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Genetic screening has identified numerous variants of the
endosomal solute carrier family 9 member A6 (SLC9A6)/
(Na�,K�)/H� exchanger 6 (NHE6) gene that cause Christianson
syndrome, a debilitating X-linked developmental disorder asso-
ciated with a range of neurological, somatic, and behavioral
symptoms. Many of these variants cause complete loss of NHE6
expression, but how subtler missense substitutions or nonsense
mutations that partially truncate its C-terminal cytoplasmic
regulatory domain impair NHE6 activity and endosomal func-
tion are poorly understood. Here, we describe the molecular and
cellular consequences of six unique mutations located in the
N-terminal cytoplasmic segment (A9S), the membrane ion
translocation domain (L188P and G383D), and the C-terminal
regulatory domain (E547*, R568Q, and W570*) of human NHE6
that purportedly cause disease. Using a heterologous NHE6-de-
ficient cell expression system, we show that the biochemical,
catalytic, and cellular properties of the A9S and R568Q variants
were largely indistinguishable from those of the WT trans-
porter, which obscured their disease significance. By contrast,
the L188P, G383D, E547*, and W570* mutants exhibited vari-
able deficiencies in biosynthetic post-translational maturation,
membrane sorting, pH homeostasis in recycling endosomes,
and cargo trafficking, and they also triggered apoptosis. These
findings broaden our understanding of the molecular dysfunc-
tions of distinct NHE6 variants associated with Christianson
syndrome.

Genetic variants or aberrant expressions of SLC9A6 (solute
carrier family 9, member A6), an X chromosome gene encoding
the alkali cation (Na�,K�)/proton (H�) exchanger NHE6 iso-
form, have been linked to multiple neurological conditions,
including Christianson syndrome (CS)2 (1–24), autism spec-

trum disorder (25, 26), schizophrenia (25), chromesthesia (i.e.
auditory-visual synesthesia) (27), idiopathic Parkinson’s dis-
ease (28), and Alzheimer’s disease (29, 30). Evidence establish-
ing a direct causal relationship between altered gene function
and phenotype is strongest for CS, a debilitating neurodevelop-
mental disorder manifested in males by moderate to severe
intellectual disability, autistic-like behavior, epilepsy, micro-
cephaly, mutism, hypotonia, sensory and motor dysfunction,
neurodegeneration, and a shortened life span (1, 15). Female
carriers exhibit variable penetrance and milder symptoms (1,
21, 22, 31). A CS-like phenotype is also reiterated in Slc9a6/
Nhe6 knockout (KO) male mice (Nhe6�/Y), including atrophy
and degeneration of cortical, hippocampal, and especially cer-
ebellar Purkinje neurons that parallel deficits in visuospatial
memory and motor dexterity, and increased mortality prior to
weaning (32–34). Likewise, heterozygous Nhe6 KO female
mice (Nhe6�/�) display a comparable, albeit milder, range of
symptoms (35).

