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Abstract
Hardware and software advancements along with the accumulation of large amounts of data in recent years have together spurred
a remarkable growth in the application of neural networks to various scientific fields. Machine learning based on neural networks
with multiple (hidden) layers is becoming an extremely powerful approach for analyzing data. With the accumulation of large
amounts of protein data such as structural and functional assay data, the effects of such approaches within the field of protein
informatics are increasing. Here, we introduce our recent studies based on applications of neural networks for protein structure
and function prediction and dynamic analysis involving: (i) inter-residue contact prediction based on a multiple sequence
alignment (MSA) of amino acid sequences, (ii) prediction of protein–compound interaction using assay data, and (iii) detection
of protein allostery from trajectories of molecular dynamic (MD) simulation.
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Introduction

Artificial neural networks, inspired by mechanisms of the
brain, were proposed more than 60 years ago (e.g.,
Rosenblatt 1958). Recent years have seen the widespread
use of powerful computers, the development of machine
learning frameworks, and an increasing availability of data
(Shi et al. 2019). That environment has elicited, in various
fields, remarkable applications of deep learning using neural
networks with multiple hidden layers able to learn data repre-
sentations with multiple levels of abstraction (LeCun et al.
2015). Protein science is no exception. Here, we introduce
three applications of neural networks for protein structure,
protein function prediction, and protein dynamic analysis.

Prediction of residue contacts in proteins is an extremely
active field to which deep learning has been applied
(Kandathil et al. 2019). In the first section, we describe our

method for predicting residue contacts in proteins (Fukuda
and Tomii 2020). Similar to the other methods developed in
the field, our approach relies on deep learning using multiple
sequence alignments (MSAs) as inputs (Kandathil et al.
2019). Regarding protein function prediction especially
protein–ligand interaction prediction, a new era has arrived
that is based on the availability of large amounts of functional
assay and structural data that relates to protein/small com-
pound complex formation (Chen et al. 2018). Several groups,
including our own described in the second section, have de-
veloped prediction methods using neural networks trained
with such large amounts of data (Chen et al. 2018). A feature
of our approach in this area is the development of novel
methods based on end-to-end learning which involves
assigning weights to portions of inputs shown to be important
for prediction (Sutskever et al. 2014).

In the third section, we discuss our work on autoencoders
(Tsuchiya et al. 2019). An autoencoder is an unsupervised
neural network that is widely used for analyzing specific fea-
tures of proteins (Lemke and Peter 2019). It comprises two
parts: an encoder and decoder. The encoder part learns hidden
relational information related to the original input data and
extracts its representative features by compressing the data
into a low-dimensional code. The decoder part reconstructs
the original data from the low-dimensional encoded data.
The autoencoder is used widely for dimensional reduction,
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feature extraction, representation learning, and pattern classi-
fication. For example, Lemke and Peter extracted features of
generation paths in peptide conformations by dimensional re-
duction (Lemke and Peter 2019).

An autoencoder is also used for anomaly detection. In the
third section,we introduce our autoencoder-basedmethod,where
the autoencoder was used to detect changes in protein dynamics
by ligand binding and the allosteric behavior. Along with that
detection, we considered the dynamics observed only in ligand-
bound (holo) form during the simulations as “anomalies” from
the ligand-unbound (apo) form (Tsuchiya et al. 2019).

Contact prediction

Contact prediction is inferring interacting residue pairs in pro-
tein three-dimensional structures. In recent years, vast num-
bers of sequences have been deposited into databases due to
progress of genome or transcriptome sequencing (Karsch-
Mizrachi et al. 2018). Methods for predicting residue contacts
have been developed based on use of an MSA of related
amino acid sequences (Kandathil et al. 2019). An MSA for a
target protein can include sequences belonging to the same
protein family/superfamily as the target but possessing struc-
tural differences because of their diversity according to inser-
tions, deletions, and substitutions, especially for larger super-
families. For instance, clustering distinct subfamilies included
in an MSA of Pfam (El-Gebali et al. 2019) can be achieved
using the Hopfield–Potts models (Shimagaki and Weigt
2019). Therefore, we proposed a contact prediction model
based on neural networks that both calculates and uses a
weight for each sequence included in the MSA to improve
prediction accuracy, more specifically, to improve robustness
to noisy inputs. We demonstrated that the model is effective
for contact prediction when numerous amino acid sequences
are included in the MSA (Fukuda and Tomii 2020).

