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Abstract
Purpose  Computer-aided diagnosis (CAD) may improve interobserver agreement in the risk stratification of thyroid nod-
ules. This study aims to evaluate the performance of the Korean Thyroid Imaging Reporting and Data System (K-TIRADS) 
classification as estimated by an expert radiologist, a senior resident, a medical student, and a CAD system, as well as the 
interobserver agreement among them.
Methods  Between July 2016 and 2018, 107 nodules (size 5–40 mm, 27 malignant) were classified according to the 
K-TIRADS by an expert radiologist and CAD software. A third-year resident and a medical student with basic imaging train-
ing, both blinded to previous findings, retrospectively estimated the K-TIRADS classification. The diagnostic performance 
was calculated, including sensitivity, specificity, positive and negative predictive values, and the area under the receiver 
operating characteristic curve.
Results  The CAD system and the expert achieved a sensitivity of 70.37% (95% CI 49.82–86.25%) and 81.48% (61.92–93.7%) 
and a specificity of 87.50% (78.21–93.84%) and 88.75% (79.72–94.72%), respectively. The specificity of the student was 
significantly lower (76.25% [65.42–85.05%], p = 0.02).
Conclusion  In our opinion, the CAD evaluation of thyroid nodules stratification risk has a potential role in a didactic field 
and does not play a real and effective role in the clinical field, where not only images but also specialistic medical practice 
is fundamental to achieve a diagnosis based on family history, genetics, lab tests, and so on. The CAD system may be useful 
for less experienced operators as its specificity was significantly higher.
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Introduction

Thyroid nodules are commonly found during imaging of 
the neck [1, 2], but only a small proportion of these lesions 
subsequently prove to be clinically significant [3]. Nowa-
days, neck ultrasonography (US) is used to guide deci-
sions regarding fine-needle aspiration (FNA) cytology or 
serial follow-up. Nodules should be carefully selected for 
FNA biopsy [4, 5] because of the vast number of subjects 
concerned, the potentially inconclusive results (both non-
diagnostic [6] and indeterminate), and the risk of overdi-
agnosis of low-risk cancers [7]. However, while some US 
features are associated with nodule malignancy, the diag-
nostic accuracy is limited, and substantial interobserver 
variability has been documented [8–19].

Several classification systems that combine various 
US findings have been developed to estimate the likeli-
hood of malignancy and select nodules for FNA biopsy. 
The application of these systems, which are endorsed by 
international scientific societies [1, 20–23], has proven to 
reduce interobserver variability, but there is room for fur-
ther improvement [24]. To this end, using artificial intel-
ligence, CAD has been proven to differentiate malignant 
from benign nodules, with an accuracy rate similar to 
expert radiologists [25–28] and may also reduce intra- and 
interobserver variability.

We performed a prospective analysis of sonographic 
examinations to evaluate the diagnostic performance of 
the K-TIRADS classification as estimated by an expert 
attending radiologist, a senior resident, a medical student, 
and a CAD system (S-Detect™), as well as the interob-
server agreement among them. Furthermore, we evaluated 
the interobserver agreement between S-Detect™ and the 
expert radiologist in the evaluation of single sonographic 
features.

Methods

Cases

Between July 2016 and July 2018, 555 nodules were con-
secutively examined at the Head and Neck Radiology Unit 
of Policlinico Umberto I, “Sapienza” University of Rome 
(Italy), by a single radiologist. Patients were enrolled if 
they had no more than three thyroid nodules. Target nod-
ules were submitted to cytological examination or thyroid-
ectomy. The exclusion criteria were cystic lesions, nod-
ules smaller than 5 mm (to avoid misinterpretations of the 
pathology report), examinations performed on an appli-
ance unequipped with CAD software, or cytopathology 

provided by external services. The original examination 
was performed by a single attending radiologist with 
18 years of experience in thyroid imaging using a Sam-
sung RS80 system equipped with a 7–15 MHz linear probe 
and the S-Detect™ software. All nodules were character-
ized in terms of size, shape, margins, composition (solid, 
mixed, or cystic content), echogenicity, calcifications, 
hyperechoic foci, vascularity, and extrathyroidal extension. 
The operator then arranged the nodules according to the 
K-TIRADS [23] classification. Afterward, the S-Detect™ 
software was used to automatically determine the shape, 
composition, echogenicity, and margins. Other features, 
such as the presence of calcifications, stiffness accord-
ing to elastosonography, and color Doppler vascular pat-
tern, had to be input manually. The S-Detect™ system is 
semi-automatic since it requires the operator to select a 
region of interest (ROI), and then it performs segmentation 
and recognition of the nodule boundaries. If the process 
was incorrectly performed, the operator has to repeat it to 
obtain a correct recognition of the nodule.

All images were stored in a picture archiving and commu-
nication system (PACS) for retrospective analysis. A resident 
with three years of experience and a medical student with 
basic thyroid imaging training, both blinded to all clinical, 
pathological, and S-Detect™ findings, provided their estima-
tion of the K-TIRADS classification for each nodule.

