
modified the local environment. Such historically contingent
patterns have mainly been observed and tested within a
phylogenetic context, because amplicon data naturally lend
themselves to the creation of phylogenies, and because
phylogenies have been shown to be predictive of genomic
(and perhaps niche) overlap in human-associated microbiota
[6, 7] and in general [8, 9].

Within this phylogenetic framework, a predominant
hypothesis has been that closely related microbes inhibit
each other’s successful recruitment [1, 3, 4]. The proposed
mechanism for this hypothesis is that closely related
microbes likely have similar niches (phylogenetic niche
conservatism [8–10]), and species already established
within a community will occupy their niches to the exclu-
sion of ecologically similar organisms. This is also the basis
of Darwin’s naturalization hypothesis [11], which proposed
that new species are less likely to be recruited if a close
relative is present [12]. Indeed, this assembly mode has
been found to be the case in artificial nectar microcosms,
where phylogenetically similar yeast species had similar
nutrient requirements, and inhibited each others’ coloniza-
tion [13]. If competitive exclusion of closely related species
is the predominant mode of microbial community assembly
in the human microbiome, close relatives would be less
likely to be recruited into the same community, as compared
with more distant relatives. In this paper, we refer to
assembly where distant relatives are more likely to be
recruited into a community than close relatives as the
overdispersion hypothesis, since it predicts the preferential
addition of novel phylogenetic diversity to a community
(i.e., phylogenetic overdispersion).

Overdispersion is far from universal, and multiple studies
have shown that extremely close relatives can coexist within
the human microbiome [14–16], and may even be pre-
ferentially recruited [17]. This is consistent with simulations
showing that clusters of closely related species can persist
despite strong within-cluster competition, when immigration
rate is high [18]. Indeed, Darwin’s preadaptation hypothesis
predicts that species with a close relative present in a com-
munity will be preferentially recruited, because they are
likely to already be adapted to the new environment [11].
Also, more recent ecological theory posits competition
between distantly related species may result in phylogeneti-
cally clustered communities, although it may be more
appropriate to include this type of competition within
selection [19]. Per the empirical observations and reasoning
above, we might expect that new close relatives are more
likely to be detected than new distant relatives, so the amount
of new phylogenetic diversity added to a community
is minimized (phylogenetic underdispersion). Thus, for
empirical data our underdispersion hypothesis is that species

are more likely to be detected when they have a close relative
that was previously detected, predicting preferential addition
of minimal novel phylogenetic diversity (phylogenetic
underdispersion). The over- and underdispersion hypotheses
are alternatives to the null hypothesis that recruitment is
independent of phylogenetic relatedness among species.
Since the null hypothesis is species neutral (and phylogen-
etically neutral), we refer to it as the neutral hypothesis.

It should be noted that our use of the terms “over-
dispersion” and “underdispersion” are slightly different in
this paper compared with use of the same terms elsewhere.
In many cases, these words refer to the state of a community
at a single timepoint or sample, with overdispersion indi-
cating more diversity in that sample than expected by
chance, and underdispersion indicating less [20]. Instead,
our use of over- and underdispersion refers to the amount of
newly added diversity over time. In our overdispersion
hypothesis, phylogenetically novel species are preferentially
added to communities, meaning more new diversity is
added than expected by chance. Under our underdispersion
hypothesis, the reverse is true. Following this, our question
concerns the order in which new species are recruited in a
time series, rather than community composition of any
given sample. Furthermore, while we are interested in
the biological phenomenon of species recruitment, the
empirical result of recruitment is detection. Evidence of
recruitment is a lack of detection, and then subsequent
detection of a species via high-throughput DNA sequencing
data. It is possible for a species to have been recruited into a
community but not be detected, although this source of
experimental error diminishes as sequencing depth increa-
ses. Also, the extent to which a species has actually been
recruited into a community is questionable, if it is suffi-
ciently rare that it is not detected in an Illumina sequencing
run with tens of thousands of reads per sample (e.g., [21]).
Still, we have taken care to use the term “recruitment” when
discussing the biological phenomenon under investigation,
and “detection” when describing empirical data and results.

