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The cystine/glutamate transporter system xc
� consists of the

light-chain subunit xCT (SLC7A11) and the heavy-chain sub-
unit CD98 (4F2hc or SLC3A2) and exchanges extracellular cys-
tine for intracellular glutamate at the plasma membrane. The
imported cystine is reduced to cysteine and used for synthesis of
GSH, one of the most important antioxidants in cancer cells.
Because cancer cells have increased levels of reactive oxygen
species, xCT, responsible for cystine– glutamate exchange, is
overexpressed in many cancers, including glioblastoma. How-
ever, under glucose-limited conditions, xCT overexpression
induces reactive oxygen species accumulation and cell death.
Here we report that cell survival under glucose deprivation
depends on cell density. We found that high cell density (HD)
down-regulates xCT levels and increases cell viability under glu-
cose deprivation. We also found that growth of glioblastoma
cells at HD inactivates mTOR and that treatment of cells grown
at low density with the mTOR inhibitor Torin 1 down-regulates
xCT and inhibits glucose deprivation-induced cell death. The
lysosome inhibitor bafilomycin A1 suppressed xCT down-regu-
lation in HD-cultured glioblastoma cells and in Torin 1–treated
cells grown at low density. Additionally, bafilomycin A1 expo-
sure or ectopic xCT expression restored glucose deprivation–
induced cell death at HD. These results suggest that HD inacti-
vates mTOR and promotes lysosomal degradation of xCT,
leading to improved glioblastoma cell viability under glucose-
limited conditions. Our findings provide evidence that control
of xCT protein expression via lysosomal degradation is an
important mechanism for metabolic adaptation in glioblastoma
cells.

It is well-known that many cancer cells depend on glucose for
proliferation and survival. They up-regulate glucose transport-
ers and enzymes involved in glucose metabolism. The increased
glucose metabolism is utilized to supply sufficient energy and
biosynthetic intermediates. In addition, cancer cells use glucose

to generate NADPH, which is required for GSH and thiore-
doxin systems, the major antioxidant systems in cancer cells
(1–4). Therefore, to survive under glucose-insufficient condi-
tions, cancer cells need to adapt to metabolic stress or migrate
toward more favorable environments.

The system xc
� is composed of the light chain subunit xCT

(SLC7A11) and the heavy chain subunit CD98 (4F2hc,
SLC3A2) and mediates the exchange of extracellular cystine
and intracellular glutamate across the plasma membrane.
The amino acid specificity and transport activity of system
xc

� depend on xCT, and increased expression of xCT results
in increased cystine/glutamate exchange. Expression of xCT
is often up-regulated in cancer cells, including glioblastoma
cells, and its expression correlates with tumor growth and
poor survival (5–7). When cystine is imported and intracel-
lularly reduced to cysteine, it is used to synthesize reduced
GSH. GSH is required for optimal activity of GSH peroxidase
4, a key regulator of ferroptosis. Ferroptosis is a form of cell
death induced by phospholipid peroxidation, and treatment
with pharmacological inhibitors of xCT or depletion of GSH
in several types of cancer cells causes ferroptosis (8 –11).
Thus, intracellular transport of cystine is important to avoid
oxidative stress and cell death in cancer cells. On the other
hand, overexpression of xCT in cancer cells induces cell
death under glucose deprivation (12–15). This mechanism
involves depletion of intracellular glutamate because of
xCT-mediated export and production of reactive oxygen
species induced by xCT-mediated cystine uptake. The tran-
scription factors NRF2 and ATF4 up-regulate xCT expres-
sion and function in the glucose dependence of cancer cells
(12, 13). However, how the activity of xCT is regulated in
cancer cells is not fully understood.

mTOR is a central regulator of cell growth and proliferation.
The activity of mTOR is regulated in response to growth factors
and environmental nutrient conditions (16, 17). mTOR signal-
ing is frequently activated in cancer cells and functions in
tumor growth and progression (16, 18). Activation of mTOR
promotes anabolic processes (synthesis of proteins, lipids,
and nucleotides) and suppression of catabolic processes (the
autophagy–lysosome system and ubiquitin–proteasome sys-
tem) (19 –22). mTOR signaling also plays a role in metabolic
reprograming in cancer cells by regulating the expression and
activity of key enzymes involved in glucose, amino acid, and
fatty acid metabolism (18). In this study, we demonstrate that
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cell density regulates xCT protein stability through an mTOR-
dependent pathway in glioblastoma cells.

