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Abstract
Exploiting the combination of latest microfabrication technologies and single cell measurement technologies, we can
measure the interactions of single cells, and cell networks from “algebraic” and “geometric” perspectives under the
full control of their environments and interactions. However, the experimental constructive single cell-based approach
still remains the limitations regarding the quality and condition control of those cells. To overcome these limitations,
mathematical modeling is one of the most powerful complementary approaches. In this review, we first explain our
on-chip experimental methods for constructive approach, and we introduce the results of the “community effect” of
beating cardiomyocyte networks as an example of this approach. On-chip analysis revealed that (1) synchronized interbeat
intervals (IBIs) of cell networks were followed to the more stable beating cells even their IBIs were slower than the other
cells, which is against the conventional faster firing regulation or “overdrive suppression,” and (2) fluctuation of IBIs of
cardiomyocyte networks decreased according to the increase of the number of connected cells regardless of their geometry.
The mathematical simulation of this synchronous behavior of cardiomyocyte networks also fitted well with the experimental
results after incorporating the fluctuation-dissipation theorem into the oscillating stochastic phase model, in which the
concept of spatially arranged cardiomyocyte networks was involved. The constructive experiments and mathematical
modeling indicated the dominant rule of synchronization behavior of beating cardiomyocyte networks is a kind of stability-
oriented synchronization phenomenon as the “community effect” or a fluctuation-dissipation phenomenon. Finally, as a
practical application of this approach, the predictive cardiotoxicity is introduced.

Keywords On-chip cell network assay · Constructive approach · Community effect · Cardiomyocyte · Synchronization ·
Fluctuation-dissipation phenomena

Introduction

From the late twentieth century, starting with determination
of the way in which genetic information is stored,
encoded, and transmitted, another challenge has arisen
regarding epigenetic information. Epigenetic information
is complementary to genetic information and essential to
understand the entire landscape of living systems, such as
how living cells can choose, reserve, share, and inherit
acquired epigenetic information among neighboring cells
and between generations through cell divisions. As we
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have moved into the post-genomic/proteomic era, such the
complementary to genetic information should become more
apparent. The cells in a group are individual entities, and
differences arise even among cells with identical genetic
information that have developed under the same conditions.
These cells respond differently to perturbations (Spudich
and Koshland 1976). Why and how do these differences
arise? How are these differences of individual cells ironed
out when they become groups, clusters, or tissues? We call
this behavior the “community effect” of cells as induced
uniformity. To understand the community effect, we need to
understand the potential underlying differences of cells, and
why and how their characteristics change when they form
networks as epigenetic information.

If we are to obtain a comprehensive understanding of a
living system, we need to analyze its epigenetic information,
such as adaptation processes and community effect in a
group of cells. As cells are minimal units of the system
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in terms of both genetic and epigenetic information, we
must analyze their epigenetic information starting from the
twin complementary perspectives of cell regulation being
an “algebraic” system (with emphasis on temporal aspects;
non-genetic adaptation in time) and a “geometric” system
(with emphasis on spatial aspects; spatial pattern-dependent
community effect) using identified single cells and their
patterned groups. We thus commenced a series of studies
to analyze the epigenetic information of single cells and
the spatial geometric structures of cell networks to expand
our understanding of how the fates of living systems are
determined and how they can be changed.

The importance of understanding epigenetic information
is expected to become apparent in cell-based biological
and medical fields such as cell-based drug screening and
the regeneration of organs from stem cells, fields in
which phenomena cannot be interpreted without taking
epigenetic factors into account. We thus started a series
of studies focusing on developing a system that could
be used to evaluate the epigenetic information in cells
by continuously observing specific examples of cells and
their interactions under fully controlled conditions as a
constructive experimental method. However, the issues of
limitations regarding the quality of cells and control of
their conditions remained in the experimental constructive
approaches. Mathematical modeling is one of the most
powerful approaches to overcome these limitations of those
experimental approaches.

Among the epigenetic information studies of cell net-
work dynamics, synchronization of beating intervals of
cardiomyocytes is one of the most attractive phenomena to
understand how the cells acquire their synchronized “com-
munity information” from the mixture of different dynam-
ical characteristics of component cells. Goshima explained
this coordinated synchronous behavior as the faster fir-
ing regulation of heart beating (Goshima and Tonomura
1969) and is now called “overdrive suppression” (Vassalle
1977). This conduction regulation mechanism can also sup-
press the spontaneous beating of cells such as Purkinje
fibers to follow to the contraction impulse from upstream
sinoatrial (SA) node with its faster beating intervals. How-
ever, synchronization behavior of spontaneously beating
single cardiomyocytes cannot be explained by one way
upstream to downstream regulation mechanism. Especially
the behavior of equal two-way network communication
of cardiomyocytes in their small networks did not show
the overdrive suppression phenomenon but followed unsta-
ble cardiomyocytes to more stable cardiomyocyte (Kojima
et al. 2003; Kojima et al. 2006). And the tendency of
entrainment of cardiomyocytes synchronization and syn-
chronized beat intervals were depending on the number of
cardiomyocytes in the network regardless of their geom-
etry (Kaneko et al. 2007a). These experimental results of

lower fluctuation regulation of synchronized heart beating
have been examined in silico model simulations and suc-
cessfully explained exploiting the “fluctuation-dissipation”
theorem into the synchronization rule (Hayashi et al. 2017).
Hence, our experimental and mathematical results on the
community effect in the synchronization behavior of beat-
ing in cardiomyocyte networks indicated that the dominant
rule of their synchronization is the stability-oriented syn-
chronization phenomenon, which we call this “community
effect,” as one of the fluctuation-dissipation phenomena.

In this review, we introduce the experimental and
mathematical approach for analyzing the synchronization
behavior of interbeat intervals (IBIs) of spontaneously
beating cardiomyocytes as an example of on-chip cellomics
study for epigenetic information analysis.

Experimental approach

On-chip cellomics technology: teconstructive
understanding of the community effect
in cardiomyocytes