Reference standard

A composite reference standard was used: the final histol-
ogy for nodules undergoing thyroid surgery and FNA cytol-
ogy for patients with benign cytology findings. In this latter 
case, a nodule stability confirmed by at least a 12-months 
follow-up was also required. FNA specimens were prepared 
as direct smears and assessed by two expert cytopathologists 
(V. A. and D. B.) in accordance with national guidelines 
[29].

Statistical analysis

The classifications (K-TIRADS 2–3 were considered as 
test negative and K-TIRADS 4–5 as positive) were com-
pared with the reference standard to estimate the sensitiv-
ity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), and area under the receiver oper-
ating characteristic (AUROC) curve, each with 95% con-
fidence intervals (CIs) of each classification. Interobserver 
agreement was assessed with Krippendorff’s alpha [30] for 
analyses involving ordinal data and more than two observ-
ers and with Cohen’s kappa for analyses involving dichoto-
mous variables and two observers. Values less than 0.20 
were considered indicative of slight agreement; 0.21–0.40, 
fair agreement; 0.41–0.60, moderate agreement; 
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0.61–0.80, substantial agreement; and 0.81–1.00, near-
perfect agreement [31]. Sensitivity and specificity were 
compared using McNemar’s test [32]. Data were analyzed 
using the IBM SPSS Statistics package, version 25.0 (IBM 

Corp., Armonk, New York, United States). AUROC was 
computed and compared using the easyROC package [33]. 
Institutional Review Board approval and informed consent 
was obtained from all subjects.

Results

The final cohort was composed of 76 patients (56 females 
and 20 males; mean age 55 years; Fig. 1) and a total of 
107 nodules (size range 5–40 mm). Among them, 27 were 
malignant (25.2%; 17 papillary thyroid cancers, six fol-
licular variant papillary thyroid cancers, three medullary 
thyroid cancers, and one poorly differentiated carcinoma), 
and 80 were benign (74.8%; 22 histologically confirmed 
and 58 diagnosed based on cytology reports and follow-
ups). The sensitivity, specificity, predictive values, and 
AUROC are reported in Table 1.

The overall discriminant ability of S-Detect™ and the 
three examiners was not statistically different. However, 
the sensitivity of the expert radiologist seems to be better 
than S-Detect™ (81.5% vs. 70.4%; p = 0.25). The expert 
missed five malignancies, while S-Detect™ missed eight 
(similar to the beginner medical student).

The S-Detect™ software had the greatest diagnostic 
agreement with the expert radiologist, whereas agree-
ment decreased with less experienced examiners. This 
was confirmed both for the dichotomic classification 
(suspicious vs. not suspicious; Table 2) and for the com-
plete K-TIRADS classification (Table 3). A substantial 
agreement exists between the experienced radiologist 
and S-Detect™ in the assessment of single US features 
(Table 4). However, this result may be biased because 
of the use of the software by the senior radiologist alone 
(who personally performed the ROI selection). To obtain 
a correct segmentation and recognition of the nodule 
boundaries, the examiner had to perform the ROI selection 
procedure for a median of three times (range 1–5 times) 
before achieving a correct segmentation of the nodule.

Poten�ally eligible nodules
(n=555)

Eligible nodules with index test
(n=405)

Final cohort
(n=107)

Excluded
n=298

small nodules (n=43)
no in-house pathology (n=158)
no 12-month follow-up (n=97)

Excluded
n=150

US performed on another 
equipment; no CAD so�ware 

available

Fig. 1   Inclusion of the thyroid nodules in the final analysis

Table 1   Sensitivity, specificity, predictive values, and area under the receiver operating characteristics curve of the K-TIRADS system evaluated 
by S-Detect™ and three clinicians (expert attending radiologist, resident, and medical student)

*The specificity of the student is significantly lower than that of the expert and S-Detect™ (*p = 0.16 vs. the resident; †p = 0.02 vs. the expert; 
‡p = 0.022 vs. S-Detect™); no significant difference was reported between S-Detect™ and the more experienced examiners

Sensitivity Specificity PPV NPV AUROC

S-Detect™ 70.37% (49.82–86.25%) 87.50%‡ (78.21–93.84%) 65.52% (45.67–82.06%) 89.74% (80.79–95.47%) 0.79 (0.69–0.88)
Expert 81.48% (61.92–93.7%) 88.75%† (79.72–94.72%) 70.97% (51.96–85.78%) 93.42% (85.31–97.83%) 0.85 (0.77–0.93)
Resident 74.07% (53.72–88.89%) 85.00%* (75.26–92.0%) 62.50% (43.69–78.9%) 90.67% (81.71–96.16%) 0.80 (0.7–0.89)
Student 70.37% (49.82–86.25%) 76.25% (65.42–85.05%) 50.00% (33.38–66.62%) 88.41% (78.43–94.86%) 0.73 (0.63–0.83)
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Discussion

In the last years, neck ultrasonography has become the 
cornerstone of the diagnostic algorithm of thyroid nodules, 
as well as ultrasound elastography [34, 35]. Its main draw-
backs are the inadequate predictive values of single US 
features and the well-known operator dependency. Efforts 
have been made to improve the discriminative power of 
ultrasound and reduce interobserver variability through 
the use of image analysis [19], machine learning, and CAD 
systems [27, 28, 36]. Several scientific societies have pro-
posed sonographic classification systems to help clinicians 
categorize and report US features of thyroid nodules. Their 
application, however, is time-consuming and requires spe-
cific training [24].

