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Abstract
Among various microscopic techniques for characterizing protein structures and functions, high-speed atomic force microscopy
(HS-AFM) is a unique technique in that it allows direct visualization of structural changes and molecular interactions of proteins
without any labeling in a liquid environment. Since the development of the HS-AFM was first reported in 2001, it has been
applied to analyze the dynamics of various types of proteins, including motor proteins, membrane proteins, DNA-binding
proteins, amyloid proteins, and artificial proteins. This method has now become a versatile tool indispensable for biophysical
research. This short review summarizes some bioimaging applications of HS-AFM reported in the last few years and novel
applications of HS-AFM utilizing the unique ability of AFM to gain mechanical properties of samples in addition to structural
information.
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Introduction

Proteins inherently exert their unique physiological functions
through a variety of dynamics, such as structural changes trig-
gered by variations in the external environment, binding of
substrates, and association and dissociation with other pro-
teins. Hence, detailed information on various dynamic prop-
erties of proteins on the sub-second timescale obtained by
directly filming them as movies can provide deep insights
and understanding of essential mechanisms of their functional
expression. The development of various types of bioimaging
techniques based on optical microscopy has enabled us to
track movements of proteins at the single molecular level

in vitro and even in vivo and has contributed greatly to the
progress of life science (Miller et al. 2018) (Joo et al. 2008).
On the other hand, what is generally being imaged by optical
microscopy techniques is not the protein itself, but the change
in the locus of the fluorescent regions and the fluorescence
intensity emitted by the labeled molecules bound to the pro-
tein. The behavior of the protein is indirectly determined from
these observations. To understand intuitively proteins’ func-
tions, a microscopy technique capable to resolve their higher
order structure and high-speed imaging in solution is needed.

Atomic force microscopy (AFM) is part of the family of
scanning probe microscopy techniques and was originally
invented in 1986 for the surface structure analysis of solid
materials. Because AFM can image the surface structure with
nanometer resolution and can also map various physical prop-
erties (elasticity, viscoelasticity, charge distribution, etc.) of
sample surfaces without any special pretreatment, it has be-
come an analytical tool indispensable for nanoscience and
nanotechnology. A major feature of AFM is that the operation
principle is independent of the environment and, therefore, it
has been applied to a wide range of biological samples from
nucleic acids, proteins, and chromosomes to living cells in
solution (Alessandrini and Facci 2005; Frederix et al. 2003).
On the other hand, because the time resolution of conventional
AFM varies from seconds to several minutes, dynamic
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imaging was impossible, and only a “dead” biological sample,
which was firmly fixed to a solid substrate, could be imaged.
Prof. Ando’s group at Kanazawa University has been working
on improving the imaging speed of AFM since around 1993 in
order to break through this limitation, and finally succeeded in
capturing a protein with an imaging rate of 80 ms/frame in
2001 (Ando et al. 2001; Ando et al. 2008). Thanks to the
success of the development of high-speed AFM (HS-AFM),
it has become possible to capture movies of proteins at work
and HS-AFM is now being applied to the imaging of confor-
mational changes and intermolecular interactions of various
proteins (Ando et al. 2014; Uchihashi and Scheuring 2018;
Ando 2018).

This review provides overviews of several recent
bioimaging applications achieved by HS-AFM, classified into
imaging studies of conformational dynamics and protein-
protein interactions. In addition, a functional extension of
HS-AFM for molecular manipulation is described that takes
advantage of one of the AFM’s significant features, the local
force application. The examples in this review were chosen to
showcase the latest applications of HS-AFM and newest de-
velopments to expand its functionality. The studies on confor-
mational dynamics demonstrate the ability of HS-AFM to
elucidate structure-function relationships, while the cases on
intermolecular interaction show that also effects on the molec-
ular level are accessible. The applications of force modulation
highlight future directions of HS-AFM as a multimodal
technique.

Recent bioimaging applications of HS-AFM

Although there are many applications of high-speed AFM for
observing protein dynamics, the most important applications
in the biophysical field would be visualization of conforma-
tional changes of single molecules associated to physiological
functions and analyses of dynamic intermolecular interac-
tions. Regarding conformational dynamics, the HS-AFM im-
aging of ATPases such as myosin V (Kodera et al. 2010) and
F1-ATPase (Uchihashi et al. 2011) and membrane proteins
such as bacteriorhodopsin (Shibata et al. 2010), a cyclic
nucleotide-modulated channel (MloK1) (Rangl et al. 2016),
and a glutamate transporter (GltPh) (Ruan et al. 2017) have
been successfully demonstrated. As for the intermolecular in-
teractions, diffusion and molecular association of membrane
or membrane-associated proteins such as bacteriorhodopsin
(Shibata et al. 2010), aquaporin-0 (Colom et al. 2012),
OmpF (Casuso et al. 2012), and annexin-V (Miyagi et al.
2016) in lipid membranes have been reported. Here, an over-
view is presented of some examples on conformational dy-
namics and intermolecular interactions reported in the last
2 years.