Results

A high cell density down-regulates xCT and suppresses glucose
deprivation–induced cell death in glioblastoma cells

In glioblastoma cells, glucose deprivation from the medium
rapidly induced cell death. We found that this depends on cell
density. We plated U251 glioblastoma cells at a low cell density
(LD;2 1 � 104 cells/cm2) and high cell density (HD, 1 � 105

cells/cm2) and cultured them for 48 h. Then the culture
medium was collected 24 h after deprivation of glucose, and the

amount of lactate dehydrogenase (LDH) released in the
medium was measured to quantify cell death. Glucose depriva-
tion significantly increased cell death at LD. However, most
cells were alive when they were plated at HD (Fig. 1A). We used
other glioblastoma cell lines, T98G and LN229, and obtained
similar results (Fig. 1, B and C). We previously reported that
the cystine/glutamate antiporter xCT mediates glucose de-
privation–induced cell death in glioblastoma cells (14). There-
fore, we next examined whether xCT or its binding partner
CD98 is regulated by cell density. The protein levels of xCT
were down-regulated in U251, T98G, and LN229 cells cultured
at HD for 48 h (Fig. 1D). On the other hand, cell density had
little effect on CD98 expression. These results suggest that HD
reduces the protein levels of xCT and suppresses glucose
deprivation–induced cell death in glioblastoma cells.

2 The abbreviations used are: LD, low cell density; HD, high cell density; LDH,
lactate dehydrogenase; BafA1, Bafilomycin A1; ANOVA, analysis of variance.

Figure 1. HD down-regulates xCT and suppresses glucose deprivation–induced cell death in glioblastoma cells. A–C, U251 (A), T98G (B), and LN229 (C)
cells were cultured at LD (1 � 104 cells/cm2) or HD (1 � 105 cells/cm2) for 48 h and placed in medium with or without glucose (Glc, 5 mM) for 24 h. Scale bar �
100 �m. Quantification of cell death was performed using an LDH release assay. Cells treated with 0.1% Tween 20 were used to calculate 100% cell death. Error
bars represent S.D. (n � 3). ***, p � 0.001, calculated by one-way ANOVA with Tukey’s post hoc test. D, immunoblot analysis of U251, T98G, and LN229 cells
cultured at LD or HD for 48 h.
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The activity of mTOR is required for xCT expression and
glucose deprivation–induced cell death

We next examined the mechanism involved in cell density–
dependent regulation of xCT expression in glioblastoma cells.
Previous studies reported that the mTOR signaling pathway is

inhibited at HD (23, 24). Consistent with this, the phosphory-
lation levels of p70 S6 kinase (p-S6K), a downstream target of
mTOR, were suppressed in U251, T98G, and LN229 cells when
they were cultured at HD (Fig. 2A). The levels of Akt phosphor-
ylation (threonine 308) were also slightly decreased, but cell