We have developed a constructive experimental approach
both in temporal and spatial viewpoints for understanding
epigenetic information exploiting latest microfabrication
technologies and single cell handling-observation technolo-
gies. As shown in Fig. 1, the strategy behind our on-chip
microfabrication methods, which we call “on-chip cel-
lomics technologies” (Yasuda 2004), is constructed through
three steps. First, we purify target cells from tissue individu-
ally in a nondestructive manner using several technologies,
such as digestible DNA-aptamer labeling and cell collection
(Anzai et al. 2007), ultra-high-speed camera-based real-time
imaging cell sorting (Hayashi et al. 2011; Kim et al. 2014;
Girault et al. 2017), or noninvasive handling of cells using
an acoustic radiation force (Yasuda et al. 1996; Yasuda et al.
1996; Yasuda et al. 1997; Yasuda 2000). We then cultivate
and observe the cells under fully controlled conditions (e.g.,
cell population, network patterns, or nutrient conditions)
using an on-chip single-cell cultivation chip (Inoue et al.
2001; Inoue et al. 2004; Wakamoto et al. 2003; Wakamoto
et al. 2005; Wakamoto and Yasuda 2006; Matsumura et al.
2003; Umehara et al. 2007; Umehara et al. 2007; Kawai-
Noma et al. 2006) or an on-chip agarose microchamber
system exploiting photo-thermal etching technology, which
can control the microstructure of microchambers even dur-
ing cell cultivation (Moriguchi et al. 2002; Kojima et al.
2003; Hattori et al. 2004; Sugio et al. 2004; Suzuki et al.
2004; Suzuki et al. 2005, 2004; Suzuki et al. 2007; Suzuki
and Yasuda 2007a, b; Kojima et al. 2003; Kojima et al.
2003; Kojima et al. 2004, 2005, 2006). Finally, we under-
take single-cell-based genome/proteome analysis through a
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Fig. 1 On-chip cellomics analysis. Aim of single-cell-based analysis of multicellular systems: Temporal (algebraic) aspect and spatial (geometric)
aspect

set of nanoprobes and adaptive electron microscopy (Kim
et al. 2010), single-cell-based DNA/RNA release technol-
ogy (Yasuda et al. 2000), or a 3-min ultra-high-speed
polymerase chain reaction (PCR) measurement technology
(Terazono et al. 2010).

The advantage of the experimental on-chip cellomics
approach is that, as it is a reconstructive approach of
the simplified artificial minimum cell network model on
a chip, it removes the complexity of the underlying
physicochemical reactions that are not always completely
understood and for which most of the necessary variables
cannot be measured. Moreover, this approach shifts the view

of cell regulatory processes from basic chemical grounds
to a paradigm of the cell as an information-processing unit
working as an intelligent machine capable of adapting to
changing environmental and internal conditions. This is an
alternative representation of the cell and can provide new
insights into cellular processes. Thus, models derived from
such a viewpoint can directly help in more conventional
biochemical and molecular biological analyses that assist in
our understanding of control in cells.

From the geometric perspective, two more detailed
viewpoints of analysis should also be taken: one is on
the population/community size dependence and the other
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is on the spatial (network) pattern dependence of groups
of cells. In conventional cell-based studies, cell lines are
usually used for acquiring the same type of cells, and are
then cultivated in a cultivation dish without any control
of their population or any formation of a community
with other cell types. Finally, they are analyzed as a
group regardless of any differences in their cell cycle
regardless of their possible differences. In contrast, on-chip
cellomics technology involves a new strategy with three
steps: First, the cells are taken from a community using
a nondestructive cell sorting procedure. Then, the cells
are cultivated in a microchamber, in which cell network
formation and medium environment are controlled. Finally,
the genome/proteome measurement in each cell is measured
(Fig. 1).

Photo-thermal etching on agarose layer for cell
network formation control

Flexible change of microstructures of cell-to-cell interac-
tions or cell-network shapes on a chip during cultivation
is necessary for the “temporal” and “geometric” construc-
tive/reconstructive approach of cell-network studies. To
accomplish this requirement, we have developed a pho-
tothermal etching method (Moriguchi et al. 2002; Hattori
et al. 2004; Kojima et al. 2003; Kojima et al. 2004; Suzuki
et al. 2005) with an agarose-microchamber cell-cultivation
system (Fig. 2). This involves the area-specific melting of
a portion of agarose of a whole light pathway by spot heat-
ing using a focused infrared laser beam of 1480 nm, which
absorbs water; and of a portion of agarose close to a thin

Fig. 2 Photo-thermal etching
method. Using focused infrared
(IR) lasers of two different
wavelengths, the thin layer of
low-melting-point agarose on
the chip was selectively melted
in different manners.
a A 1064-nm IRlaser etching.
As the 1064-nm IR laser is not
associated with the absorption
of water, only a portion of the
agarose near the thin absorption
layer is heated and melted,
changing its state from a gel to a
sol. b A 1480-nm IR laser
etching. In contrast, as the
1480-nm IR laser is associated
with the absorption of water, all
of the agarose in the light
pathway is heated and melted.
The agarose changed to a sol
state is dispersed into the
agarose gel and holes or tunnels
are formed in the agarose layer.
c Microfabrication procedure.
Combining 1064-nm laser and
1480-nm laser,
agarmicrochamber and micro
tunnel were formed on the chip.
d An example of stepwise cell
network formation exploiting
photothermal etching method
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Fig. 3 Synchronization of two cardiomyocytes. (A) Micrographs of
two cardiomyocytes under isolated conditions (a), just after they were
connected together (b), and just after synchronization started (c). (B)
Beating waveforms at (a) and (c) in panel (A). (C)–(E) (left graph
and center graph) Beating frequency spectrum before and after syn-
chronization, respectively; distribution of interbeat intervals of two
cardiomyocytes, and the change of the mean value of beating rhythm
fluctuation at intervals of 1 min measured for 5 min before and after
synchronization. Blue and red triangles show the mean values before

synchronization, and black triangles show the mean value for the two
cells after synchronization. (right graph) The change of the mean value
of beating rhythm fluctuation [CV%: coefficient of variation (100 x
standard deviation / mean beat rate)] at intervals of 1 min measured for
5 min before and after synchronization. Blue circles and red squares
show the corresponding mean values of beating rhythm fluctuation for
1 min. Three types of synchronization tendencies were described: (C)
synchronization to a faster beating cell, (D) synchronization to a slower
beating cell, and (E) synchronization with a new beating frequency
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layer made of a light-absorbing material, such as chromium,
with a laser beam of 1064 nm, which is permeable to
water. When we combine infrared lasers with these two dif-
ferent wavelengths, we can fabricate microchambers and
microtunnels flexibly for the noncontact three-dimensional
photo-thermal etching of agarose. In other words, as the
1480-nm infrared beam is associated with the absorption
of water and agarose gel, the agarose gel in the 1480-nm
infrared light pathway was heated and completely melted.
Moreover, as the 1064-nm infrared beam was not associated
with this absorbance, the agarose melted just near the thin
chromium layer, which absorbed the beam.

For phase-contrast microscopy and this μm-scale photo-
thermal etching, lights of three different wavelengths
(visible light for observation, and 1480-nm/1064-nm
infrared lasers for spot heating to construct microcham-
bers/microtunnels, respectively) were used simultaneously
to observe the positions of the agarose chip surface and to
melt a portion of the agarose in the area being heated. As
described above, the advantage of this method is that we can
apply this stepwise network formation (addition) approach
even during cultivation, so we can change the network size
and pattern of cardiomyocyte cells during cultivation by
adding microchannels between two adjacent microcham-

Fig. 4 Tendency of
synchronization of two
cardiomyocytes. (A) Three types
of synchronization of two
cardiomyocytes from the
perspective of beating intervals.
(B) Two types of
synchronization from the
perspective of beating stability
(fluctuation of beating)
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bers in a step-by-step fashion (Kojima et al. 2005, 2006);
moreover, this approach is also applicable for neuronal
networks (Sugio et al. 2004; Suzuki et al. 2004; Suzuki
et al. 2005; Suzuki et al. 2007; Suzuki and Yasuda 2007b;
2007a).

