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Predicting lake dissolved organic 
carbon at a global scale
Kaire Toming   1,2,3 ✉, Jonne Kotta   2, Evelyn Uuemaa   4, Sebastian Sobek1, Tiit Kutser2 & 
Lars J. Tranvik   1

The pool of dissolved organic carbon (DOC), is one of the main regulators of the ecology and 
biogeochemistry of inland water ecosystems, and an important loss term in the carbon budgets of 
land ecosystems. We used a novel machine learning technique and global databases to test if and how 
different environmental factors contribute to the variability of in situ DOC concentrations in lakes. In 
order to estimate DOC in lakes globally we predicted DOC in each lake with a surface area larger than 
0.1 km2. Catchment properties and meteorological and hydrological features explained most of the 
variability of the lake DOC concentration, whereas lake morphometry played only a marginal role. The 
predicted average of the global DOC concentration in lake water was 3.88 mg L−1. The global predicted 
pool of DOC in lake water was 729 Tg from which 421 Tg was the share of the Caspian Sea. The results 
provide global-scale evidence for ecological, climate and carbon cycle models of lake ecosystems and 
related future prognoses.

The necessity to understand and predict climate change and its impacts requires a solid comprehension of the 
global carbon cycle. Recent studies have demonstrated that lakes act as carbon hot spots in the landscape and 
thereby play a crucial role in global biogeochemical cycles, and significantly contribute to climate regulation1,2. 
Lakes process most of the carbon flux of terrestrial origin by degassing carbon dioxide (CO2) and methane (CH4) 
to the atmosphere3–5. Simultaneously, lakes and reservoirs are burying as much carbon in their sediments as is 
buried by the entire ocean over the same time period6,7. Hence, the intensity of carbon cycling in lakes appears 
to be disproportionately important relative to their small areal extent. Dissolved organic carbon (DOC) plays a 
significant role in lake ecosystems, and strongly regulates the carbon and energy cycle of inland waters8. Thus, 
it is important to identify which factors control the DOC concentration in lakes. Such factors might be (1) the 
physical properties of the catchment9–13; (2) morphometric characteristics of the lake9; (3) climatic properties of 
the particular region9; (4) autochthonous production of DOC inside the lake (5) abiotic and biotic mineralization 
of DOC14,15. All above mentioned characteristics might influence either separately or interactively the DOC con-
centration in lakes and can greatly affect global carbon cycle.

Although relationships between DOC and its main controlling factors in lakes have been investigated in many 
regional studies during the last decades, there is a limited knowledge at a global scale. Regional DOC models 
seem to have a limited potential in predicting DOC in other geographical areas of the world but the proportion 
of wetlands in the watershed and lake elevation are good predictors of lake DOC concentration across regions16. 
This is due to a hierarchical regulation of DOC in lakes, where climatic and topographic characteristics set the 
regional range of DOC concentrations, and catchment and lake properties then define the DOC concentration 
in each individual lake9,17. Among catchment, soil, and climate parameters, altitude, mean annual runoff, and 
precipitation have been negatively correlated with lake DOC, while conductivity, soil carbon density, and soil C: 
N ratio were positively related with lake DOC9. In another study the lake total organic carbon (TOC) was only 
weakly related to morphological characteristics whereas climatic controls described nearly half of variability in 
TOC18. Based on these relationships the estimated global mean concentrations and storage of TOC in lake water 
are 5.58 mg L−1 and 984 Tg18. Nevertheless, in these studies a large part of variability was left undescribed and 
therefore the model uncertainties were high. This is partly because linear regression techniques were used to 
define links between the DOC and its controlling factors whereas the relationships between the DOC and its 
controlling variables are often nonlinear19. Moreover, these relationships potentially involve many interactions 
that cannot be evaluated with traditional statistical relationships.
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Here we used the novel machine learning technique Boosted Regression Trees (BRT)20, HydroLAKES v. 
1.021,22 and WorldClim v. 2.023 databases, and a compilation of globally distributed lake DOC concentration data9 
(1) to test if and how different factors contribute to the variability of in situ DOC concentrations in lakes (includ-
ing reservoirs) and (2) based on the established relationships to predict DOC in lakes globally. Machine learning 
provides a theoretical framework that moves beyond traditional paradigm boundaries by learning from new 
data (rather than assuming an appropriate data model) and resolving simultaneously a broad range of functions 
(rather than oversimplifying situations). Therefore, we expect that the BRT modelling captures the complex pat-
terns of DOC in lakes and particularly improves our understanding of the causes of that variation.