Conformational dynamics of ring-shaped ATPases

Saccharomyces cerevisiae Hsp104 and its bacterial homolog
ClpB are AAA+ ATPases and called disaggregating molecular
chaperones, which refold toxic protein aggregates into the native
state in cooperation with the Hsp70 partner. Biochemical and
electronmicroscopic (EM) analyses have revealed that they form
a ring-shaped hexamer that unwinds the aggregated proteins by
threading the peptides from the aggregates into the central pore
with a conformational change driven by the energy of ATP hy-
drolysis (Watanabe et al. 2002; Nakazaki and Watanabe 2014;
Lee et al. 2003). Also, a recent cryo-EM single-particle analysis
has demonstrated that the hexamer has a helical structure rather
than a symmetric ring structure (Deville et al. 2017), which had
been believed previously. However, little is known about the
structural dynamics of Hsp104 and ClpB related to the disaggre-
gation activity. A HS-AFM image of the N-terminal deletion
mutant of TClpB (ΔN-TClpB) weakly adsorbed on a mica sub-
strate showed diverse oligomeric structures in the presence of
ATP (Fig. 1a). These findings indicate that the ClpB hexamers
are in heterogeneous states showing the round-symmetric ring,
the asymmetric ring, and even the open ring. These various
hexameric conformations randomly interchanged with time
(Fig. 1b). The frequency of structural changes between the sym-
metric and the asymmetric forms including the open ring was
dependent on ATP concentrations, suggesting that the large con-
formational changes observed are driven by the ATP hydrolysis.
These results imply that the entire ClpB hexamer ring’s confor-
mational dynamics are strongly pronounced. Further HS-AFM
analyses of the oligomer forms of various ClpB mutants (ATP-
binding/hydrolysis deficient, suppressed/enhanced disaggrega-
tion activity) provided a comprehensive picture of the role of
ATP binding and hydrolysis in the formation of oligomers and
the correlation between large-scale conformational dynamics and
the disaggregation activity.

Abo1 is the homolog of fission yeast ATAD2 which are
AAA+ATPases and a family of histone chaperones that regulate
nucleosome density and chromatin dynamics by histone H3–H4
loading or removal (Zou et al. 2007). Similar to other AAA+
ATPases, Abo1 is considered to form a ring-shaped hexameric
oligomer and it functions to pull substrates through the ring’s
central pore. Cryo-EM analysis revealed the distinct conforma-
tions of the hexamer for three different nucleotide states (ATP-,
ADP-, and apo-state) (Fig. 1c) (Cho et al. 2019). The Abo1
hexamer in the apo- and ADP states showed a similar symmetric
planar ring structure, whereas, in the ATP-state, the protomers
were staggered in height and shifted towards the center, forming
an asymmetric spiral with a smaller pore. HS-AFM was applied
to investigate how the hexamer conformations change over time.
In the presence of 2mM ATP, real-time HS-AFM images re-
vealed striking symmetry-breaking events, where individual
blades of the hexameric ring seemed to disappear due to a de-
crease in the height of a subunit (Fig. 1d) (Cho et al. 2019). In
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most cases of asymmetric states, only one blade disappeared, but
there were also rare transient cases where two blades of the ring
disappeared simultaneously. Interestingly, the Abo1 Walker B
mutant, which lost its ATP-hydrolysis activity, displayed only
the single symmetry breaking structure in the presence of ATP,
indicating that ATP can bind to a single protomer in the hexamer.
A tracking analysis of the ring opening positions showed that the
ring opening takes place randomly with no ordered sequence
(Fig. 1e), suggesting that Abo1 subunits hydrolyze ATP stochas-
tically at least under basal conditions without substrates added.

Intermolecular interaction

Here, two typical examples are shown for dynamic inter-
molecular interactions between two different proteins
monitored by HS-AFM. The first example is a binding

analysis for the bacterial circadian clock proteins. The
cyanobacterial circadian clock system consists of oscilla-
tors composed of three Kai proteins (KaiA, KaiB, KaiC)
encoded by the Kai genes. The unique feature of the Kai
protein system is that the phosphorylation state of KaiC
oscillates autonomously over a long period of time simply
by mixing KaiA, KaiB, and KaiC with ATP in vitro in a
circadian cycle (Nakajima et al. 2005). KaiC, the center-
piece of circadian rhythms, forms a doughnut-shaped
homohexamer consisting of two stacked rings, the CI ring
(N-terminal side) and the CII ring (C-terminal side). It has
autokinase and autophosphatase activities, and the circa-
dian rhythm is regulated by switching these activities.
KaiA and KaiB are responsible for switching the activity
of KaiC. KaiA is a dimer that binds to the tail structure on
the CII ring side of KaiC to promote its phosphorylation,
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Fig. 1 HS-AFM images capturing conformational dynamics of ring-
shaped ATPases. a Diverse oligomeric forms of ΔN-TClpB observed
by HS-AFM in 0.5 mM ATP at 25 °C. Scale bar, 20 nm. b Clipped HS-
AFM images of aΔN-TClpB hexamer captured at 10 fps in the presence
of 10μM ATP. Scale bar, 5 nm. c Cryo-EM maps of Abo1 in the ATP,