Figure 2. Inhibition of mTOR activity down-regulates xCT and suppresses glucose deprivation-induced cell death. A, immunoblot analysis of U251,
T98G, and LN229 cells cultured at LD or HD for 48 h. ERK, extracellular signal-regulated kinase. B, immunoblot analysis of U251, T98G, and LN229 cells treated
with Torin 1 (250 nM) at LD for 24 h. C, U251, T98G, and LN229 cells were cultured at LD with or without Torin 1 for 48 h and placed in medium with or without
glucose (Glc, 5 mM) for 24 h. D, U251 cells cultured at LD or HD were replaced in fresh medium (FM) or conditioned medium (CM) collected from HD culture after
48 h. Cells were then placed in medium with or without glucose (5 mM) for 24 h. Cell death 24 h after medium change was quantified using an LDH release assay.
Cells treated with 0.1% Tween 20 were used for calculating 100% cell death. Error bars represent S.D. (n � 3). ***, p � 0.001; **, p � 0.01; n.s., not significant;
calculated by one-way ANOVA with Tukey’s post hoc test.
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density had little effect on the levels of extracellular signal-reg-
ulated kinase phosphorylation. Therefore, we focused on the
effects of the mTOR inhibitor Torin 1 on xCT expression.
Treatment of glioblastoma cells with Torin 1 at LD reduced the
protein levels of xCT in U251, T98G, and LN229 cells (Fig. 2B).
CD98 expression was also slightly affected by Torin 1. Further-
more, Torin 1 treatment significantly suppressed glucose
deprivation–induced cell death in U251, T98G, and LN229
cells cultured at LD (Fig. 2C). These results suggest that mTOR
activation plays a key role in xCT expression and cell viability
under glucose deprivation.

mTOR is inactivated after exhaustion of cell medium in nor-
mal epithelial cells (23). Therefore, we next examined whether
the medium from HD culture can inhibit glucose deprivation–
induced cell death at LD. However, the medium from U251 cell
culture at HD (conditioned medium) had little effect on glucose
deprivation-induced cell death at LD (Fig. 2D). In addition,
replacement of the medium with fresh medium also had no
effect on cell viability in U251 cells under glucose deprivation at
HD. Therefore, it is likely that inactivation of mTOR activity at
HD was not due to exhaustion of the medium under our exper-
imental conditions.

HD promotes lysosomal degradation of xCT in glioblastoma
cells

A previous study reported that the protein stability of xCT
is regulated by the deubiquitinase OTUB1 in a proteasome-
dependent manner (25). The proteasome inhibitor MG132
increased the protein levels of xCT in U251 cells at LD and HD
(Fig. 3A). On the other hand, treatment with the lysosome
inhibitor Bafilomycin A1 (BafA1) increased xCT expression in
U251 cells at HD but had little effect on the protein level of xCT
at LD (Fig. 3B). Similar results were obtained in T98G and
LN229 cells, but MG132 did not increase the xCT protein level
in T98G cells at LD. These results suggest that HD promotes
degradation of xCT, at least in part, in a lysosome-dependent
manner. On the other hand, the steady state levels of xCT in
U251 and LN229 cells are regulated by proteasome-dependent
degradation. In U251 cells, HD slightly decreased the protein
level of CD98, suggesting that cell density regulates CD98 pro-
tein expression in a cell type–specific manner.

Previous studies reported that activation of mTOR induces
suppression of catabolic processes, including lysosomal degra-
dation (26, 27). Therefore, we next examined whether lyso-
somal degradation functions in Torin 1–induced down-regula-
tion of xCT in glioblastoma cells at LD. Treatment with BafA1
restored the levels of xCT protein in Torin 1–treated U251,
T98G, and LN229 cells at LD (Fig. 3C). These results suggest
that inhibition of mTOR activity is sufficient for lysosomal deg-
radation of xCT in glioblastoma cells.

We next examined the localization of xCT in U251 cells cul-
tured at LD and HD to confirm that xCT is degraded in lyso-
somes at HD. In U251 cells at LD, xCT was observed through-
out the cells (Fig. 4A). In U251 cells at HD, xCT labeling was
very low, consistent with Western blot data (Fig. 4B). However,
xCT was observed in vesicular structures, some of which were
stained by an antibody against LAMP2, a marker for lysosomes,
in U251 cells treated with BafA1 at HD (Fig. 4C). As reported

previously (28, 29), the LAMP2-labeled membranes were
enlarged in BafA1-treated cells, probably because of accumula-
tion of undegraded material in lysosomes. These results suggest
that xCT is recruited to lysosomes for degradation in glioblas-
toma cells at HD.