Results
The contribution of different factors to the variability of in situ DOC.  Altogether 14 different vari-
ables were included in our study to predict DOC concentration of global lakes. After testing for multicollinearity, 
we excluded the variables “lake area” and “discharge”. When interpreting the results, however, we kept in mind 
that both shoreline length and total lake volume correlated with lake area as well as watershed area correlated 
with discharge.

The BRT model described 78% of the variability in the lake DOC concentration. Among the studied environ-
mental variables catchment physical properties (e.g. elevation of lake surface, watershed to lake volume ratio) 
and meteorological and hydrological features (surface solar radiation, precipitation) mostly explained to the var-
iability of the lake DOC concentration (relative importance of those variables were 86%, Fig. 1) whereas lake 
morphometry played only a marginal role (relative importance of morphometrical variables were 14%, Fig. 1).

As expected, the observed relationships were not linear (Fig. 1) and showed different types of responses. 
Precipitation, elevation, discharge, slope, shoreline complexity and length as well as lake volume and area had 
negative effects on the DOC concentration. On the other hand, higher watershed area to lake volume ratio leads 
to higher DOC concentration. Solar radiation, lake depth, residence time and watershed area showed a unimodal 
response to the DOC concentration. Temperature was positively related to DOC concentration up to ~7 °C, but 
did not have any effect >7 °C.

Predicting DOC concentration in lakes globally.  The predictive model described in previous paragraph 
was used to predict DOC in lakes globally (Fig. 2). Volume weighted average DOC concentrations in global 
lake water were estimated to be 3.88 mg L−1 ranging from 0.0002 to 27.0 mg L−1 (Table 1). Area and volume of 

Figure 1.  Partial dependence plots for Boosted Regression Trees analyses relating lake DOC concentrations 
to the different hydrological, meteorological and morphological variables. The figure shows the effect of an 
individual variable on the response when all other predictors are held at their mean values: positive fitted 
function values suggest that DOC respond positively and negative values suggest the opposite. The relative 
importance of each variable is shown in parentheses on the x-axis. Solid lines depict shapes of the response 
between environmental variables and DOC (the fitted function without a smoother) and dashed lines represent 
standard error values of partial dependence curves. Each tick mark at the bottom of each graph represents the 
10th percentile of the data.
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the most of lakes are smaller than 1 km2 and 1 km3, while the most of DOC can be found from lakes larger than 
1 km2 and 1 km3. Consequently, larger lakes should count more than smaller lakes when calculating average DOC 
concentration of lakes globally. Therefore, we used a volume weighted average instead of arithmetic average when 
estimating the average DOC concentration in lakes.

The global storage of DOC in lake water was estimated to be 729 Tg. The majority of DOC was found in the 
Caspian Sea (421 Tg) while the European DOC pool was estimated to be 68 Tg – nearly the same than in Africa 
(67.3 Tg). The total predicted DOC pool in North America was 127 Tg.

The average DOC concentrations were higher in lakes with area and volume less than 100 km2 and 0.1 km3 
respectively. Nevertheless, most of the global lakes DOC pool can be found in lakes larger than 1,000 km2 in area 
and 1,000 km3 in volume (Supplementary Table 1). Lakes with a mean depth less than 10 meters had average DOC 
concentrations higher than deeper lakes. On the other hand, total DOC amounts were higher in the deeper lakes 
(Supplementary Table 1). Higher shoreline complexity and longer shoreline length were associated with lower 
DOC concentrations. Lakes with shorter residence time had mostly higher mean DOC concentrations and lower 
DOC pool than the lakes with longer residence time.