ADP, and apo states. d Clipped HS-AFM images of an Abo1 hexamer
undergoing conformational change in the presence of 2 mM ATP
captured at 5 fps. Scale bar, 5 nm. e Analysis of the position of Abo1
ring opening (gray boxes) sorted by the protomers according to time
shows random subunit activation
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while KaiB is a monomer that binds to the CI ring side of
KaiC and promotes the dephosphorylation of KaiC by
sequestering KaiA. HS-AFM was applied to visualize
the binding interaction of KaiA to KaiC on sub-second
timescales (Mori et al. 2018). When the hexamer of the
mutant KaiC mimicking the phosphorylated state was
adsorbed on the chemically modified mica substrate with
the CII ring side facing up, it was found that KaiA dimers
repeated the binding and dissociation to KaiC hexamers
on a timescale in seconds (Fig. 2a). On the other hand,
KaiA bound strongly to the dephosphorylated-state mu-
tant of KaiC and formed a complex over several seconds.
By examining the relationship between the phosphoryla-
tion state of wild-type KaiC and the binding time of
KaiA, τbound, during the circadian oscillation, it was found
that the affinity of KaiA and KaiC oscillates in a circadian
rhythm in synchronization with the phosphorylation state
of KaiC (Fig. 2c). Combining the HS-AFM experimental
results with a mathematical model further revealed that

the KaiC phosphoform-dependent differential affinity
(PDDA) broadens the range of Kai protein stoichiometries
that allow rhythmicity, explaining how the oscillation is
resilient in an in vivo milieu that includes noise.

As the second example for the observation of intermolec-
ular interactions, an HS-AFM analysis of the binding dynam-
ics of agitoxin-2 to a K+ channel is described (Sumino et al.
2019). Agitoxin-2 (AgTx2) from scorpion venom is a potent
inhibitor of K+ channels. It is known that AgTx2 is a 38 amino
acid peptide that binds to the extracellular surface of K+ chan-
nels and blocks the passage of ions. However, it has not been
uncovered whether the binding dynamics can be explained by
a simple two-state model or a more complicated mechanism
such as induced fit or conformational selection. Here, single-
molecule observation to monitor the binding dynamics of
AgTx2 to a K+ channel, KcsA, was carried out using HS-
AFM. Since KcsA forms a tetramer arranged in a square, the
binding of AgTx2 to the extracellular side of the tetramer
bulges the central pore of the channel through which K+ ions
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phosphorylation. d Typical AFM
images of a KscA channel
reconstituted in a DMPC bilayer
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AgTx2. Height profiles along the
white dotted lines in the AFM
images are shown below the
images. The background
illustration behind the height
profiles indicates the
corresponding structures of the
channel and AgTx2. e Time-lapse
images of AgTx2 binding to and
dissociation from the KcsA
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around the center of the
extracellular surface of two
corresponding K+ channels
(bottom). White dotted squares
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pass, elevating the height of the tetramer (Fig. 2d). The anal-
ysis of the time course of the height change showed the re-
peated binding and dissociation of AgTx2 to the KcsA tetra-
mer (Fig. 2e). The analysis of the time course of the height
change showed that an increase of the concentration of AgTx2
in the solution leads to an increase in the probability of the
bound state. Event-oriented, detailed single-molecule analyses
revealed that the affinity of the channel for AgTx2 increased
during persistent binding and decreased during persistent dis-
sociation. From these observations, an induced fit model can

be proposed which includes four states with at least two high-
and low-affinity states of the channel for both, the binding and
dissociation states.