Inhibition of lysosomal activity in glioblastoma cells at HD
promotes glucose deprivation–induced cell death

We measured glutamate release into the medium to examine
whether the increased xCT protein level by lysosomal inhibi-
tion at HD leads to increased cystine– glutamate exchange. As
we reported previously (30), glutamate release was detected
when U251 cells were placed in amino acid–free medium sup-
plemented with cystine and glutamine at LD. However, it was
greatly reduced in U251 cells at HD (Fig. 5A). Treatment with
BafA1 partially restored glutamate release (Fig. 5B). These
results suggest that inhibition of lysosomal activity in U251 cells
at HD increases the level of functional xCT protein. We next
examined the effects of lysosomal inhibition on glucose
deprivation–induced cell death and found that BafA1 increased
the level of cell death in U251 cells at HD (Fig. 5C). To confirm
that the increased level of xCT was responsible for HD-induced
promotion of cell viability under glucose deprivation, we estab-
lished U251 cells stably expressing xCT, in which high protein
levels of xCT were observed even at HD. Overexpression of
xCT restored glucose deprivation–induced cell death in U251
cells cultured at HD (Fig. 5D), suggesting that down-regulation
of xCT by lysosomal degradation at HD improves cell viability
under glucose deprivation in glioblastoma cells. In xCT-trans-
fected cells, we observed a higher CD98 signal than in untrans-
fected cells. The reason for this is unknown, but CD98 func-
tions as a chaperone-like protein to direct xCT to the plasma
membrane (5, 7), and increased xCT expression may require
increased protein levels of CD98.

Discussion

The viability of cancer cells is regulated by numerous factors,
including environmental conditions. In this study, we found
that cell density influences the viability of glioblastoma cells
under glucose-limited conditions. In glioblastoma cells, lyso-
somal activity is negatively regulated by mTOR, and HD inhib-
its mTOR activity, which results in promotion of lysosomal
degradation of xCT. Glioblastoma cells expressing high levels
of xCT undergo cell death when exposed to glucose depriva-
tion. Therefore, reduced protein levels of xCT lead to improved
cell viability of glioblastoma cells under glucose deprivation.
Thus, our results suggest that cell density controls sensitivity to
low glucose in glioblastoma cells and that this mechanism
involves lysosomal degradation of xCT (Fig. 5E). As increased
xCT expression in HD by lysosomal inhibition or ectopic
expression of xCT did not fully restore glucose deprivation–
induced cell death, we did not exclude the possibility that
another mechanism is involved in promotion of cell viability
in glioblastoma cells at HD. There is a positive correlation
between xCT expression and tumor growth and poor survival.
However, when glioblastoma cells are exposed to glucose dep-
rivation at LD, higher expression of xCT conversely causes oxi-
dative stress and cell death. Therefore, inhibition of glucose
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metabolism may be an attractive therapeutic strategy for glio-
blastoma, with higher expression of xCT at LD.

Different cell conditions often affect cell viability. In partic-
ular, contact inhibition or HD controls cell survival and prolif-
eration. One important mechanism underlying contact inhibi-
tion is the Hippo signaling pathway. When cells are plated at
HD, the Hippo signaling pathway is activated, which results in
distribution of Yes-associated protein/transcriptional coactivator
with PDZ-binding motif from the nucleus to the cytosol and
their inactivation, leading to cessation of cell proliferation (31–
33). Although cancer cells lose contact inhibition and induce
dysregulated proliferation, it has been reported that cell density
also affects viability in cancer cells. For example, HD causes
drug resistance and increases cell viability in many cancer cells,

including glioblastoma (34 –36). HD also protects cancer cells
from ferroptosis (37, 38), although the precise mechanisms
remain to be elucidated. On the other hand, HD inhibits mTOR
and prevents cellular senescence (23). In this study, we found
that HD promotes glioblastoma cell viability under glucose
deprivation via mTOR inactivation and degradation of xCT. As
cystine uptake through xCT functions in GSH synthesis in
many cancer cells, cell density may affect the amount of GSH
and the antioxidant ability of cancer cells.