The precise mechanisms by which altered NHE6 activity
cause CS are not fully understood. The NHE6 gene is widely
transcribed, with highest expression in the central nervous sys-
tem (CNS), which likely explains the marked neurological mor-
bidity of CS (36, 37). Within cells, NHE6 resides in vesicles
along the recycling endosomal pathway (37–39) where it oper-
ates as an electroneutral H� efflux pathway to moderate
intraluminal acidification driven by electrogenic vacuolar
H�-ATPase (V-ATPase) pumps and 2Cl�/H� exchangers, the
latter providing a counterion shunt to accumulate endosomal
chloride that reduces the luminal positive charge and facilitates
acidification. Collectively, these ion carriers attain an intralu-
minal pH that ranges between �6.0 and 6.6 along this pathway
(39 –42). This tempered acidification enables efficient dissoci-
ation and dephosphorylation of many activated ligand–
receptor complexes internalized from the cell surface (43). The
unbound dephosphorylated receptors, in turn, can be salvaged
and returned to the plasma membrane for reuse while the freed
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ligands are transferred to more acidic late endosomes/multive-
sicular bodies (pH �5.0 –5.5) and lysosomes (pH �4.6 –5.0) for
degradation by acid hydrolases (43–47). Proper acidification of
endosomes is also important for their efficient movement
within cells (41, 48), although the mechanisms linking intralu-
minal acidification to the vesicular trafficking machinery are
not fully understood (49, 50). In the case of early/recycling
endosomes, suppressing NHE6 expression in cervical cancer
HeLa cells by small interfering RNA (siRNA) caused excessive
endosomal acidification that correlated with impaired traffick-
ing of a subset of clathrin-dependent recycling endosomal
cargo (51). In polarized hepatoma HepG2 cells, siRNA knock-
down of NHE6 selectively decreased the intraluminal pH of
subapical recycling endosomes accompanied by gradual loss of
apical surface bile canalicular proteins and lipids (52). Thus in
CS, it has been postulated that defects in NHE6 will compro-
mise endosomal pH homeostasis and cargo trafficking in many
tissues, but especially the CNS, leading to pleiotropic patho-
physiological disturbances. This is supported by studies of
mouse hippocampal neurons where disruption of NHE6
expression resulted in overacidification of early and recycling
endosomes and diminished signaling from the tropomyosin or
tyrosine receptor kinase B (TrkB) (33) and the �-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptor (53, 54)
that correlated with reduced neurite outgrowth and branching,
synapse density and maturation, and circuit strength.

More than 80 genetic variants of NHE6 have been identified
thus far (1–23) (also see ClinVar (RRID:SCR_006169) and
DECIPHER (RRID:SCR_006552)), many of which are frame-
shift and nonsense mutations or mRNA-splicing defects in the
ion translocation domain (amino acids 25–533) that are pre-
dicted to result in total loss of NHE6 protein. However, the
consequences on endosomal and cellular function of other CS-
linked NHE6 mutations that may not lead to a complete loss of
protein expression or function have been less well-documented
(53, 55–57). These include missense substitutions, small in-
frame deletions, or nonsense mutations in the C-terminal
regulatory domain that may generate protein products with
altered functional properties (i.e. dominant-negative or consti-
tutively-active) which, alongside other genetic factors, could
contribute to reported variations in disease severity of CS
patients (15).

In this report, we describe the consequences of previously
uncharacterized CS-associated variants of NHE6 on various
molecular and cellular parameters in transfected cells. Our
results show that whereas some variants appear benign, others
impair NHE6 protein biosynthetic maturation and membrane
sorting to different extents, but ultimately they adversely affect
recycling endosomal function and cell viability. Collectively,
our findings provide greater insight into the dynamics of NHE6
dysfunction in CS and should prove valuable in the future
design and development of potential therapeutic strategies for
treating this neurodevelopmental disorder.

Results

To broaden our understanding of the molecular and cellular
mechanisms underlying this disorder, we examined six re-
ported inherited and de novo mutations located in the short

N-terminal cytoplasmically-located segment (amino acids
1–24) (c.25G3T:pAla9 3 Ser, A9S) (3), the transmembrane
ion translocation domain (amino acids 25–533) (c.563T3C:
Leu1883 Pro, L188P; c.1148G3A:Gly3833 Asp, G383D) (5,
15), and the longer C-terminal cytoplasmic regulatory domain
(amino acids 534 –701) (c.1639G3T: Glu547 3 Ter, E547*;
c.1703G3A:Arg568 3 Gln, R568Q; c.1710G3A:Trp570 3
Ter, W570*) (4, 12, 15, 19, 25, 58) of the longest splice-variant of
human NHE6 (NM_001042537.1, also called NHE6v1 but here-
after simply referred to as NHE6). The positions of these amino
acids are indicated in the predicted planar transmembrane
organization of NHE6 (Fig. 1A) based on the proposed topology
of NHE1 (59, 60). These mutations occur at highly-conserved
sites in NHE6 orthologs from mammals to fruit flies, suggestive
of functional importance (Fig. 1B). Transcripts containing the
C-terminal premature stop codon mutations (E547* and
W570*) remove the bulk of the cytoplasmic regulatory domain
(i.e. the last 155 and 132 amino acids, respectively) and may be
subject to nonsense-mediated mRNA decay (61). However, if
translated, such truncations might remove putative signal
sequences important for the membrane trafficking and/or reg-
ulation of the transporter and therefore merit further investi-
gation as little is known about this region of the transporter.