Community effect of cells for their synchronization
(1): two-cell model

As described in the previous subsection, the ability of photo-
thermal etching of agarose microstructures to control the
cell arrangement is beneficial for cardiomyocyte network
studies. In this subsection, we introduce the application of

this technology to reveal the involvement of the community
effect in cardiomyocyte beating synchronization (Kojima
et al. 2003; Kojima et al. 2003; Kojima et al. 2004, 2005,
2006; Kaneko et al. 2007a, b; Kaneko et al. 2011; Kaneko
et al. 2014).

First, we investigated the roles of the beat rates (interbeat
intervals, IBIs) and beat-rate fluctuation of isolated single
cardiomyocytes in the reestablishment of synchronous
beating by analyzing the changes of beating rates and
their fluctuations before and after the synchronization of
two cardiomyocytes through narrow channels with initially
different rhythms (e.g., Fig. 3A, B) (Kojima et al. 2005;
2006). The results showed three types of synchronization

Fig. 5 Effect of increase in
connected cell number on
increase in beating stability. (A)
Isolated single cell, (B) two-cell
network, and (C) nine-cell
network. (D) Dependence of
beating interval fluctuation on
cell number
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of two cardiomyocyte networks: (1) the beating of the two
cardiomyocytes synchronized at the faster of the two initial
rates, but there was beating fluctuation at the lower of the
two initial rates (Fig. 3C); and (2) the beating of the two
cells synchronized at the lower of the two initial rates, but
fluctuated at the lower of the two initial rates (Fig. 3D);
and (3) the synchronization occurred at neither of the initial

rates of single cardiomyocytes, with fluctuation of smaller
of the initial fluctuations (Fig. 3E).

The IBIs of 14 two-cell pairs before and after synchro-
nization are listed in Table A of Fig. 4. Five of the two-cell
pairs synchronized at the initial rate of the faster cell, two of
the pairs synchronized at the initial rate of the slower cell,
and the other seven pairs synchronized at a rate other than

Fig. 6 Dependence of spatial
arrangement of cardiomyocyte
networks on cell number for
beating stability. Three types of
spatial arrangements (i.e., lattice
shape, blue open circles and
lines (Fig. 5); linear shape,
green open triangles and lines
(A); and radial shape, red open
squares and lines (B)) were
compared with investigate their
contributions to the beating
stability (C).
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Fig. 7 Synchronization of two cardiomyocytes through a fibroblast.
(A) Micrographs of two cardiomyocytes under isolated conditions
(a), when a fibroblast was added between two cardiomyocytes (b),
and when two cardiomyocytes were connected through a fibroblast
and synchronization started (c). (B) Beating waveforms at (a) and
(c) in panel (A). (C)–(E) Three types of synchronization tendencies.

Beating frequency spectrum before (left graphs) and after (center
graphs) synchronization, and their beating fluctuation (right graphs).
(C) Synchronization to a cell beating faster and more stably. (D)
Synchronization and creation of new beating intervals contributing to
beating stability. (E) Synchronization with new beating frequency, but
beating fluctuation increased
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one of the initial rates. In Table B of Fig. 4, the fluctuation
data for the 14 cell pairs whose rate data are listed in Table
A are grouped according to the change of the fluctuation
before and after synchronization. Thirteen pairs synchro-
nized with a fluctuation equal to or less than the initial
fluctuation of the slower member of the pair, and one pair
synchronized with a fluctuation larger than that of either of
the two initial fluctuations.

These results suggest that the fluctuation of reestab-
lished synchronous beating by isolated cardiomyocytes is
influenced more strongly by the fluctuation of the initial
fluctuation of the beat rates of the isolated cardiomyocytes
than the rate of the reestablished synchronous beating is
influenced by the initial beat rates of the isolated cardiomy-
ocytes. It is therefore possible that a cardiomyocyte whose
beat rate fluctuates less than that of another cardiomyocyte
entrains the beating rhythm of that cardiomyocyte, but we
observed one pair of cells in which this did not happen. This
indicates that the influence of a single cell is still not suffi-
ciently strong to account for the process of entrainment in
heart tissue.

Community effect of cells for their synchronization
(2): cell number dependence

Figure 5 also describes the community size effect of a
cardiomyocyte network on its beating stability. In this
work, we explore the relationship between entrainment and
community size by examining the synchronization process
of a cardiomyocyte network formed by the interaction of
single cardiomyocytes cultured in a 3 × 3 grid of agarose
microchambers with connecting microchannels (Kojima
et al. 2006). After nine isolated cells had been cultured in
the nine-chamber agarose microcultivation chip for 24 h, we
started to measure the synchronization process continuously
and found that, when an isolated single cell came into
contact with another cell and formed a two-cell network
(Fig. 5 top and middle), these two cells synchronized at the
initial rate of the first cell and the fluctuation decreased from
the initial fluctuation of the first cell. When all nine cells
came into contact and formed a nine-cell network (Fig. 5
bottom), it synchronized at a rate equal to the initial rate of
the first cell, with a decrease of fluctuation.

These results suggest that the beating rhythm of a
single cardiomyocyte tends to entrain the rhythm of the
cell network and the strength of this tendency increases
with the size of the network. Therefore, it is thought
that the fluctuation of the rate at which a network of
cardiomyocytes beats decreases as the size of the network
increases. The tendency of the synchronization above was
simply explained by asserting that the synchronization of
two cardiomyocytes was caused by the more unstable cell
(the one with the more variable beating intervals) following

the more stable cell. Such tendency for reduced fluctuation
was more pronounced when the number of cardiomyocytes
in the network increased; we call this phenomenon the
“community effect” of synchronization.

Using the agarose microchambers, we can examine the
dependence on the spatial arrangement of the synchroniza-
tion stability of cardiomyocyte networks (Kaneko et al.
2007a). As shown in Fig. 6, we can arrange the cardiomy-
ocytes in three different shapes, a linearly lined-up shape, a
radial spoke-like shape, and a lattice shape, and can com-
pare their tendencies for beating stabilization relative to cell
numbers. The results indicated that there was no apparent
relationship between the number of cells and their shape,
and that the most important index for the stabilization of cell
beating is not the geometry of cells but their number.

Community effect of cells on their synchronization
(3): mixture of different types of cells

We also examined the contribution of fibroblasts to the
synchronization of cardiomyocytes(Kaneko et al. 2011). We
connected two cardiomyocytes through a single fibroblast
and synchronized them, as shown in Fig. 7A and B, and then
used this heterogeneous cardiomyocyte–fibroblast coupling
to examine the tendency of the IBIs and beating rhythm
fluctuation of two cardiomyocytes through a fibroblast
before and after their synchronization.