Expression of xCT is regulated transcriptionally and post-
translationally in response to different stimuli. It is well-known
that NRF2 and ATF4 transcription factors induce xCT mRNA
expression under oxidative stress conditions, whereas xCT
expression is negatively regulated by the p53 tumor suppressor

Figure 3. HD promotes lysosomal degradation of xCT. A, immunoblot analysis of U251, T98G, and LN229 cells cultured at LD or HD with or without MG132
(20 �M) for 24 h. B, immunoblot analysis of U251, T98G, and LN229 cells cultured at LD or HD with or without BafA1 (1 �M) for 24 h. The xCT/�-tubulin ratio
relative to that of vehicle treatment at LD is shown (mean � S.D. of three independent experiments). C, immunoblot analysis of U251, T98G, and LN229 cells
cultured at LD with or without BafA1 (1 �M) or Torin 1 (250 nM) for 24 h. ***, p � 0.001; **, p � 0.01; *, p � 0.05; n.s., not significant, calculated by one-way ANOVA
with Tukey’s post hoc test.

Degradation of xCT in glioblastoma cells at high density

6940 J. Biol. Chem. (2020) 295(20) 6936 –6945



protein (5, 7, 12, 13, 39). The stability of xCT protein is also
regulated by its binding partners. A variant of CD44, an adhe-
sion molecule for the extracellular matrix, binds to xCT and
stabilizes it at the plasma membrane, promoting GSH synthesis
and suppressing reactive oxygen species generation in cancer
cells (40). Epidermal growth factor receptors also promote sur-
face expression of xCT (41). In addition, interaction with CD44
promotes interaction of xCT with OTUB1, an ovarian tumor
family deubiquitinase, and increases xCT protein stability (25).
We demonstrated that mTOR activation increases xCT protein

levels by suppressing lysosomal degradation in glioblastoma
cells. Therefore, expression of xCT is regulated by multiple
mechanisms in response to different stimuli. It has been sug-
gested that there is cross-talk between the lysosomal and pro-
teasomal degradation systems (42, 43). For example, protea-
somal inhibitors induce compensatory actions to cause
autophagy and lysosomal degradation (44 –46). On the other
hand, lysosomal inhibition has been found to increase or reduce
proteasomal activity (47, 48). Thus, the relationship between
the lysosomal and proteasomal pathways is complicated, and

Figure 4. Localization of xCT in U251 cells at LD and HD. A–C, confocal images of U251 cells cultured at LD (A) and HD (B) or treated with BafA1 (1 �M) at HD
for 48 h (C). Cells were stained with anti-xCT (red) and anti-LAMP2 (green) antibodies. Nuclei were also stained with Hoechst 33258 (blue). Scale bar � 10 �m.
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we cannot exclude the possibility that the proteasomal pathway
is involved in xCT degradation at HD. On the other hand, sev-
eral studies previously reported regulatory mechanisms of xCT
activity. The component of the class III phosphatidylinositol
3-kinase complex BECN1 binds to xCT when it is phosphory-
lated by AMP-activated protein kinase and negatively regulates
xCT activity (49). The activity of xCT is also negatively regu-
lated by phosphorylation on serine 26 in the N-terminal cyto-
solic region (50, 51), although it is unclear whether this affects
xCT protein stability.