The average DOC concentrations were somewhat higher in the lakes from the regions were annual mean 
air temperature is below 10 °C, also when we excluded the Caspian Sea (Supplementary Table 2). In the regions 
where annual mean precipitation remains below 500 mm, average DOC concentrations tended to be higher and 
these lakes constituted also the major part of the lake water DOC pool. Total DOC pools and the average DOC 
concentrations were higher in the regions where solar radiation is between 8,000 kJ m−2 day−1 and 15,000 kJ m−2 
day−1 (Supplementary Table 2). When average long-term discharge flowing through the lake remained below 10 
m3 s−1, the average DOC concentrations were higher than in lakes with higher discharges. Though, the total DOC 
pools were highest in the lakes with average long-term discharge over 1,000 m3 s−1 (Supplementary Table 2).

The highland lakes (elevation more than 100 m) had lower DOC concentrations and total DOC pools than 
lowland lakes (Supplementary Table 3). Average slope less than 10 degrees within a 100-meter buffer around 
the lake polygon favours higher lake DOC concentrations and total DOC pools. Lakes with watershed area less 
than 1,000 km2 had higher average DOC concentrations than lakes that were surrounded with larger watershed 
areas. It is probably related to the size of the lakes – smaller lakes have usually smaller watershed, but higher DOC 

Figure 2.  The DOC concentrations of global lakes.

Continent N
Mean DOC 
(mg L−1) Min Max

DOC pool 
(Tg)

Africa 15,958 2.13 0.0073 17.1 67.3

Asia 68,141 3.58 0.0002 20.4 31.0

Caspian Sea 1 5.57 — — 421

Europe 281,874 2.29 0.0103 27.0 68.0

North America 993,837 3.31 0.0007 25.2 127

Oceania 13,479 3.46 0.0073 18.6 1.80

South America 54,024 3.55 0.0023 20.8 14.0

ALL 1,427,314 3.88 0.0002 27.0 729

Table 1.  Predicted volume weighted average DOC concentrations (mg L−1) and total DOC pool (Tg) of global 
lakes by continent and for the whole world.
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concentrations than larger lakes. Additionally, the watershed area: lake volume ratio was positively related to the 
concentration of DOC and total DOC pools.

Discussion
Machine learning lets us derive accurate relationships between environmental variables and DOC and thereby 
predict the contribution of different factors to the variability of in situ DOC. We predicted DOC for every lake on 
Earth which has a surface area of at least 0.1 km2 (ca 1.4 million lakes) taking into account14 different variables of 
lake morphometry, meteorology, hydrology and catchment without assumptions on model type.

Catchment physical properties (elevation of lake surface, watershed to lake volume ratio) and meteorologi-
cal and hydrological features (surface solar radiation, precipitation) mostly explained the variability of the lake 
DOC concentration while lake morphometry (e.g. lake area and volume) was negligible in the global context. 
Hydrological and meteorological variables have been acknowledged as important controlling factors of DOC in 
surface waters in regional-scale studies19,24,25. In our study, the relative importance of meteorological and hydro-
logical features to the overall variability in lake DOC concentration was 39%. Lower air temperature, solar radi-
ation, precipitation and discharge values favour higher DOC concentrations in lakes (Supplementary Table 2). 
Temperature is positively related to DOC concentration up to ~7 °C, but did not have any effect >7 °C is similar 
to what Laudon et al.24 observed for stream DOC across regions. They suggest, that at higher temperatures the 
soil DOC becomes production limited meaning that together with large litter input and organic matter pro-
duction high mineralization rate dominates26. Additionally, higher air temperature and solar radiation enhance 
the biological and photochemical activity and thereby rise the rate of DOC decomposition and bioavailability 
leading to reduction of DOC concentrations in surface waters27,28. DOC concentrations in lakes could be lower 
also in the regions of high precipitation and discharge due to low DOC pools in catchment soils and due to the 
dilution effect29,30. In regions with very low precipitation and discharge, evaporation can lead to very high DOC 
concentration31. In addition to the climatic variables, catchment characteristics appeared to be also very impor-
tant predictors of lake water DOC concentration (relative importance of all catchment features was 46%). The 
most important predictor of DOC among catchment characteristics and also among all variables was elevation. 
Highland lakes have lower DOC concentrations and total DOC values than the lowland lakes (Supplementary 
Table 3). Sobek et al.9 showed that the catchments at higher altitudes experience more precipitation, which leads 
to higher area-specific runoff associated with low soil carbon density and low lake DOC concentrations. Similarly, 
alpine lakes and high plateaus experience high values of solar radiation that will decrease the in-lake DOC con-
centration through active photochemical decomposition32. Additionally, the catchments slopes tend to be hillier 
at higher altitudes9 and as seen in Supplementary Table 3, steeper slopes result in lower DOC concentrations in 
lakes, possibly related to organic soil horizons being thinner on steeper slopes33 and to a smaller proportion of 
wet soils compare to flatter catchments34. Similarly, Musolff et al.35 found that the long-term median DOC con-
centration in the catchment is well predicted by the 90th percentile of the distribution of the topographic wetness 
index (0.9 P TWI) over the entire catchment area and catchments with a high 0.9 P TWI and low slopes generally 
exhibited high DOC concentrations. Thus, the close relationships of the altitude with climatic and soil properties 
makes it a good predictor for lake water DOC concentration at a global scale.