The first type of synchronization involved the tendency
for the fluctuation to decrease due to synchronization, which
is the same tendency as seen in a network formed by
the direct connection of two cardiomyocytes. As shown in
Fig. 7C and D, the two cardiomyocytes having different
interbeat intervals before synchronization synchronized to
achieve an interbeat interval of less than a second after
synchronization (e.g., Fig. 7B). The fluctuation of the
synchronized network became almost equal to or smaller
than either of the two initial fluctuations.

In contrast, the second type involved the tendency for the
fluctuation to increase due to synchronization, which did
not occur in the pure cardiomyocyte networks (Fig. 7E). In
this case, two cardiomyocytes having two different interbeat
intervals before synchronization exhibit a higher mean
interbeat interval after synchronization, and the fluctuation
of the synchronized network is greater than that of the cell
that had the lower fluctuation before the synchronization.

Our photo-thermal etching method with agarose
microchambers allows us to regulate the cell type and
community size of cultured cells at the single-cell level.
This could not be done when using the conventional cell
cultivation method, so the prolific growth of cardiac fibrob-
lasts made it difficult to culture only cardiomyocytes and
investigate the properties of a single cell within a group of
cells. By using our on-chip single-cell-based cultivation,
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we were able to investigate how the fluctuation of the rates
at which cardiomyocytes beat affects the reestablishment of
synchronized beating.

Summary of experimental results

The results of the on-chip constructive cardiomyocyte
network experiments are summarized as follows:

1. When two isolated, independently beating cardiomy-
ocytes come into contact, they tend to beat syn-
chronously at a rate that fluctuates no more than that of
the cell whose beat rate fluctuated less than did that of
the other cell.

2. When initially isolated cardiomyocytes form a network,
its rhythm tends to entrain the beating rhythm of single
cells whose beating rhythm fluctuated more than that of
the network.

3. The entrainment activity of cell networks increases with
their size, i.e., the fluctuation decreases.

4. Spatial arrangement does not affect the manner of
synchronization of cardiomyocytes, and only the cell
number of the network determines their tendency for
synchronization.

5. The interbeat interval after the synchronization of
two cardiomyocytes connected by a fibroblast is
not the same as that after the synchronization of
two cardiomyocytes directly connected to each other,
and the tendency for the community effect to occur
appears to be suppressed when the cardiomyocytes are
heterogeneously coupled through a fibroblast.

They might indicate that unstable isolated cardiomy-
ocytes reestablish a cell network that beats stably and
synchronously. A novel finding of this study is that a car-
diomyocyte network containing only a few cells acquires
a stable rhythm. Moreover, once the cell or cell network
achieves stable beating, an additionally attached unstable
cell can synchronize to the stable cell or cell network and
follow its stable beating intervals. This phenomenon also
suggests that the factor of stability is very important in deter-
mining the fate of the beating frequency of the network after
the connection of unstable cells.

Ability and limitation of constructive experimental
approach

As described above, the on-chip constructive experimental
approach is one of the potential solutions to solve the issue
of quality control of cells. However, cells inherently display
a variety of dynamic characteristics, even when cultivating
cells in completely the same conditions and also when using
those from the same single stem cells (López-Redondo

et al. 2016). The results in this section clearly indicate
the ability and limitation of the experimental approach of
single cell-based assays. Each isolated single cell does not
inherently show the same dynamics; however, once they
formed a network, their diversity disappeared and stable
shared characteristics appeared. We call this phenomenon
the “community effect.” To understand the meaning of the
community effect, we need to have a set of completely
controlled single cells. However, this is beyond the scope
of the experimental approach. Even using the on-chip
cellomics technologies, this experimental approach has a
limitation of not allowing full control of the condition of all
of the cells, especially in a dynamic context such as beating
of the heart.

Numerical approach to synchronization
of cardiomyocytes

Mathematical models of cardiomyocyte beating

As the periodical oscillation behavior of cardiomyocytes is
one of the most popular phenomena in living systems, mas-
sive mathematical models have been proposed to investigate
the mechanism of their beatings. One approach is an elab-
orated mathematical model composed of a large number
of equations, each of which is reflecting the complex elec-
trophysiological processes causing cardiomyocyte beating
(Hatano et al. 2011). Another approach is a simple math-
ematical model using just a few ordinary equations, which
are representing the key phenomenon of the membrane cur-
rents and action potentials (Keener and Sneyd 2008), such as
the famous Hodgkin-Huxley model, the FitzHugh-Nagumo
model and the Van der Pol model.

For investigating the statistical behavior of beating
and synchronization period of cardiomyocytes, we should
remark the essence of beating intervals and their synchro-
nization period from the idea that the cardiomyocytes as
oscillators. From this viewpoint, starting from the phase
model is one of the suitable ways for the construction of
beating interval model (Kuramoto 1984; Kori et al. 2012).
However, to capture the characteristic features of cardiomy-
ocyte beating, we have to consider and incorporate the
conventional stochastic phase models with three important
ideas:(i) irreversible at firing, (ii) a refractory period after
firing, and (iii) induced pulsation associated with firing
of surrounding cells. A part of those ideas were consid-
ered in the well-known “integrate-and-fire” model as a
spiking neuron model (Keener et al. 1981; Burkitt 2006;
Sacerdote and T. 2013). We have investigated the mathemat-
ical phase models with stochastic differential equations for
cardiomyocytes involving above three important ideas.
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Simple phasemodel and stochastic differential
equation

At first, we can describe a simple phase model of periodical
oscillation behavior of cardiomyocytes as follows. Let φ be
the phase of an oscillator with phase velocity (or drift)ω > 0
and initial state φ(0) = 0. The phase model is given by

φ(t) = ωt . (1)

Assuming that the phase returns to 0 when it reaches 2π , we
see that T = 2π/ω is the period of the oscillator. We can
also write (1) into an equivalent differential form:

dφ(t) = ωdt, (2a)

φ(0) = 0. (2b)

When we adopt this oscillator for cardiomyocyte beating
intervals, it beats when the phase reaches 2π and then returns
to 0 immediately to start a next beating interval. Then,
the phase equation (1) describes the beating intervals with
period T . And it can satisfy two of the above three important
ideas; irreversible at firing, and a refractory period after firing.

In general, one can consider the phase model with time-
dependent and state-dependent drift, that is ω(t, φ(t)) is a
function depending on t and φ. Then the phase model with
initial value φ0 becomes

dφ = ω(t, φ)dt, φ(0) = φ0.

The above equation is equivalent to the following
integration form

φ(t) =
∫ t

0
ω(s, φ(s)) ds + φ0 (3)

which is called as the “integrate-and-fire” model.
However, for a cardiomyocyte, as the beating process

is usually affected by the fluctuation and noise of internal
reaction process, surrounding cells and environments, the
beating interval varies each time.