Regulation of mTOR activity is important for cancer cells
to proliferate and survive. The activity of mTOR is con-
trolled by growth factors, nutrients, cellular energy levels,
and extracellular oxygen levels (16, 18, 52, 53). When glio-
blastoma cells are cultured at HD, the activity of mTOR is
suppressed, consistent with previous studies using other
types of cancer cells (23, 24). As conditional medium from

glioblastoma cells cultured at HD had little effect on xCT
expression, it is unlikely that factors secreted from the cells
or exhaustion of the medium plays a role in mTOR inactiva-
tion or degradation of xCT. How mTOR is regulated in
response to cell density in glioblastoma cells should be inves-
tigated in future studies. On the other hand, there is a close
relationship between mTOR activity and lysosomal function
(26, 54). The basic helix–loop– helix transcription factor EB
induces expression of genes encoding proteins involved in
lysosomal function (55), and mTOR phosphorylates and
sequesters transcription factor EB in the cytoplasm, leading
to inhibition of lysosomal gene expression (56, 57). Activa-
tion of mTOR also controls lysosomal functions through
ATP-sensitive Na� channels (27). Thus, regulation of mTOR
activity is essential for lysosomal activity and protein degra-
dation. Last, it is important for future studies to investigate
how xCT is delivered to lysosomes in response to HD.

Figure 5. Inhibition of lysosomal activity promotes glucose deprivation–induced cell death. A, U251 cells cultured at LD or HD for 48 h were placed in
amino acid–free medium with or without cystine (0.2 mM) and glutamine (2 mM) for 4 h, and glutamate released into the medium was measured. B, U251 cells
were cultured at HD with or without BafA1 (1 �M) for 48 h. The cells were placed in amino acid–free medium with or without cystine (0.2 mM) and glutamine (2
mM) for 4 h, and glutamate released into the medium was measured. C, U251 cells were cultured at LD or HD with or without BafA1 (1 �M) for 48 h and placed
in medium with or without glucose (Glc, 5 mM) for 24 h. D, U251 cells expressing FLAG-tagged xCT were cultured at LD or HD for 48 h and placed in medium with
or without glucose (5 mM) for 24 h. Cell death 24 h after medium change was quantified using an LDH release assay. Cells treated with 0.1% Tween 20 were used
for calculating 100% cell death. E, model of cell density– dependent glioblastoma cell death under glucose deprivation. Error bars represent S.D. (n � 3). ***, p �
0.001, calculated by one-way ANOVA with Tukey’s post hoc test.
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Experimental procedures

Plasmids and reagents

The expression plasmid pCXN2 vector was a generous gift
from Dr. J. Miyazaki (Osaka University). The coding sequence
for human xCT was amplified by RT-PCR from HeLa cells and
subcloned into pCXN2 with a FLAG tag sequence at the C
terminus. Medium without glucose or amino acids was pre-
pared as described previously (14). Inhibitors were used at the
following concentrations: Torin 1 (Merck, 250 nM), BafA1
(Cayman Chemical, 1 �M), and MG132 (Wako Pure Chemical
Industries, 10 �M).

Cell culture and transfection

U251 cells were obtained from the European Collection of
Authenticated Cell Cultures (EC09063001). T98G cells were
provided by the RIKEN BRC through the National Bio-Re-
source Project of the MEXT, Japan (RCB1954). LN229 cells
were obtained from the ATCC (CRL-2611). They were grown
in DMEM containing 10% FBS, 4 mM glutamine, 100 units/ml
penicillin, and 0.1 mg/ml streptomycin in humidified air con-
taining 5% CO2 at 37 °C. Transfection of U251 cells was per-
formed using Lipofectamine 2000 (Life Technologies). All cell
lines were tested and found to be negative for mycoplasma con-
tamination using the EZ-PCR Mycoplasma Test Kit (Biological
Industries). To generate U251 cells stably expressing xCT-
FLAG, U251 cells were seeded in a 6-cm dish (250,000 cells/
dish) and transfected with pCXN2-xCT-FLAG 24 h later. Two
days after transfection, the cells were collected and seeded in
two 10-cm dishes in medium containing 250 �g/ml G418
(Wako) to eliminate untransfected cells. Ten days after selec-
tion, colonies grown from single cells were isolated. These
clones were expanded and screened by immunoblotting with
anti-xCT and anti-FLAG antibodies.