It is well known that nutrients determine the trophic state of lakes. Therefore, it would be desirable to incorpo-
rate them into our model in order to improve the predictions. However, nutrient data is currently not available at 
the global scale and therefore cannot be incorporated to our modelling framework. On the other hand, the used 
variables (e.g. temperature, radiation, precipitation, discharge, mean depth, etc.) are highly linked to the trophic 
state of lakes and thereby its signal is indirectly captured in our model. Though, we acknowledge that without 
global data of nutrients trophic state is taken into account to a limited extent.

Globally, reservoirs (both large and small) were estimated to comprise roughly 9% of the total lake and res-
ervoir surface area5,7. Many reservoirs possess properties that are associated with low DOC concentration (e.g. 
high shoreline complexity, large volume), but also often have large catchment areas, resulting in relatively short 
water residence time and implying high DOC concentrations36,37. While we cannot exclude that the presence and 
abundance of reservoirs may affect the patterns observed in our study, we argue that their relatively low contri-
bution to total area, as well as the potentially counteracting effects on DOC concentrations, are unlikely to lead 
to a systematic effect.

The significant contribution of catchment physical properties, lake morphometric characteristics, and mete-
orological and hydrological features to the variability of lake DOC allowed us to predict reliably lake DOC values 
globally from these drivers. Since most of the global lakes are located in Europe and North America, expectedly 
also the total DOC pool in lake water appeared to be highest in those continents. However, the DOC pool of 
Africa is very similar to Europe due to the very high volume of water in African rift valley lakes. Higher mean 
DOC concentrations in Europe and North America compared to other continents can be explained by the mete-
orological and hydrological features and the lake morphometric characteristics of these regions that support 
higher DOC concentrations. Clear differences in DOC concentrations appeared between large and small lakes, 
between high volume and low volume lakes, and between deep and shallow lakes. Nevertheless, in accordance 
with previous studies9,16,38 none of these parameters were among the main predictors of DOC in lakes globally. 
Similarly, the residence time of lake water, which is associated with in-lake rates of photochemical and biological 
degradation of DOC39, was not among the main predictors of the concentrations of lake water DOC globally. This 
supports the view that lake properties are important predictors of the DOC concentration regionally9 whereas 
climate and catchment properties are more important globally.

A significant fraction of the global lake DOC pool is in the Caspian Sea. Our prediction for the mean DOC 
was 5.57 mg L−1. There is a recent publication40 indicating that the DOC may vary between 5.93 mg L−1 and as 
high as 19.2 mg L−1 in some coastal regions of the Caspian Sea. This suggests that our Caspian Sea DOC pool 
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estimate may be rather conservative. There is very little in situ data available from the Caspian Sea and there is a 
strong need to get more information in order to improve global lake DOC pool estimates.