Incorporating the phase model (2a) with noise effect, we
write the phase model in a formal way:

dφ(t) = ωdt + σζ(t) (4a)

ϕ(0) = 0 (4b)

where ζ(t) denotes the “white noise” (which has been
widely applied in many mathematical models), and σ is
a constant representing the strength of the noise. Since
the white noise can be regarded as the time derivative of
Brownian motion (or called Winner process) denoted by
W(t), (4a) becomes

dφ(t) = ωdt + σdW(t) (5)

which is a stochastic differential equation.

Mathematical modeling for synchronization
of cardiomyocytes in network

The remaining issue of the three important ideas of stochas-
tic phase model is the induced pulsation associated with
firing of surrounding cells. We have examined synchronous
behaviors of cardiomyocyte networks theoretically based on
the integrate-and-fire phase equation model combining with
fluctuation-dissipation theorem, in which community effect
was simulated successfully (Hayashi et al. 2017).

In this model, we consider a network of N cardiomy-
ocytes and call ith cardiomyocyte cell-i. The model was
described with the phase variables φi(t) (0 ≤ φi(t) ≤ 2π ,
i = 1, 2, ..., N), which denote the state of cell-i at a time t .
We assumed that the cell-i fires (depolarized) when φi(t) =
0 (= 2π).

In the network, the firing occurs by internal oscillation or
by the influence of neighboring cells, that is, either at φi(t),
reaches 2π , or the following conditions are satisfied: φi(t −
0) ≥ θi (φi(t − 0) := limε→+0 φi(t − ε)). Additionally,
one of the cardiomyocytes connected to cell-i (e.g., cell-
j ) fired at a retardation time τ ago (i.e., φj (t − τ) =
0). Otherwise, we assumed that φi(t) is governed by the
following interacting stochastic differential equation. Our
mathematical modeling for cell-i is as follows:{

dφi(t) = ωidt + dW(σi) + σ 2
i

∑
j V (φi, φj )dt (φi(t − 0) < θi or φj (t − τ) �= 0),

φi(t) = 0 (θi ≤ φi(t − 0) and φj (t − τ) = 0)
(6)

where ωi is the average phase velocity of cell-i, dW(σ)

is a stochastic process with standard deviation σ , and θi

is a phase corresponding to the refractory period of cell-
i(0 < θi < 2π). V (φi, φj ) shows the weak interaction
between cardiomyocytes through the membrane potential,
which we assumed as the following form:

V (φi, φj ) = μ sin(φj − φi), (7)

where μ is a positive constant. An important point is that
the stochastic process and the cell-to-cell interaction are
correlated through the fluctuation-dissipation theorem that
gives the relation between fluctuations and linear response
to external force (Kubo 1957). The positive constant μ is the
only free parameter in ourmodel that cannot be directly deter-
mined by experiments, while ωi, θi, σi can be determined
by single-cell experiments for each cardiomyocyte.
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In addition, we assumed that the boundary at φi(t) = 0
is the reflective boundary condition, which ensures that the
phase fluctuation is irreversible after firing.

Numerical simulationmethod

The stochastic process in our simulation is described by an
extended random walk. We used the following difference
equations as a numerical approximation of equation (6). For
almost all cardiomyocytes with a standard beating rhythm,
we considered an ordinary random walk as follows:{

φi(t + �t) = φi(t) + ωi�t + �φi + σ 2
i

∑
j V (φi, φj )�t (φi(t) < θi or φj (t − τ) �= 0),

φi(t + �t) = 0 (θi ≤ φi(t) and φj (t − τ) = 0),
(8)

�φi =
{ +�xi (with probability 0.5),

−�xi (with probability 0.5),
(9)

where the standard deviation is defined by σ = �x/
√
2�t ,

�t is the time difference interval, �xi =
√
2�t σ 2

i is the
spatial difference determined by σi , and the delay time τ

is set as �t × k (k is a non-negative integer). However,
we could not reproduce the same beating fluctuation by
using an ordinary random walk for cardiomyocytes with a

large fluctuation. This is because the coefficient variation
(CV%), which is defined by 100× standard deviation/mean
beating rate, could be proved less than 100

√
2/3 �

81.65. As shown in Fig. 4, some cardiomyocytes with the
CV % which exceed this value are observed. Therefore,
we adopted the following extended random walk, which
is a history-dependent stochastic process, when beating
fluctuation was larger than 81.65 (CV %):

{
φi(t + �t) = φi(t) + ωi�t + �φ̃i(t) +σ 2

i

∑
jV (φi, φj )�t (φi(t) < θi or φj (t − τ) �= 0),

φi(t + �t) = 0 (θi ≤ φi(t) and φj (t − τ) = 0).
(10)

The noise term �φ̃i(t) is defined as:

�φ̃i(t) =

⎧⎪⎪⎨
⎪⎪⎩

+�xi (if �φ̃i(t − �t) = �xi , then with probability q),

0 (if �φ̃i(t − �t) = �xi , then with probability 1 − q),

0 (if �φ̃i(t − �t) = 0, then with probability r),

+�xi (if �φ̃i(t − �t) = 0, then with probability 1 − r).

(11)

However,

�φ̃i(0) =
{ +�xi (with probability 0.5),
0 (with probability 0.5).

(12)

The model could reproduce the large fluctuation observed
in the experiments by setting appropriate values of q and
r .

Comparison of themodel with experimental results
of two cardiomyocytes

In the experiments shown above, the mean beating rate
and its fluctuation before and after synchronization were
observed for 14 pairs of cardiomyocytes. We investigated
whether our model could reproduce the results of these
pairs of cardiomyocytes. We numbered these 14 pairs from
Nos. 1 to 14 and distinguished the two cardiomyocytes in
a pair by denoting “cell-1” and “cell-2.” For each pair, we
defined ωi, σi, θi in equation (6) for cell-i (i = 1, 2), so

that the model reproduced the same mean beating rate and
fluctuation in beating rhythm. Since refractory periods of
cardiomyocytes are almost the same as those for normal
cardiomyocytes, we assumed that each cell had the common
refractory period tref = 0.3 s. Therefore, θi is given by
θi = tref ωi .

We could regard the retardation time τ as almost 0
because it was estimated as 10−3 ∼ 10−4 of the mean
beating rate. Therefore, we put τ = 0. We used μ = 6.5
in numerical simulations. The dependence of theoretical
calculation on μ is shown later. We found that the simulated
values accurately agree with the experimental values except
for pair No. 14. The experimental result of pair No. 14 is
exceptional because it is the only pair in which fluctuation
increased after synchronization. Beating fluctuation of a
pair of synchronized cardiomyocytes was equal to or less
than that of less fluctuating cardiomyocytes, while the
mean beating rate was widely distributed. Some pairs
synchronized at faster rates of the two initial rates, some
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Table 1 Comparison between the experimental result and the numerical results. The symbol Ti and Fi denote the mean beating rate and the beating
fluctuation of the cell-i(i = 1, 2), respectively. The symbol T denotes the mean beating rate and F the beating fluctuation after synchronization

Before synchronization After synchronization

T1(s) F1 (CV%) T2 (s) F2 (CV%) T (s) F (CV%)

Experiments 0.64 12.3 1.23 25.1 0.76 12.3

Our model 0.64 12.3 1.23 25.1 0.74 11.4

Kuramoto model 0.64 12.3 1.23 25.1 0.85 12.7

at slower rates of the two initial rates, and others at
intermediate rates of the initial rates of the pair.