In our model, a weight is calculated for each sequence
included in an MSA based on seven features: the number of
sequences in anMSA, the sequence identity with both a target
sequence and a consensus sequence of an MSA, the gap ratio
for each sequence, and average values of the last three features
(Fukuda and Tomii 2020). Weights are calculated using a
multilayer perceptron composed of two hidden layers, each
of which has seven nodes, with seven features as inputs. By
using the weights and the covariance matrix calculated from
the MSA as inputs, contact probabilities for every residue
(−position) pair are calculated using a residual neural network
(RNN). Our model is trained in an end-to-end manner: the
method for calculating the weight for each sequence included
in a given MSA is also trained automatically. Effects of using
weights on prediction accuracywere confirmed by performing
cross-validation using CASP11 (Monastyrskyy et al. 2016)
and CASP12 (Schaarschmidt et al. 2018) datasets. Results

show that when sufficiently numerous (200 or more) se-
quences were included in an MSA, a significant improvement
in prediction accuracy was observed at any (i.e., short, medi-
um, and long) range and any prediction number (i.e., L/10, L/
5, L/2, and L, where L represents the target protein length) of
contacts (Fukuda and Tomii 2020).

However, when the number of sequences included in an
MSA was insufficient (less than 200), cases were found in
which the prediction accuracy was markedly worse than the
case in which no weight was used. To alleviate this shortcom-
ing, we added five other features including a target sequence
and position-specific score matrix (PSSM) in addition to the
“weighted” covariance matrix as inputs for RNN in our model
(Fukuda and Tomii 2020). Then, based on this model, we
expanded our model to a multitask model, which simulta-
neously predicts contacts, secondary structures, and accessible
surface areas (Fukuda and Tomii 2020). Furthermore, using
ensemble averaging, we were able to develop a more accurate
prediction model, which we designate as DeepECA, com-
pared with existing contact prediction methods (Fukuda and
Tomii 2020). We also confirmed the ability of our model to
obtain accurate three-dimensional models based on the pre-
dicted contacts and secondary structures by the multitask
model. To do so, we use CONFOLD (Adhikari et al. 2015),
a method for constructing models with a set of restraints. Very
recently, in CASP13, AlphaFold was able to produce accurate
three-dimensional models based on predicted distances for
residue pairs (Senior et al. 2020), suggesting that predicting
distances in addition to contacts for residue pairs would be
more helpful to protein structure prediction. Our model is
available from https://github.com/tomiilab/DeepECA
(Fukuda and Tomii 2020).

Protein–compound interaction prediction

In addition to protein sequences, assay and structural data of
protein–compound interactions have also seen a massive in-
crease over the last 10 years. Such data can be accessed from
public database such as DrugBank (Wishart et al. 2008) and
Matador (Günther et al. 2008). To use these data effectively,
we developed a protein–compound interaction prediction
model based on neural networks of two types, graph neural
network (GNN), and convolutional neural network (CNN) for
both small compound and protein sequence data, respectively
(Tsubaki et al. 2019).

In our model, molecular structures of a small compound are
treated as a graph with atoms as vertices and bonds between
the atoms as edges. They are divided into r-radius subgraphs
(Costa and De Grave 2010). Then, a “compound” vector,
which is a low-dimensional real-valued representation of the
compound, is calculated using a GNN. Similarly, an amino
acid sequence of the target protein is projected onto a
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“protein” vector using a CNN. These vector representations,
obtained for a compound and a protein by end-to-end learning
and which have the same dimensions, are concatenated and
fed into a classifier, which predicts protein–compound inter-
action (Tsubaki et al. 2019). We demonstrated that our model
based on end-to-end learning of GNN and CNN can attain
higher prediction accuracy than existing methods, irrespective
of the ratio of the numbers of positive and negative samples,
using positive samples from DrugBank and Matador and
highly credible negative samples (Liu et al. 2015). Results
indicate that our model is robust even when learning with an
unbalanced dataset, typically consisting of a small number of
positive samples and a huge number of negative samples,
which is an all-too-common situation (Tsubaki et al. 2019).