Here, we use the phylogenetic relationships among
species within a time series to test the extent to which our
over- or underdispersion hypotheses hold true. Instead of
analyzing broad patterns of community change via beta-
diversity statistics (e.g., UniFrac [22]) or analyzing patterns
of select clades within the community (e.g., PhyloFactor
[23], Edge PCA [24]), we model the probability of new
species’ recruitment into a community for the first time as a
monotonic function of their phylogenetic distances to
members of the community that have already been recruited.

The model we present here can be used to estimate the
degree to which the recruitment of new species is more or
less likely when a close relative has been previously
recruited. We fit our model to several time-series human
microbiome datasets [21, 25, 26] to compare the strength of
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under- or overdispersion between subjects, sample sites,
or time periods. We found that for the datasets we analyzed
(36 individuals across three studies), the human microbiome
generally follows the underdispersion hypothesis. There
were exceptions where this pattern was not significantly
different than the neutral model, but none of the
longitudinal datasets we analyzed showed statistically sig-
nificant overdispersion.

Materials and methods

Overview

With our model, our goal is to estimate the extent to which
recruitment of new species over time is related to the new
species’ phylogenetic similarity to (or distance from)
species that were already recruited at previous timepoints.
Our Statistical model describes the probabilities of
detecting new species over time. We use our model with
empirical data via Simulations, where we resample the
empirically detected species using our model with known
parameter values, to produce surrogate datasets. Specifi-
cally, we fix and record the model’s dispersion parameter
(D), which determines the extent to which species with a
close relative are preferentially added to the surrogate
community (or, conversely, if species without a close
relative are preferred). Our Parameter estimation com-
pares the empirical pattern of species detection to that of
the surrogate datasets (which have known D values), in
order to determine which value of D best describes the
empirical data. Hypothesis testing is done by comparing
empirical data to repeated simulations under the neutral
model, which is D= 0. We describe the bioinformatic
and technical details of this process in our Analysis
section. Code and a tutorial for our model is available at
https://github.com/darcyj/pd_model.

Statistical model

At any point in time, a community is composed of many
species, and other species are not present but are available
to be added (“species pool”). Our model parameterizes the
probability of detecting species in a local community for the
first time, based on their phylogenetic distances from spe-
cies that have already been detected. In a species-neutral
model of community assembly, each species i in the species
pool has the same probability of detection at time t, irre-
spective of how different it is from species that have already
been detected. Thus, the neutral model for first-time species
detections is a random draw without replacement of species
from the species pool. We extend the species-neutral model
by modeling the probability pit of species i being detected

for the first time at time t as,

pit ¼ dDitP
î d

D
ît

; ð1Þ

where dit is the phylogenetic distance from species i to its
closest relative that has already been detected prior to
timepoint t, and D is a dispersion parameter.

When D= 0, our model functions as a neutral model; all
species have the same probability of being detected for the
first time, since pit is the same for every species. When D <
0, pit decreases with dit meaning that species from the
species pool have higher probabilities of detection when
they are more closely related to species that have already
been detected in the local community (underdispersion;
phylogenetically constrained). When D > 0, the opposite
is true (overdispersion; phylogenetically divergent). Our
hypothesis testing and parameter estimation focus on the
dispersion parameter, D.

Simulations

Our analysis of a dataset relies on reconstructing that dataset
via simulation of our statistical model using known values of
D̂, allowing for hypothesis testing and parameter estimation
(we refer to the empirical dispersion parameter as D, and use
D̂ to refer to surrogate values used in simulations). Using the
empirical data as a starting point, we simulate many surrogate
datasets with D̂ values ranging from D̂ < 0 (underdispersed)
to D̂ ¼ 0 (neutral) to D̂ > 0 (overdispersed). This is done
so that the empirical data can later be compared with the
surrogate datasets, to estimate the empirical value of D.