Comparison with the Kuramotomodel

The two-oscillators phase model (the Kuramoto
model (Kuramoto 1984)) with noise is as follows: for
i, j = 1, 2, i �= j ,

dψi(t) = ω̄idt +Ai,j sin(ψj −ψi)dt + σ̄idWi(t), ψi(0) = 0, (13)

where ω̄i and σ̄i denote the drift and noise strength
constants, respectively, Ai,j are non-negative constants, and
{Wi}i=1,2 is independent standard Brownian motion. For
two cases (Case (i) and Case (ii)), we applied the Kuramoto
model (13) and our model (6) to synchronization of two
coupled cardiomyocytes. The numerical simulation results
were compared with in vitro experimental data (Kojima
et al. 2006).

Case (i) A case of synchronization to a cardiomyocyte
with a fast and stable beating rhythm. Two cardiomyocytes
that we used in the Case (i) were cell-1 and cell-2 of
pair No. 1, which have a mean beating rhythm of 0.64 s
and fluctuation of 12.3 (CV%) and cell-2 with 1.23 s and
25.1 (CV%), respectively. When the two cardiomyocytes
were coupled, we found that the bating rhythm after
synchronization was tuned to cell-1 with a fast and stable
beating rhythm. We investigated whether our model and the
Kuramoto model could reproduce the experimental results.
The mean beating rate and beating fluctuation for the
experimental result, our model, and the Kuramoto model are
shown in Table 1.

Case (ii) A case of synchronization to a cardiomyocyte
with a slow and stable beating rhythm. Two cardiomyocytes
that we used in the Case (ii) were cell-1 and cell-2 of
pair No. 6, which have a mean beating rhythm of 1.10 s
and fluctuation of 149 (CV%) and cell-2 with 1.40 s and
41.2 (CV%), respectively. When the two cardiomyocytes
were coupled, we found that the bating rhythm after
synchronization was tuned to cell-2 with a slow and stable
beating rhythm. When we compared the numerical result
of our model with that of the Kuramoto model, we found
that our model was closer to the experimental data than
the Kuramoto model. Our model showed that the beating
rhythm after synchronization was tuned to the rhythm of
the slow and stable cardiomyocyte. However, the Kuramoto
model showed that beating fluctuation of the slow and stable
cardiomyocyte was increased after synchronization, which
differed from the experimental results. The mean beating
rate and beating fluctuation of the experimental result, those
of our model and those of the Kuramoto model are shown
in Table 2.

Therefore, our model showed that even though the mean
beating rate of a cardiomyocyte was slow, a cardiomyocyte
with more stable beating fluctuation dominated the beating
rhythm after synchronization.

Size and configuration dependence on fluctuation
of the system

We investigated the dependence of fluctuation in beating
rhythm of cardiomyocytes on the size and configuration of
the network. Network patterns in cardiomyocyte groups that

Table 2 Comparison between the experimental result and the numerical results. The symbol Ti and Fi denote the mean beating rate and the beating
fluctuation of the cell-i(i = 1, 2), respectively. The symbol T denotes the mean beating rate and F the beating fluctuation after synchronization

Before synchronization After synchronization

T1 (s) F1 (CV%) T2 (s) F2 (CV%) T (s) F (CV%)

Experiments 1.1 149 1.4 41.2 1.4 41.7

Our model 1.1 149 1.4 41.2 1.3 46.3

Kuramoto model 1.1 149 1.4 41.2 1.3 86.8
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we considered were radial spoke-like, 2D lattice and 1D
linear lined-up networks as shown in Fig. 6.

We assumed that all the elements in cell networks have
the same parameters and beating properties. We found that
the beating fluctuation decreased as the size of the network
increased irrespective of network pattern just same as the
experimental results. Among the three configurations, a
reduction in fluctuation tended to be most rapid in the 2D
lattice network, and fluctuation in the 1D linear lined-up
network tended to be always larger than that in the other two
configurations. In addition, we considered the larger size
(about 1000 cells) of the network in the 2D lattice network.
The size dependence of fluctuation of the 2D lattice network
where all the elements had the same beating properties.
The numerical results suggested that the beating fluctuation
decreased as the community size increased, but the CV
value of the network approached to a constant value for
large network size N . For an ordinary stochastic ensemble,
such as an independently identical distributed ensemble, the
dependence of standard deviation of fluctuation on system
size N was proportional to N−1/2. However, the features of
beating fluctuation behave differently from that of ordinary
stochastic ensembles.

Summary of numerical simulation results

As shown in above experimental results, IBIs of cell
networks were slower than the fastest beating component
cells, and hence were not regulated by the fastest beating
component cardiomyocytes. For the confirmation of the
dominant rule of the synchronized IBI formation in the
networks, one of the best way is in silico experiment
of cardiomyocyte network formation. Our in silico results
showed the dominant rule of synchronized networks’
IBIs in the experimental results can be explained by the
selection rule of more stable firing intervals, where stable
IBI is dominance, were the same IBIs regardless of all
connection manners. We also have discussed the limitation
of conventional phase model like Kuramoto model for
the estimation of cardiomyocyte network’s IBIs without
consideration of fluctuation-dissipation theorem (Hayashi
et al. 2017). That means, if the cardiomyocytes are well
described only by phase equations of Kuramoto model, the
network’s IBI equals to the average value of its components’
IBIs.

The reason why a cardiomyocyte with an unstable bating
rhythm tends to follow a cardiomyocyte with a stable bating
rhythm may be explained as follows. A cardiomyocyte
with a stable bating rhythm has the property where its
dynamics are only slightly affected by external or internal
disturbance. Therefore, there is little effect of interactions
from neighboring cardiomyocytes. While, a cardiomyocyte
with an unstable beating rhythm has the opposite property

and is strongly affected by its neighbors. A cardiomyocyte
with a stable beating rhythm corresponds to a pendulum
with a heavy mass in contrast to a cardiomyocyte with
an unstable beating rhythm that corresponds to that with
a light mass. When these pendulums are connected, the
pendulumwith a light mass tends to follow that with a heavy
mass. This feature is a consequence of the fluctuation-
dissipation theorem, which provides a universal relation
between fluctuation and a linear response (Kubo 1957).

The fact reported in this review tells us the importance
of community effect of cells, which cannot be explained
simply by the expansion of the knowledge of single-cell
studies (López-Redondo et al. 2016). Acquisition of those
hidden rules in higher compleity of cell networks should
lead to development of well designed quasi in vivo models.