Our estimates on the DOC concentrations and the global pool of DOC in lake water are somewhat lower 
than previous results of total organic carbon (TOC) obtained by Chen et al.18. They used in their TOC estimates 
a global data set that covers approximately 8,300 lakes from 68 countries/regions spanning six continents and 
found that the global mean TOC concentration is 5.578 mg L−1 and the pool in lake water is 984 Tg. After convert-
ing Chen’s et al.18 TOC values to DOC by multiplying 0.941, their estimate of the global lake DOC pool is 17.7% 
bigger than obtained in current study, and the difference is even bigger when comparing the mean DOC concen-
trations (22.7%). Even if we count lakes that are smaller than 0.1 km3 it will only slightly affect (less than 1%) the 
total DOC pool and the estimates of the mean DOC concentrations due to the low total volume of smaller lakes42. 
We argue that our study more accurately predicts lake DOC concentration globally since it incorporates, for each 
lake, the complex relationships between multiple meteorological, hydrological, topographical, morphometrical 
variables and the DOC concentration. Moreover, our model benefited from the inclusion of important variables 
such as elevation, the ratio of the watershed area to lake volume, water residence time and global meteorological 
data with a very good spatial resolution (1 km). As in other predictive modelling, BRT is a process that uses data 
mining and the laws of probability to predict values of dependent variable. Thus, one of the biggest challenges of 
predictive modelling is acquiring the right training data when developing algorithms, because data quality defines 
the accuracy of prediction. Although we used the best free data sources available, some regions were better sam-
pled than others (see environmental data distribution in Fig. 1) and in these regions the established functions are 
more detailed and precise. Therefore, dedicated sampling efforts in the under-sampled regions of the world are 
necessary to improve predictive models.

Our results show that the global lake DOC pool (0.729 Pg) is a small fraction of the DOC pool in the global 
surface ocean (700 Pg), as well as carbon pool in vegetation (450–650 Pg) and soils (1500–2400 Pg)43. However, 
lakes are extremely active sites for transport, transformation, and storage of considerable amounts of carbon 
received from the terrestrial environment and therefore have an effect on the global carbon cycle that is dis-
proportional to their spatial extent44. For example, lakes and other inland waters bury 0.2 Pg of carbon in their 
sediments and outgas 1.0 Pg CO2 and CH4 to the atmosphere at global scales annually2,43. Inland waters are thus 
burying as much carbon in their sediments as is buried by the entire ocean over the same time period.

Thus, lakes may act both as sinks and sources for carbon. In many lakes, especially within the cool boreal 
climate region, heterotrophic processes prevail and lakes act as sources of CO2

45. The reason for that is the large 
amount of organic carbon runoff from the catchment and discharge to the lakes that increases the respiration rate 
of the lake ecosystem to a level that exceeds photosynthetic carbon sequestering by phytoplankton and aquatic 
plants. Seekell et al.46 evaluated the relationship between DOC and whole-lake primary production in lakes and 
found a threshold DOC concentration (4.8 mg L−1), below which the DOC-primary production relationship is 
positive, and above which the relationship is negative. In our study, 89.5% of lakes were above and 10.5% of 
lakes were below threshold indicating that in the most of the global lakes DOC limits the primary production. 
However, this is still a growing area of research, and further research is needed to conclude whether DOC is sup-
pressing gross primary production in the most of the lakes.

In conclusion, we used the best available global data, numerous in situ DOC measurements from various 
regions and a powerful machine learning algorithm to describe complex interactions between the lake DOC and 
its environmental predictors and to reliably predict the lake DOC pool globally. As such the results improve our 
understanding on the role of different environmental variables in the lake DOC and the global carbon cycle in 
general. Consequently, our predictions can be regarded as an important milestone providing a valuable input for 
global ecological, climate and carbon cycle models and related future prognoses.

The DOC concentrations and pools reported here are not static, but may change in response to changing envi-
ronments. For example, boreal and temperate lakes of NW Europe and NE North America have had increasing 
concentrations of DOC over several decades, possibly due to recovery from acidification of soils with concomi-
tant increased export of DOC to lakes47, but it may also be a result of afforestation or other land use change48 or 
changing runoff patterns49. There are also spatial variations in DOC concentrations within lakes. However, we 
were not able to consider in detail spatial and temporal variability of DOC in our global study due to data una-
vailability. Therefore, further development will be critical in this field in making more accurate predictions about 
lake DOC pool globally. For example, two Sentinel-2 satellites with 10 m spatial resolution and 2–5 days revisit 
time should enable mapping spatial variability of DOC concentration within lakes as well as seasonal variations50. 
However, global validation is needed for remote sensing algorithms as the existing DOC retrieval ones have been 
validated only at regional scale.