Furthermore, we sought to identify regions in a target pro-
tein that are important for predicting protein–compound inter-
action using a neural attention mechanism (Bahdanau et al.
2014). To this end, we used a neural attention mechanism to
assign weights to the subsequences according to their impor-
tance for interaction prediction. Such weights can be assumed
to represent interaction strength between a subsequence in a
protein and a compound. In fact, using the DUD-E benchmark
(a dataset originally constructed for evaluating structure-based
virtual screening methods (Mysinger et al. 2012)), we con-
firmed and demonstrated that most of regions with high-
value attention weights correspond to actual compound–
binding sites (Tsubaki et al. 2019). Results suggest that our
model is useful to identify compound-binding sites by consid-
eration of weight values calculated using the neural attention

mechanism. The model is available from https://github.com/
masashitsubaki (Tsubaki et al. 2019).

Analysis of protein allostery

Dynamic allostery, triggered by ligand binding or introduction
of mutations on proteins, transmits a signal from the binding
or mutation site to distant regions, thereby dramatically alter-
ing protein function (Cooper and Dryden 1984). Allosteric
effects are often accompanied by subtle changes in side-
chain conformations of the protein (Liu and Nussinov 2016).
Therefore, a precise analysis of the changes of the dynamics,
rather than the static conformational changes, is of fundamen-
tal importance for elucidating the regulation of protein func-
tion. We adopted an autoencoder, unsupervised neural net-
work, to detect dynamic changes in the PDZ2 protein domain
in human PTPN13, as triggered by binding of the peptide of
RAPGEF6 (Tsuchiya et al. 2019).

This study was composed of three steps (Fig. 1). For the
first step of obtaining protein dynamic data, molecular dynam-
ic (MD) simulations of PDZ2 were executed twice for each of
ligand-unbound (apo) and ligand-bond (holo) forms. Both
crystal structures of apo and holo forms (PDB IDs 3lnx and
3lny, respectively (Zhang et al. 2010)) were used as the initial
structures for the simulations. All simulations were performed
using the Gromacs package 2018 (Toxvaerd et al. 2012). The
1500-dimensional vector of time fluctuations of the side-chain
distances in a pair of residues, from 50.1 to 200.0 ns in 0.1-ns

Fig. 1 Autoencoder-based analysis of dynamic allostery
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increments obtained from the MD trajectories, was prepared
as an input for the autoencoder. It is noteworthy that the pre-
vious NMR study (Fuentes et al. 2004) measured side-chain
methyl dynamic parameters on a ps–ns time scale and showed
long-range fluctuations in several residues only in holo forms.
PDZ2 is a small protein that consists of 94 residues; therefore,
we decided to use 200 ns MD trajectories of PDZ2 for the
development of the autoencoder-based method.

The second step involved processing the data reflecting the
time-dependent fluctuations of side-chain distances. For this
step, the autoencoder was trained using the input vectors in
apo form. Finally, the nine-layer autoencoder (1500–1000–
500–200–100–200–500–1000–1500 nodes; hereafter desig-
nated as the apo-trained autoencoder) was chosen because it
had the lowest error among several combinations of nodes and
layers. Then, the apo-trained autoencoder was used to inspect
the apo and holo data. For the apo data inspection, the output
vectors from the autoencoder were almost identical to the apo
input vectors because the autoencoder tried to reconstruct the
input vectors precisely. In contrast, the output vectors for the
holo data, regions for which features differed from those in
apo form, were exaggerated and modified according to the
features observed in apo form, as shown in the upper right
of Fig. 1. Such findings suggest that analysis of the differences
between the input and output (DIO) vectors can provide useful
information to detect differences between apo and holo forms,
i.e., the dynamic changes by ligand binding.