Application of synchronization behavior
for predictive cardiotoxicity

Recently, as a practical application of fluctuation measure-
ment of cell-to-cell synchronization, quasi in vivo predic-
tive cardiotoxicity measurement assay has been extensively
examined and found that such conduction measurement
can give us more precise prediction of cardiotoxicity than
the conventional in vitro screening assays like hERG assay
(Kaneko et al. 2014; Nozaki et al. 2016; Asahi et al. 2018;
Asahi et al. 2019).

Lethal arrhythmias, including torsades de pointes (TdP)
and ventricular tachycardia (VT), are the phenomenon of
losing coordinated synchronous ability in neighboring car-
diomyocytes and hence are critical safety issues in drug
development. To exclude torsadogenic compounds in earlier
stage of development, the International Council for Har-
monisation of Technical Requirements for Pharmaceuticals
for Human Use (ICH) has implemented the two essential
assays, in vitro human ether-a-go-go-related gene (hERG)
and in vivo QT assays, and additional in vitro action poten-
tial duration (APD) as a follow up under the ICH S7B
guideline (Gintant 2011). However, in vitro hERG, in vitro
APD and in vivo QT assays still have difficulty in fully
predicting lethal arrhythmias, resulting in some compounds
are judged as false negative or false positive (Gintant 2011;
Ponti et al. 2002; Giorgi et al. 2010) in these assays.

One reason of the false negative or false positive
problems was caused by the difference of species, i.e.,
animal model and human. Human pluripotent stem cell-
derived cardiomyocytes (hPSC-CMs), which expresses
physiologically functioning all of human’s ion channels,
have been developed as a more appropriate cell source
for assessing proarrhythmia risks. Although it still remains
the problem of maturation or control of differentiation,
once those problems can be solved, those cells should
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contribute for more precise prediction of cardiotoxicity
risks. For example, combining with those human cells
with the multi-electrode array (MEA) assay, extracellular
recording of field potential duration (FPD) prolongation,
which is equivalent to APD and QT interval prolongation,
can predict clinical QT prolongation and arrhythmogenic
liability more accurately than existing in vitro and ex vivo
assays (Kaneko et al. 2014; Tanaka et al. 2009; Ando et al.
2017; Kitaguchi et al. 2016; Clements et al. 2015). In a
typical waveform obtained from field potential recordings
of hPSC-CMs, FPD is defined as the temporal interval
from the first peak of the fast, sharp wave component
to the second peak in the slow, broad wave component,
and the duration is mostly reflected by IKr along with
other cardiac ionic currents such as INa, ICa, and IKs.
However, FPD prolongation also cannot fully predict lethal
arrhythmia or QT prolongation, particularly for arrhythmias
induced by multi-channel effects. Hence, to improve the
clinical relevance, various efforts have been made in the
MEA assay using hPSC-CMs. For example, it is possible
to analyze waveform abnormalities, such as early after
depolarization, triggered activity and ectopic beats, which
are potent proarrhythmia markers for both IKr inhibitors and
multi-channel blockers (Harris et al. 2013; Nozaki et al.
2014). Moreover, the combination with FPD in MEA assays
and other types of assays, such as impedance, motion field
imaging, Ca2+ transient, beating pattern assessment, and
in silico simulation based on multi-ion channel activities,
seemed to improve prediction of cardiac liabilities and
provides insight into the mechanism-of-action of drugs
(Sirenko et al. 2013; Takasuna et al. 2017; Clements et al.
2015; Kramer et al. 2013; Kaneko et al. 2007b; Sugio
et al. 2004). Intracellular recording of APD in hESC-
CMs also indicated overall pharmacological sensitivity and
predictability of the cardiac risk of arrhythmogenic drugs
(Peng et al. 2010). Besides those waveform analyses, the
temporal fluctuation, that is, short-term variability (STV)
of APD in hESC-CMs, has specificity that recognized
moxifloxacin as a safe drug, although APD itself was
prolonged (Nalos et al. 2012). The STV of APD or STV of
QT has been shown to identify individuals at high risk of
arrhythmia in vivo and in clinical (Abi-Gerges et al. 2010;
Hinterseer et al. 2010; Varkevisser et al. 2012). Moreover,
this approach was also proposed to be useful for precision
medicine but not only for cardiotoxicity assessment by
using patient-derived hPSC-CMs (Sala et al. 2016; Sala
et al. 2017). These findings suggest that a surrogate
arrhythmic marker such as STV, which is not exclusively
dependent on hERG inhibition or QT prolongation, is
needed for appropriate judgment of the risk of drugs.
STV of the QT interval or APD, which represent a
temporal fluctuation, has been well studied and known as a

quantitative proarrhythmic marker in in vivo animal models,
isolated primary cardiomyocytes, and retrospective analysis
of clinical observation (Oosterhoff et al. 2011; Altomare
et al. 2015; Floré and Willems 2012; Thomsen et al. 2007;
Zareba and de Luna 2005). However, little was known about
influence on temporal fluctuation of FPD in the MEA assay
using hPSC-CMs (i.e., STVs of FPD).

The ion channel panel assay consisting of six ion
channels (IKr, INa, ICa, IKs, Ito and IK1) has been proposed
and those currents are important in repolarization and
depolarization of the cardiac action potential (Fermini et al.
2016). From the viewpoint of cell-to-cell conduction of
cardiomyocytes, sodium channel blockers have been well
studied in both in vitro cardiomyocytes and in vivo animal
models. It has been reported that quinidine and flecainide
decelerate the electrical conduction, although lidocaine or
mexiletine show no or a lower effect on conduction in
isolated animal cardiomyocytes (Heath et al. 2011; Osadchii
2014). Clinically, proarrhythmia induced by sodium channel
blockers is limited to class Ia (e.g., quinidine) and class Ic
(e.g., flecainide) agents (Almroth et al. 2011; Morganroth
and Goin 1991), whereas class Ib agents (e.g., lidocaine
and mexiletine) appear to be safe (Wyman et al. 2004;
Woosley et al. 1984). In addition, not only deceleration
of conduction but also spatiotemporal fluctuation in both
cell-to-cell conduction and APD can lead to VT and
ventricular fibrillation (VF) (Wagner et al. 2015; Ogawa
et al. 2008; Weiss et al. 2005). However, there are few
reports focusing on the relationship between depolarization
delay and slowing of cell-to-cell conduction.