S-Detect™ is commercially available and has been 
clinically validated in previous studies [27, 28]. Choi 
and colleagues [26] tested S-Detect™ on 102 nodules 
(89 patients) and reported that a radiologist with 20 years 
of experience had better specificity (94.9% vs. 74.9%, 
p = 0.002) and discriminant power (AUROC 0.92 vs. 0.83, 
p = 0.021) than the software, though the sensitivity was 

similar. Similar figures were reported by Gao and col-
leagues [37]. Yoo et al. [38] also compared the diagnostic 
performance of a radiologist with 10 years of experience 
before and after using the S-Detect™ software as a “sec-
ond opinion.” After S-Detect™ support, the sensitivity of 
the examiner increased (92% vs. 84%), but a slight reduc-
tion in specificity (85.1% vs. 95.5%) and PPV (82.1% vs. 
93.3%) occurred. Jeong et al. [39] studied the application 
of a CAD system by radiologists with different levels of 
experience and found that diagnostic performance varied 
according to operator experience; in particular, the sensi-
tivity ranged from 70.5 to 88.6%. Overall, a meta-analysis 
confirmed that the sensitivity of the available CAD sys-
tems is similar to that of experienced radiologists, with 
lower specificity and diagnostic odds ratio [40]. Another 
recent study tested the diagnostic performance of a newer 
version of the S-Detect™ software. The authors concluded 
that current systems had limited specificity in the diagno-
sis of thyroid cancer and that, even if the new version aims 
to recognize calcifications, this evaluation is not accurate 
[41].

In our cohort, S-Detect™, a CAD system designed to 
simplify the scoring and reporting of thyroid nodules, 
achieved a sensitivity and specificity which were statisti-
cally comparable to those obtained by an expert radiolo-
gist or a senior resident. Furthermore, it outperformed the 
less experienced examiner. However, S-Detect™ required 
manual input of some features (including the presence of 
microcalcification, which is a crucial finding) and multi-
ple attempts for the correct segmentation of the lesion: 
the selection of the ROI has a great influence on the final 
evaluation.

Our study has some limitations. First, this was a relatively 
small and select cohort of thyroid nodules, all of which had 
already been selected for FNA biopsy or surgery. This is 
reflected in the high malignancy rate (25.2%). Second, the 
reference standard used may have caused false-negative 
results, even if they are uncommon. On the contrary, all 
malignancies were histologically confirmed. This study was 
conducted in a single center, and all US examinations were 
performed by a radiologist with extensive experience, who 
was also involved in multiple research programs related to 
TIRADS systems [4, 18, 24, 42, 43]. This may impact the 
applicability of our findings to other settings. Also, the soft-
ware was directly used by the senior radiologist alone.

Table 2   Agreement in 
dichotomic TIRADS 
classification (K-TIRADS 2–3 
vs. 4–5) between S-Detect™ 
and the three examiners (Cohen 
Kappa coefficient ± Standard 
error)

S-Detect™ Expert Resident Student

S-Detect™ – 0.815 ± 0.063 0.748 ± 0.071 0.634 ± 0.079
Expert 0.815 ± 0.063 – 0.888 ± 0.049 0.723 ± 0.071
Resident 0.748 ± 0.071 0.888 ± 0.049 – 0.788 ± 0.063
Student 0.634 ± 0.079 0.723 ± 0.071 0.788 ± 0.063 –

Table 3   Agreement in TIRADS classification between S-Detect™ 
and the three examiners (Krippendorff’s alpha)

Agreement with 
S-Detect™ (Krippen-
dorff’s alpha)

All three examiners 0.79 (0.73–0.85)
Expert radiologist 0.84 (0.75–0.92)
Resident 0.77 (0.66–0.87)
Medical student 0.69 (0.57–0.80)

Table 4   Agreement in single sonographic features between 
S-Detect™ and the expert radiologist (Krippendorff’s alpha)

Agreement between expert radiologist 
and S-Detect™ (Krippendorff’s alpha)

Composition 0.79 (0.65–0.93)
Echogenicity 0.71 (0.59–0.81)
Margins 0.74 (0.58–0.90)
Shape 0.71 (0.38–0.94)
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Conclusion

S-Detect™ had a diagnostic performance similar to that 
of an experienced radiologist. While it does not provide a 
clinical advantage to the expert clinician, it may be a useful 
tool for the less experienced operator as its specificity was 
significantly higher. It may also be used for training pur-
poses as an aid in recognizing suspicious US features and 
expediting learning of the TIRADS scoring process and its 
practical application.
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