We start each surrogate dataset with the same species
present in the first sample in the time series of its corre-
sponding empirical dataset. Then, surrogate datasets are
constructed forward in time by randomly drawing rt new
species from the species pool, where the probabilities of
detecting those species are given by Eq. (1), and rt is the
number of new species detected in the empirical dataset
from times t− 1 to t. The number of new species detected
from the empirical dataset is used so that species richness is
kept constant between the empirical dataset and all surro-
gate datasets. The species pool is updated to exclude those
species drawn at previous timepoints, and the newly sam-
pled species are recorded. Surrogate datasets are produced
for many different D̂ values, ranging from underdispersed
to overdispersed models. We performed 500 simulations
(as described above) for each dataset analyzed.

Parameter estimation

Our main goal is to estimate the empirical dispersion
parameter D (Eq. (1)), which quantifies the degree to which
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first-time species detections are phylogenetically under-
dispersed (D < 0), neutral (D= 0), or overdispersed (D > 0),
corresponding to our hypotheses. To this end, we use
Faith’s phylodiversity [27] to compare each of the 500 sur-
rogate datasets (described above) to the empirical dataset.
Phylodiversity is the sum of branch lengths on a phyloge-
netic tree for a set of species, so phylodiversity of a set of
highly related species is low (phylogenetically constrained)
because there are no long branch lengths in the tree, but
phylodiversity is higher (phylogenetically divergent) for a
set of more distantly related species [27]. If D ≠ 0, then
species are preferentially added if they have relatively low
(D < 0) or relatively high (D > 0) phylogenetic distance to
the resident community (dit, Eq. (1)), yielding accumula-
tions of total phylodiversity that are relatively slow (D < 0)
or relatively fast (D > 0) compared with the neutral model
(Fig. 1a). In other words, at any timepoint t, the phyloge-
netic diversity of species that have already been observed is

PDt, and the extent to which PDt accelerates or decelerates
over a sampling effort depends on D. Because of this, we
can estimate D by comparing the empirical phylodiversity
curve to our surrogate phylodiversity curves, which have
known D̂ values.

For the comparison of an empirical phylodiversity
accumulation curve to curves for corresponding surrogate
datasets, we evaluate the amount of phylodiversity PDm

accumulated at time index m, midpoint between the first and
final samples. Time m is used because this leaves many
species yet to be observed in the species pool, so that there
can be variability in surrogate datasets. Multiple time
indices are not used to compare surrogate and empirical
datasets because each value PDt̂ is a function of all values
PDt<t̂. PDm values are calculated for all surrogate datasets,
and a PDm value is calculated for the empirical dataset. The
difference between the empirical PDm and PDm simulated
with D ¼ D̂ is ΔPDD̂, which is the error between surrogate
and empirical data. We then estimate the empirical value of
D by minimizing ΔPDD̂ (Fig. 1b). This minimization is
performed using a logistic error model,

ΔPDD̂ ¼ a � b

1 þ e�rðD̂ � iÞ þ b; ð2Þ

where a and b are the upper and lower horizontal
asymptotes, and r and i are rate and inflection parameters
for the logistic model. ΔPDD̂ is modeled with a logistic
function because there is a maximum and minimum
observable ΔPDD̂ value as a function of the phylogeny;
this is because there are strict minimum and maximum
limits to the amount of phylodiversity obtainable by
observing n species, where n is the total species richness
accumulated up to time m. The two horizontal asymptotes
of the logistic model are easily fit to these extremes
(Fig. 1b). Once fit, the error model is solved for ΔPD= 0,
giving an estimate for the empirical D. Confidence
intervals for this estimate are obtained via bootstrapping
our error model.