To overcome the limitation of conventional measure-
ment assays, we need to consider the importance of the
synchronous beating behavior of cardiomyocytes with an
increase in their cell number of networks as a “community
effect” (Yasuda 2004; Kaneko et al. 2007a). Using an on-
chip constructive approach, IBIs of two neighboring isolated
cardiomyocytes synchronize to the more stable cardiomy-
ocyte (i.e., lower coefficient of variability (CV) of IBIs)
regardless of their IBIs (Kojima et al. 2006). These results
indicated that the importance of cell-to-cell connection and
cell number in the in vitro cardiomyocyte screening assay
because the response might be ruled by the most stable car-
diomyocytes in the inhomogeneous cardiomyocyte clusters.
As all those above conventional screening assays neglected
those “community effect” of cardiomyocytes, and those
differences caused the redundancy of the results. Hence,
we have demonstrated the importance of cell number of
networks as a “community effect” for the measurement
of temporal fluctuation of FPD, short-term variability of
FPD (STVFPD), of cardiomyocyte networks to predict the
arrhythmic risk more precisely (Kaneko et al. 2014). And
then we also have proposed the lined-up hESC-CMs in the
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MEA assay as a small scale quasi in vivo model to detect
cell-to-cell conduction and its STV (spatiotemporal fluctu-
ation) of the simultaneous combined spatiotemporal field
potential duration (FPD) and cell-to-cell conduction time
(CT) measurement, STVFPD and STVCT, to evaluate two
origins of lethal arrhythmia, repolarization and depolariza-
tion, which is patented internationally and was reported
(Asahi et al. 2018; Asahi et al. 2019). Effects of E-4031
and verapamil, well-known drugs with QT-prolongation and
QT-shortening effect, respectively, on FPD, CT, and their
STVs in lined-up hESC-CMs were examined and we found
that E-4031 had a QT-prolonging effect and verapamil
showed a QT-shortening effect in our assay. Furthermore,
the effects of sodium channel blockers (flecainide and
lidocaine; positive and negative control for cell-to-cell con-
duction, respectively) and two other arrhythmogenic drugs
as multi-channel blockers (astemizole and terfenadine) on
these four parameters were examined. The repolarization
index, FPD, was prolonged by E-4031 and astemizole, and
shortened by verapamil, flecainide and terfenadine at 10
times higher than therapeutic plasma concentrations of each
drug, but it did not change after lidocaine treatment up
to 100 μM. CT was increased by astemizol, flecainide,
terfenadine, and lidocaine at equivalent concentrations of
Nav1.5 IC50. Those results suggested that CT can be an
index of cardiac depolarization because the increase in CT

(i.e., decrease in cell-to-cell conduction speed) was relevant
to Nav1.5 inhibition. Fluctuations (STV) of FPD and CT,
STVFPD and STVCT also discriminated between torsado-
genic and non-torsadogenic compounds with significant
increases in their fluctuation values, enabling precise pre-
diction of arrhythmogenic risk as potential new indices.
As shown in Fig. 8, cell-to-cell conduction was evaluated
geometrically by conduction time (CT) between two neigh-
boring electrodes with 150-μm inter-electrode distance in
the lined-up cell network using hESC-CMs, and their geo-
metrical propagation manner was electrically measured and
evaluated the arrhythmic risk directly and more precisely
as their abnormality of propagation and the change of field
potential waveforms simultaneously.

Quality and quantity control of cardiomyocyte network
still remain a key issue for establishment of reproducible
on-chip assays. Especially, as described above, the influence
of fibroblasts has been examined in on-chip cell-network
assay, indicating that fibroblasts reduce the ability of
synchronization of cardiomyocytes (Kaneko et al. 2011;
Nomura et al. 2011). Heterogeneity of cardiomyocytes
also should be an issue for improvement of reliability.
We have previously evaluated the single cells obtained
from single hESC-CMCs visually and concluded that 73%
of total cells beat spontaneously; however, their action
potential analysis of APD20−40/APD50−70 and dV/dtmax

Fig. 8 On-chip quasi in vivo assay for predictive cardiotoxicity screening.
(a) Geometrically arranged cardiomyocyte lined-up closed network
and the time course FPD waveforms of microelectrodes. As described
in the waveforms, the propagation of conduction was visualized by
comparing the neighboring FP signals. (b) Schematic illustration of
conduction propagation in coordinated synchronous condition (left)
and abnormal condition (right). (c) The 16 waveforms acquired
from those electrodes can be added to be the electrocardiograph
(ECG)-like waveform. Normal propagation (upper) and abnormal

arrhythmic condition (lower). (d) Schematic diagram showing the
contribution of fluctuation index (y-axis) adding to the conventional
FPD recording (x-axis). As the conventional results were in the
one-dimensional screening, false negative and false positive com-
pounds were overlapped. However, when the second axis (y-axis) is
added by the fluctuation evaluation (STV), all the compounds are
spread two-dimensionally and hence can be distinguished precisely as
positive/negative compounds
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revealed that they would have at least more than two
major phenotypes, arbitrary “ventricular-like” and “atrial-
like” cells (López-Redondo et al. 2016). To overcome
those cell quality problems caused by the mixture of
phenotypes, computational simulation might be one of the
possible solutions. For example, the role of community
effect of single phenotype cardiomyocyte network was
simulated successfully with fluctuation-dissipation theorem
as described in this review (Hayashi et al. 2017).

Summary

As described in this review, the community effect of
cardiomyocyte synchronization behavior was explained
using the following three viewpoints: First, we introduced
the experimental results of the synchronous behavior
of cardiomyocyte networks after a brief explanation of
the experimental set-up of microfabrication techniques
regarding how the constructed approach of step-wise
synchronization of cardiomyocytes was accomplished.
Next, the firing of cardiomyocytes as a mathematical
oscillating phase model, and the oscillating stochastic
phase model with the fluctuation-dissipation theorem,
and revealed that the model of cardiomyocyte networks
showed the same tendencies of the experimental results
of synchronization behavior. Specifically, it revealed that
the stability-oriented synchronization phenomenon and the
fluctuation of beating intervals determine the cell-network
synchronous behavior. Third and finally, an application of
synchronous behavior of cardiomyocytes for drug screening
was introduced and the importance of cell number and
their geometry, which can cause the different results in
conduction properties, was explained with our more precise
prediction approach of quasi in vivo model beyond the
conventional in vitro assay.

In this review, we also intended to speculate about the
macroscopic behavior behind the synchronization of beating
cardiomyocytes. Such a synchronized network of living
organisms appears to be a macroscopic system in which
part of its behavior is not just purely mechanical, but also
exhibits statistical features that all systems tend to present.
Hence, the community effect of cells should also be based
on the statistical tendency of matter to become disordered
as a part of the ordinary laws of physics.

At present, however, it is not clear whether and how this
synchronization rule or community effect is regulated at the
molecular ion channel level. In other words, no detailed
information about the functioning of the community effect
can emerge from a description of the genetic mechanism and
its expression as general as that given above. In this regard,
the next step for a mathematical approach to studying

the community effect is to connect the macroscopic
interpretation with the microscopic interpretation. For this,
the in silico membrane potential model should becomemore
precise (Hamada et al. 2013), and it can also be applied
in practical applications for drug discovery or predictive
toxicity screening as described in this review.

Finally, with regard to the community effect, living
systems appear to maintain and perhaps encourage orderly
and regulated behaviors, acting against the tendency for
natural systems to progress from order to disorder, but based
partly on some hidden existing order that is retained.
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