Methods
Data.  Measured DOC concentrations (mg L−1) of lakes were obtained from Sobek et al.9. DOC concentrations 
from lakes larger than 0.1 km2 were used (1306 lakes in total). Additionally, DOC concentration data of lake water 
available in literature for large lakes Baikal51, Malawi52, Superior53, Michigan54, Ontario, Huron and Erie55 were 
used.

Global climate data, i.e. annual mean air temperature (°C), precipitation (mm), and solar radiation (kJ m−2 
day−1) were obtained from WorldClim v. 2.0 23. Data with a spatial resolution of 30 s (~1 km2) were used.

Data of global lakes and reservoirs were obtained from HydroLAKES v. 1.0 21. The HydroLAKES database 
includes all lakes and reservoirs with a surface area of at least 0.1 km2. It comprises 1,427,688 individual lakes con-
taining both freshwater and saline lakes, including the Caspian Sea, as well as human-made reservoirs and regu-
lated lakes 21. Furthermore, HydroLAKES contains additional information about different water and catchment 
characteristics. The following parameters from HydroLAKES database were used in the current study: elevation 
of lake surface (m above sea level), average slope within a 100 meter buffer around the lake polygon (degrees), 
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long-term discharge flowing through the lake, m3 s−1, average residence time of the lake water (days), average lake 
depth (m), shoreline complexity (measured as the ratio between shoreline length and the circumference of a circle 
with the same area), total lake or reservoir volume, (million m3), area of the watershed associated with the lake 
(km2), lake surface area (km2), length of shoreline (km). For more detailed information please see HydroLAKES 
Technical Documentation Version 1.0 22. Additionally, to HydroLAKES parameters, the ratio between the water-
shed area and lake volume was calculated. Continents are delimited based on HydroLAKES database as fol-
lows: Europe includes all of Russia, Asia includes Middle East and Turkey, North America includes Mexico, the 
Caribbean and Central America, Oceania includes Australia, New Zealand, Micronesia, Melanesia and Polynesia.

Data analysis.  Data of Sobek et al.9, HydroLAKES v.1.0 21 and WorldClim v. 2.0 23 were compiled using 
ArcGIS 10.4.1. Boosted Regression Trees (BRT; R 3.2.2. for Windows)20 was used to quantify relationships 
between environmental variables and the measured lake DOC values and then use the established relationships 
to predict the lake DOC values globally. In contrast to traditional regression techniques, BRT avoids starting with 
a data model, and rather uses an algorithm to learn the relationship between the response and its predictors20. 
BRT was first used to test if and how different factors (predictors) contribute to the variability of measured DOC 
in lakes (training data). Then, BRT was used to predict DOC in each individual lake (with a surface area of at least 
0.1 km2) globally based on the predictive model created from the first step (model application). In fitting a BRT, 
the learning rate and the tree complexity must be specified. The optimum model was selected based on model 
performance, with learning rates, number of trees, and interaction depth set at 0.001, 3000, and 5, respectively. 
Model performance was evaluated using the cross-validation statistics calculated during model fitting56. For more 
details on the BRT modeling see Kotta et al.57. Standard errors for the predictions and pointwise standard errors 
for the partial dependence curves, produced by R package “pdp“58, were estimated using bootstrap (100 repli-
cations). Multicollinearity can be an issue with the BRT modelling when answering if and when environmental 
variables are of ecological interest. Thus, prior to modelling, the Pearson correlation analysis between all environ-
mental variables was run in order to avoid situations of including highly correlated variables into the modelling. 
The correlation analysis showed that most variables were only weakly intercorrelated at r < 0.5. However, for 
some variables the values were far above the critical threshold when collinearity begins to severely distort model 
estimation and subsequent prediction59. Specifically, lake area correlated with both shore length (0.81) and total 
volume (0.9) as well as watershed area correlated with discharge (0.91). Thus, in the revised model we excluded 
the variables lake area and discharge.

Data availability
Global climate data were obtained from WorldClim v. 2.0. Data can be found here: http://worldclim.org/version2

Data of global lakes were obtained from HydroLAKES v. 1.0. Data can be found here: https://www.hydrosheds.
org/pages/hydrolakes

Other data can be found at https://doi.org/10.5281/zenodo.3452123.
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