Hypothesis testing

For this test, our null hypothesis is the neutral model, where
D= 0, since this model represents the absence of the effect
we are testing. We test this null hypothesis competitively by
simulating 1000 surrogate datasets at D= 0 (Fig. S1a) to
generate a null PDm distribution. The empirical PDm is
compared with this distribution (Fig. S1b), and if the
empirical PDm is below the 2.5% quantile or above the
97.5% quantile, we reject the null (i.e., neutral) hypothesis.
Evidence of either overdispersion (D > 0) or under-
dispersion (D < 0) allows us to reject. A second method
of simulating communities under D= 0 was used as
well, where simulated communities were drawn without
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Fig. 1 Phylodiversity accumulation and model fitting in the female
feces dataset [25]. a Empirical (dashed) and surrogate phylodiversity
accumulation curves. Surrogate curves are colored according to D̂
value (Eq. (1)). New species that have a previously detected close
relative contribute little phylodiversity and cause slow phylodiversity
accumulation (blue). New species that do not have a close relative
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The empirical model (dashed) is below the neutral model (teal), sig-
nifying underdispersion in the order of first-time species detections.
The times of sampling points are shown as vertical blue lines below
the X-axis. Curves are rescaled from 0 to 1 in this figure. b How
empirical and surrogate data are compared with generate an estimate
for D. Differences between empirical and surrogate data at time m are
shown on the Y-axis, and the D̂ values used to generate surrogate
datasets are shown on the X-axis. Color-coded points correspond to
surrogate datasets are shown in a. Values shown in gray result from
using extreme values of D̂, which help the logistic error model (black
line) fit to the data, and are not shown in a. The red arrows show the
process of error minimization, yielding a D estimate. A figure showing
significance testing for these data is available as Fig. S1.
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replacement from the pool of all individual observations
within a rarefied dataset. In this context, an “observation” is
a datum within a species-by-sample matrix of count data; a
given column contains d observations, where d is the
sequencing depth. This “individual null” accounts for
differences in total species relative abundance across a
time series, while the simulation above only considers
presence–absence of species. Results of this model were
computed the same as above.

Analysis

This section is a summary of our data analysis. Detailed
methods for this section are available as Supplementary
information.

We ran our model on data from 36 individuals from three
data sources. Two individuals were from Caporaso et al.
[25], 33 were from Yassour et al. [21], and one was from
Koenig et al. [26]. In all cases, data were downloaded and
processed using the unoise3 pipeline [28], which clusters
sequence data into exact sequence variants called zOTUs.
The Koenig et al. infant gut dataset was split into two
datasets, one for samples collected before the subject began
consuming baby formula, and one after. Our model was run
on these data as described above, resulting in D estimates
for the before and after formula datasets.

The “moving pictures” [25] data were split into eight
datasets, one for each combination of subject (n= 2) and
body site (feces, right and left palms, tongue), and our
model was run on each of these datasets. Analyses of these
data were also done using two approaches that allowed us to
test the importance of the set of species that are included in
the species pool. One alternate approach analyzed com-
munities in a “meta” context, where the species pool for a
given palm was composed of all four palms in the whole
dataset. If we were to estimate similar D values for both the
“meta” and “self” analyses, the inclusion of extra species in
the species pool would be of little importance to the model.
The other alternate approach analyzed data using a sliding-
window approach, wherein our model was run separately
on multiple overlapping windows of five consecutive
days within the same dataset, in order to see how D varied
over time.

Finnish infant sequence data from Yassour et al. [21]
were split into datasets for each of 33 individuals, and our
model was run for each. Estimated D values were com-
pared between subjects that had been treated with oral
antibiotics (n= 18) and subjects that had not (n= 15)
using a Mann–Whitney test. Because this data source had
so many subjects, we used these data to test whether the
number of zOTUs, total phylodiversity, or number of
timepoints had an effect on D estimates via correlation
analysis.