Glucose deprivation conditions and cell death experiments

Cells were plated in a 48-well plate (Greiner Bio-One,
677180) at LD (1 � 104 cells/well) or HD (1 � 105 cells/well).
48 h after plating, cells were rinsed twice with PBS, and the
medium was replaced with glucose-free medium containing
10% dialyzed FBS (HyClone) for 24 h. Cell death was measured
by LDH release assay using the MTX LDH kit (Kyokuto Phar-
maceutical Industrial) according to the manufacturer’s instruc-
tions. The optical density was measured at 595 nm using a
microplate reader (Tecan, GENious). The value of LDH release
after treatment with 0.1% Tween 20 was defined as 100% cell
death.

Immunoblotting and antibodies

Cell lysates cultured at LD or HD for 48 h were analyzed by
immunoblotting as described previously (28). The signals were
captured with an Amersham Biosciences Imager 600 (GE
Healthcare/Life Sciences). Densitometric analysis was per-
formed using Amersham Biosciences Imager 600 analysis soft-
ware. The following antibodies were used in this study: antibod-
ies against xCT/SLC7A11 (12691), CD98/4F2hc (47213),
phospho-p70 S6 kinase (Thr-389, 9234), p70 S6 kinase (9202),
Thr-202/Tyr-204 phospho-extracellular signal-regulated kinase

(4370), p44/42 mitogen-activated protein kinase (4695), Thr-
308 phospho-Akt (2965), and Akt (9272) (Cell Signaling Tech-
nology); anti-�-tubulin antibody (T5168) and anti-FLAG anti-
body (M2, F1804, Sigma-Aldrich); and secondary antibodies
against mouse IgG (P0447) and rabbit IgG (P0448) conjugated
to horseradish peroxidase (DAKO).

Immunofluorescence microscopy

Cells cultured at LD or HD on coverslips for 48 h were fixed
with 4% paraformaldehyde in PBS for 20 min and washed with
PBS five times. Cells were permeabilized with 0.2% Triton
X-100 in PBS for 10 min and incubated with 10% FBS in PBS for
30 min to block nonspecific antibody binding. Then cells were
incubated with anti-xCT antibody (1:1000) and anti-LAMP-2
antibody (1:200, sc-18822, Santa Cruz Biotechnology) in PBS
for 24 h. After washing with PBS, cells were incubated with
anti-mouse IgG conjugated with Alexa Fluor 488 (A11029,
Thermo Fisher Scientific), anti-rabbit IgG conjugated with
Alexa 594 (A11037, Thermo Fisher Scientific), and Hoechst
33258 (H1398, Thermo Fisher Scientific, 250 ng/ml) in PBS for
1 h. After washing with PBS, cells were mounted in 90% glycerol
containing 0.1% p-phenylenediamine dihydrochloride in PBS.
Images were captured using a confocal microscope (FV3000)
with a �60 PLAPON objective (Olympus Co. Ltd.).

Glutamate release assay

U251 cells plated in a 48-well plate at LD or HD were cul-
tured for 48 h. They were then rinsed twice with PBS, and the
medium was replaced with amino acid–free medium supple-
mented with or without 0.2 mM cystine and 2 mM glutamine for
4 h. Glutamate release into the medium was measured using
The L-Glutamate Assay Kit YAMASA NEO (Yamasa Corp.)
according to the manufacturer’s instructions. To normalize the
cell number, protein concentration in each well was measured
using the Protein Assay BCA Kit (Nacalai Tesque).

Data analysis

Data were analyzed using analysis of variance (ANOVA) with
Tukey honestly significant difference post hoc test. p � 0.05
was considered significant. Statistical analyses were performed
using KaleidaGraph (Synergy Software).

Data Availability

All data are contained within the manuscript.
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