Mechanical manipulation and indentation
on single molecules with HS-AFM

Since AFM is a mechanically sensitive surface probe, it has
been used as a microscopic tool for evaluating the mechanical
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Fig. 3 Mechanical indentation with HS-AFM. a HS-AFM images of the
extracellular side of PIEZO1 in a lipid bilayer observed at specific applied
force (left, about 20 pN; right, about 50 pN). b Top: HS-AFM images of
PIEZO1 (dashed circles) during the stepwise increase in the loading force.
Bottom: loading force (red), Aset/Afree ratio (blue) from the feedback con-
trol and z-piezo displacement (green) as function of frame acquisition
time. c Time-lapse HS-AFM images of doublet microtubules with (upper
panels) and without (lower panels) inner lumen proteins after increasing
the force at a local area indicated by the red circles. In the doublet micro-
tubules with inner lumen proteins present, enlargement of the hole usually
stopped within a few seconds, whereas most of the B-tubules without the

inner lumen proteins were broken by 40 s. Frame rate, 1 fps. Scale bar,
100 nm. d Creation (upper panels) of a defect in a microtubule using in-
line-force-curve HS-AFM and the subsequent growth and complete
healing of the defect (lower panels). The insets in the images show the
region of the dashed rectangle with a pronounced contrast for the defect.
The red star indicates the frame and the position of force application. e
HS-AFM images after the local mechanical indentation and force curves
during the indentation for different situations (left, fully reversible defor-
mation; middle, single dimer defect; right, 12 dimer defect). The red
arrows indicate the downward jumps during approach and the black ar-
rows indicate the upward jumps during retraction
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properties such as stiffness, elastic modulus, and viscosity of
sample surfaces in addition to imaging topography (Dufrêne
et al. 2013; Kasas and Dietler 2008). Positive utilization of the
mechanical contact between the probe and the sample also
allows local mechanical indentation and structural manipula-
tion of the sample. Here, recent research examples are intro-
duced in which the characteristics of AFM mechanical mea-
surements are utilized in HS-AFM.

For its operation, HS-AFM employs tapping mode, in
which the AFM cantilever is oscillated at its resonant
frequency. The probe-surface distance is controlled by a
feedback loop that keeps the oscillation amplitude con-
stant. By changing the reference value (cantilever ampli-
tude) of the feedback control during the HS-AFM imag-
ing, the force applied between probe and sample can be
continuously varied, and the structural change of a sample
can be simultaneously monitored. An excellent applica-
tion of the force-controlled imaging was demonstrated
for the mechanosensitive channel PIEZO1 which converts
mechanical force to chemical signals (Lin et al. 2019).
PIEZO1 forms a triskelion-shaped homotrimer with a cen-
tral pore module in a lipid bilayer and the extrasellar sur-
face of the trimer was imaged by HS-AFM under different
applied forces (Fig. 3a, left panel). The conformation of
the PIEZO1 is also continuously modulated by increasing
the probe-surface force (Fig. 3b). Furthermore, the applied
force can be rapidly increased at a local point during the
imaging and the following events on the sample can be
monitored. This technique was applied to assess the me-
chanical stability of doublet microtubules with or without
inner lumen proteins (Fig. 3c) (Owa et al. 2019).

A disadvantage of the previously described local force ap-
plication by HS-AFM is the difficulty to quantify the interac-
tion force due to the oscillating cantilever. To enable an accu-
rate quantitative force evaluation, the in-line force curve mode
was developed. In this mode, the cantilever oscillation is
stopped at a target position during the scanning and the force
curve is acquired within 40 ms (Ganser and Uchihashi 2019).
One can quantitatively evaluate the interaction force between
the probe and the sample from the force curve. Also, the events
directly following the force indentation can be captured. The
in-line force curve mode was demonstrated to create single
tubulin-dimer defects on a microtubule and monitor the
expanding and healing processes of the defects (Fig. 3d).
Furthermore, the quantitative evaluation of the energy dissipa-
tion depending on the irreversible deformation of microtubules
and the size of created defects has been demonstrated (Fig. 3e).

Conclusion

HS-AFM is currently the only microscopic tool capable of
visualizing dynamic behaviors of biomolecules in solution

on the nanometer scale, in real time, which could previ-
ously be observed only as ensemble averages or static
images. It has become possible to verify facts and hypoth-
eses using a variety of measurement methods as clear
visual evidence. On the other hand, there are still techni-
cal difficulties that need to be improved. For one, distur-
bances caused by direct contact of the probe with delicate
proteins and their influence to the structures and physio-
logical functions during imaging are often not negligible.
Therefore, further technical developments to minimize the
invasiveness are required. In addition, most of the sam-
ples to which HS-AFM has been applied are isolated and
purified proteins, and it is still difficult to apply the HS-
AFM directly to complicated molecular systems involving
several kinds of different molecules. One solution for the
latter problem, a correlated combination of HS-AFM and
single-molecule optical microscopy, has already been de-
veloped (Fukuda et al. 2013; Umakoshi et al. 2020).

One future direction to utilize the features of the AFM
technique that are not feasible with other microscopic meth-
odologies would be to enhance mechanical characteriza-
tion. At present, quantitative force measurement can be per-
formed only at a few points during the imaging to achieve a
fast image rate. If the fast mapping of mechanical properties
becomes possible, we could examine the correlation be-
tween structural dynamics and local mechanical properties
of proteins and the influences of mechanical properties on
protein functions.
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