Results

By varying D̂, we successfully changed the rate at which
phylodiversity is added to surrogate (i.e., resampled)
microbial communities over time (Fig. 1a). Compared
with the neutral model where D̂ ¼ 0, higher D̂ values
result in phylodiversity accumulating quickly, since in
the overdispersed model, species that contribute more
phylodiversity are preferentially sampled. Conversely,
lower D̂ values result in phylodiversity accumulating
slowly, since in the underdispersed model, species that
contribute less phylodiversity (since they are very similar
to species that are already present) are preferentially
sampled. These results show that the D parameter in our
model successfully corresponds to over- and under-
dispersion relative to the neutral model. Our error model
also fits well to the differences between empirical and
surrogate datasets (ΔPDD̂, Fig. 1b). Each error model fit
was visually inspected for goodness of fit, to be sure that
D estimates were not spurious. All datasets passed this
inspection.
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violin, and the body site is shown as fill color. The four body sites for
the female subject are shown at left, and the four body sites for the
male subject are shown at right. Each violin shows the distribution of
D estimates given by logistic error model bootstraps, and the dots
within violins are means. Light-colored portions of violins represent
95% of bootstraps. The two subjects analyzed show parallel D esti-
mates, with feces being the lowest, followed by palms which are all
similar, followed by tongue communities. For both subjects, tongue
patterns were not significantly different than the neutral model.
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Results from “moving pictures” data

All time series from adult feces and palm microbiomes [25]
showed significant phylogenetic underdispersion of first-time
zOTU detections (Fig. 2). This means that when a zOTU was
detected for the first time in one of these communities, it was
more likely to be phylogenetically similar to a zOTU that
had previously been detected in community. For both the
male and female subject, D estimates were lower (more
underdispersed) in the feces than in the palms, left and right
palm D estimates were similar to each other, and tongue D
estimates were higher. All sites except the tongue showed
statistically significant underdispersion in both subjects,
while tongue data were not significantly different than the
neutral model. The results for the “individual null” were the
same. In the comparison between “meta” and “self” models,
“meta” models needed to be much more underdispersed
than “self” in order to approximate empirical phylogenetic
diversity accumulation (Fig. S2). We also observed a general
upward trend in D in our sliding-window analysis of the
male right palm dataset (Fig. S3), although this trend was
only observed over 19 days.

Results from infant gut data

Empirical phylodiversity accumulation in the infant gut
microbiome [26] showed a sharp increase in phylodiversity
after day 161 (Fig. 3), the same date that the subject began
consuming baby formula. This suggests that baby formula
changed the phylogenetic colonization patterns of the
developing infant gut. We analyzed this dataset as two
separate time series, one before formula use and one during,
and both had negative D estimates, with the preformula D
estimate being lower (Fig. 4). While the preformula dataset
was significantly underdispersed (P= 0.007), the formula
dataset was not significantly different from the neutral
model, although this result is marginal (P= 0.107). When
the “individual null” was used instead, both were sig-
nificantly underdispersed. Infant gut data from Finnish
infants [21] were sampled at a much lower temporal reso-
lution, and as such were not split between formula use.
Out of 33 individuals, 31 analyzed exhibited significant
underdispersion, and the other two were not significantly
different from the neutral model. Both nonsignificant indi-
viduals were from the group treated with heavy antibiotics,
but even so, no significant difference in D values was
detected between antibiotics and control groups (Fig. S4).
However, when the “individual null” was used, all subjects
exhibited significant underdispersion. Estimates of D did
not significantly correlate with the number of zOTUs in a
dataset, the total phylodiversity of the dataset, the initial
phylodiversity of the dataset, or the number of samples in a
dataset (Fig. S5).

Discussion

Any organism of interest in a human microbiome dataset,
from the pathogenic to the probiotic, will at some point be
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recruited for the first time, and the order in which these
organisms are detected in the community is determined
by community assembly processes [1]. Predicting which
lineages of organisms can be recruited into a given envir-
onment has far-reaching implications for ecosystem
remediation and management, especially in microbial
communities, where the medical and ecological importances
of many microbes are still largely unknown [29, 30].
Identifying conditions under which assembly mechanisms
change, or under which nonneutral assembly is particular
strong, may facilitate microbial community rehabilitation by
understanding when and how microbial communities can be
colonized by close/distant relatives. We found that assem-
bly during primary succession of the infant gut (Figs. 4, S4)
and during turnover of the microbial communities on the
adult palms and gut (Fig. 2) follows a predictable pattern:
new species are more likely to be recruited if a close relative
has been recruited previously.