The third step of our developed approach involves cluster
analysis of the DIO vectors. Clustering of DIO vectors in both
apo and holo forms was performed simultaneously using
methods within the R program (R Core Team 2018) to detect
the residues involved in changes to the dynamics by ligand
binding. Residue pairs in apo and holo forms were clustered
based on the cosine similarity of DIO vectors. In each cluster,
a residue that formed pairs with more than 80% of other res-
idues was defined as a “leading residue,” which led to cluster-
specific fluctuation. Also, a residue that formed pairs with 60–
80% of other residues was defined as an “accompanying res-
idue,” which assisted cluster-specific fluctuations led by lead-
ing residues (and which played a key role in propagation of
the specific fluctuations to distant regions). For this study, MD
simulations were performed twice for apo and holo forms, as
described above. Therefore, the clustering analysis involved
four combinations of apo and holoDIO data. The DIO vectors
in apo1 and holo1 and those in apo1 and holo2 were obtained
from an inspection by the apo1-trained autoencoder. The DIO
vectors in apo2 and holo1 and those in apo2 and holo2 were
obtained using the apo2-trained autoencoder. In all of the four
clustering routines, almost all residue pairs in apo form were
separated from those in holo form. In the next several cluster-
ing steps, residue pairs in holo forms were divided according
to the similarity in their fluctuation pattern. It is particularly
interesting that, in the clustering of all four combinations of

the DIO data, the same residues in holo forms were detected as
“leading residues,” shown as ball and stick models at the low-
er right side of Fig. 1. Several leading residues were located
close to the N-terminus or C-terminus of the ligand peptide,
which suggests that the correlative fluctuations led by these
leading residues were involved in communication of the sig-
nal from binding of the ligand. In addition, various leading
and accompanying residues were shown to be able to lead to
specific fluctuations in other clusters under different condi-
tions, which led to rearrangement of the correlative fluctua-
tions. These residues belonged not only to clusters around the
N-terminus and/or C-terminus of the ligand but also to those
distant from the ligand. Rearrangement of the correlative fluc-
tuations by these residues led to propagation of the signals by
ligand binding to the distant regions. These findings suggest
that the leading and accompanying residues, as detected by the
clustering of the DIO vectors, were involved in dynamic allo-
stery (Tsuchiya et al. 2019).

Finally, we compared our results with those reported from an
earlier nuclear magnetic resonance (NMR) study (Fuentes et al.
2004). To elucidate the allosteric behavior of PDZ2, the authors
measured parameters related to side-chain methyl dynamics on
a ps–ns time scale using NMR techniques for apo and holo
forms. The 20 residues detected showed long-range fluctua-
tions only in the holo form. Some of these residues were located
distant from the ligand, suggesting that these residues might be
involved in dynamic allostery. Our autoencoder-based method
detected all 20 resides as (8) leading and (12) accompanying
residues. Some of these accompanying residues were distant
from the ligand, which suggests that these accompanying resi-
dues were involved not only in assisting the correlative fluctu-
ations led by the leading residues; they were also involved in
propagating the fluctuations to regions that are distant from the
ligand (Tsuchiya et al. 2019).

To summarize this section, the autoencoder-based method
can elicit important clues to elucidate the dynamic allostery of
PDZ2 occurring as a result of the ligand binding. The success
might rely on distance matrix information reflecting time fluc-
tuations of protein motions. Success might also rely on the use
of the autoencoder based–regression method for the detection
of subtle conformational and dynamic changes in comparison
with the fluctuation data in the apo and holo forms. This
autoencoder-based method can be applied to detection of im-
portant signals in the signal transduction and altered signals in
mutated proteins involved in both normal protein function and
altered disease states.

Conclusion

Due to increases in the amount of protein data, available com-
putational resources, and frameworks developed for deep
learning, the application of neural networks to protein
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informatics is becoming increasingly popular. Our studies and
the methods described herein represent just one such ap-
proach, but they are expected to be helpful to predict and
understand protein structures and functions.
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