The generally “nepotistic” pattern we observed supports
our underdispersion hypothesis, which follows Darwin’s
preadaptation hypothesis [11] and more recent ecological
theory as well [18, 19]. Much work in phylogenetic com-
munity ecology posits that competition tends to be strongest
among closely related species due to phylogenetic niche
conservatism [8], so many closely related species are able to
coexist in a community, competition must not be an
important factor structuring that community [20]. However,
strong competition between distantly related species may
actually cause groups of phylogenetically similar species to
coexist, especially when immigration is high [18, 19, 31].
This type of competition is perhaps better conceptualized as
selection (i.e., environmental filtering) instead [19], espe-
cially since studies showing evidence for competitive
exclusion in microbial communities focus on competition
between closely related species [2, 13].

Our model investigates the extent to which newly
recruited species are likely to be similar to previously
recruited close relatives, but “previously recruited” may
include a significant time span. Thus, the observation of
underdispersion may not reflect a lack of importance of
competition between close relatives per se. However, asking
whether new species recruitment is likely after recruitment
of a close relative has relevance; for instance in human
microbiome systems it may be beneficial to understand if a
pathogen’s probability of recruitment may be higher if a
conspecific strain was previously observed [14, 16].
Approaches that consider only recent community member-
ship may more directly inform hypotheses regarding direct
competition between close relatives, or regarding more
recent recruitment of close relatives. For this reason, we
included a sliding-window analysis of 5-day intervals for a
subset of intensively sampled data, and showed significant
underdispersion in a majority of windows analyzed

(Fig. S3). This type of analysis can satisfy the issue of
recency when using our model, but only when data col-
lection is sufficiently frequent.

Regardless, nonneutral patterns of phylogenetic com-
munity structure have been interpreted to mean that traits
are under ecological selection [20, 32–34]. If traits are not
driving community assembly [35] or if the traits driving
community assembly are largely horizontally transferred
between taxa independent of their relatedness (as estimated
by a 16S rDNA phylogeny), we would expect no phylo-
genetic signature, and a D estimate that is not significantly
different from 0 (the neutral model). Instead, we observed a
very strong and significant phylogenetic signal in species
recruitment order for almost all datasets we analyzed.
However, if selection on traits is driving this pattern,
selection itself may not occur within the host environment.
An alternative explanation for the underdispersion we
observed is that selection is external to the host environment
(i.e., selection occurs within the neighboring species pool
from which emigration occurs), causing change in the
community entering the host to already be underdispersed.
Similarly, phylogenetic dispersion of community structure
has been unable to distinguish between selection and dif-
ferences in migration rates [36], so a preunderdispersed
community entering the host is a plausible mechanism for
phylogenetic underdispersion of species recruitment. But,
selection of microbial communities within the host has been
shown by multiple studies [37–39], so it is our opinion that
selection within the host is a more likely scenario.

A similar point is that species compositions of these
datasets do not reflect the actual species pool from which
they originate, which is likely not static over time. Our
model draws species from the pool of all species observed
over the course of a time series, and with that model we ask
whether the order in which those species were recruited is
consistent with under- or overdispersion hypotheses. It is
for this reason that we discuss our model in the context of
the order of recruitment, regardless of whether selection
took place in the host or was external as described above.
A null model that accounts for a dynamic species pool that
is external to the host could be used with the type of ana-
lysis we present here, in order to understand if the processes
underlying over-/underdispersion take place in the host or in
the host’s environment. Our “meta vs. self” comparison
(Fig. S2) uses the combined habitat-specific microbiomes of
two co-habitating individuals as a broader species pool, and
we found even stronger underdispersion when empirical
“self” patterns were compared with the broader “meta”
species pool, suggesting strong selection within the host
environment. Still, this broader species pool is not a sub-
stitute for a thorough inventory of the real species
pool, which would be required to ascertain whether over-/
underdispersion originated in the host or elsewhere. As
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such, future studies may wish to intensively sample a sub-
ject’s environment in order to better catalog the species
pool, and perhaps use qPCR to obtain environmental con-
centrations of species within the species pool [40].

As to why no datasets analyzed showed significant
phylogenetic overdispersion (D > 0), we are not certain. At
the beginning of development of this model, we expected
microbial communities in the human microbiome to follow
the overdispersion hypothesis, partly from microbiome
studies suggesting competition among closely related
bacteria is an important factor in human gut microbial
community assembly [1, 41, 42], and also because of work
in experimental microcosms [13]. However, the human
microbiome environments analyzed here are environments
that undergo constant physical disturbance, unlike aqueous
microcosms. Palm communities are physically disturbed
with every use of the hands, and by the sampling procedure
itself. Gut (fecal) communities are also disturbed constantly
by the movement of feces through the gut. It may be pos-
sible that continuous disturbance allows for underdispersion
via constant reassembly of communities. In this case, niches
may be filled by random “winners” after each disturbance,
as in a competitive lottery scenario [4]. These “winners”
would still need to be preadapted to their environment, so
they would be more likely to be closely related to previous
“winners”, as in our findings. Similarly, environments with
fluctuating resource profiles may result in clusters of
organisms occupying the same niche [43]. The datasets we
used are also somewhat limited in terms of phylogenetic
resolution, as short reads of the 16S marker gene are
insufficient to detect strain-level variation [15, 42, 44].
Thus, competitive exclusion could occur at the extreme tips
of the bacterial phylogenetic tree, and this would not be
detectable using 16S rDNA data. Even so, broader patterns
of underdispersion at phylogenetic depths accessible with
16S data could still result in significantly underdispersed
model fits.

A strength of our model is that it estimates values of D
that can be compared among datasets (Fig. 2) or potentially
across time (Figs. 4, S3) in order to learn how differences
between datasets impact community assembly. We found
that gut and palm communities were almost universally
underdispersed (Figs. 2, 4, S4), and that the D value for a
community appears to be a function of body site (Fig. 2).
Although this result is only shown across two subjects, the
parallel patterns between the male and female subject are
striking, in that fecal communities are the most strongly
underdispersed (lowest D), palm communities are similar to
each other, and tongue communities had the highest D
estimates. Similarly, comparing D before and after an event
can be used within an experimental framework to see how
that event may affect community assembly. Our analysis
of infant gut microbiome data [26] before and during the

use of baby formula (Fig. 4) showed that while the pre-
formula community was significantly underdispersed,
community assembly during formula consumption was
more neutral. While the postformula trend was not sig-
nificantly different from the neutral model, this finding was
marginal (P= 0.107).

In addition to showing that our model can be a useful
tool for future studies, our findings also hint that phyloge-
netic underdispersion may be a common trend for the
human gut microbiome, although demonstrating a general
trend would require analysis of more than the 36 individuals
we analyzed. Indeed, recent research has shown that for
fecal transplants, donor strains are able to integrate into the
recipient’s gut community when a conspecific strain is
already present, but novel donor strains are unlikely to
successfully integrate into the recipient [14]. Congeneric
bacteria have also been shown to be predictors of each
others’ recruitment in the mouse gut microbiome, both for
pathogens and commensals [16]. Different body sites—as
we saw with the skin—may have qualitatively similar pat-
terns of underdispersion, yet quantitatively different mag-
nitudes of this effect. Thus, the efficacy of an engineered
probiotic based on similarity to organisms already present in
the community for which it was engineered may largely
depend on the body site for which it is intended, although
again more exhaustive study is needed.

Data availability

R code and data to replicate our analysis, or to perform a
similar analysis on other data, are available on GitHub, at
https://github.com/darcyj/pd_model.
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