Structural modeling of the L188P and G383D variants

Of the aforementioned six mutations, two (L188P and
G383D) were localized within the transmembrane ion translo-
cation domain, which afforded an opportunity to assess the
theoretical structural and functional implications of these sub-
stitutions by structure homology modeling. In this regard, we
previously described a putative structural model of the human
NHE6 N-terminal transmembrane region (encompassing resi-
dues 74 –540) in its monomeric state using the spatial atomic
coordinates of the outward-facing conformation of the Ther-
mus thermophilus Na�/H� antiporter NapA (57, 62). However,
mammalian NHEs, like their bacterial homologs, normally
form homodimers (63). A homodimer ribbon model of NHE6 is
now displayed in its frontal and top configurations in Fig. 2A. In
the wildtype (WT) exchanger, Leu188 is adjacent to two consec-
utive proline residues (Pro189 and Pro190) in the middle of
membrane-spanning helix 4 (M4). The latter di-proline motif
would typically be expected to interrupt and break a helix (64).
However, subjecting the helix to molecular dynamics (MD)
simulations (for description, see “Experimental procedures”)
stretched out the segment containing the proline residues due
to the absence of H-bonds in this location but did not break the
helical formation completely (illustrated in monomer, Fig. 2B,
left panel). Although very rare, it is possible to have two con-
secutive prolines without disrupting a helix (65, 66). How-
ever, replacement of Leu188 with proline results in three con-
secutive prolines, which is predicted by MD simulations to
unravel the helix, resulting in a much shorter helical segment
(Fig. 2B, right panel). Because the homologous M4 segment
in the plasmalemmal NHE1 isoform is thought to form a
critical part of the ion translocation pathway (60, 67, 68), it is
very likely that the L188P substitution affects the function-
ality of the transporter.
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The consequences of the G383D mutation are also predicted
to significantly perturb protein structure and function. In the
modeled WT structure, Gly383 is located close to the bend of an
intramembranous re-entrant loop (R-loop) between helices M8
and M9 and packed tightly against amino acids Phe373, Ala376,
and Glu377 (Fig. 2C), a segment strongly implicated in ion per-
meation (69, 70). Replacing Gly383 with an aspartic acid residue
would result in steric clashes between these residues and inter-
fere with the packing between these segments of the R-loop
(Fig. 2C). Furthermore, this substitution would also disrupt
interactions of R-loop residues Trp379, Phe381, and especially
Thr382 with residues Asp292 and Ile296 in helix M7 and residues
Ile330, Phe331, and Ser334 in helix M8 (Fig. 2D). Notably, amino
acid Asp292 is invariant in all mammalian NHEs, and its homo-
logous residue in human NHE1 (i.e. Asp267) is critical for cata-
lytic activity (71). Thus, it is probable that the G383D mutation
would also disrupt the conformation and function of NHE6.

Biosynthetic maturation and stability of the NHE6 variants

To empirically visualize and evaluate the functional signifi-
cance of the individual variants, we engineered them into the
WT human NHE6 cDNA that was fused at its C terminus to

either enhanced green fluorescent protein (GFP), monomeric
Cherry fluorescent protein (ChFP), or influenza hemagglutinin
(HA)-epitope (NHE6GFP, NHE6ChFP, or NHE6HA, respec-
tively). We previously showed that the molecular and cellular
properties of these chimeric constructs were indistinguishable
from unmodified NHE6 when examined in AP-1 cells, a Chi-
nese hamster ovary-derived cell line lacking detectable levels of
endogenous NHE6, and therefore serve as a useful cell model
system to study this transporter (53).

To assess their biosynthetic maturation, mammalian expres-
sion plasmids containing the NHE6GFP constructs were tran-
siently transfected in AP-1 cells, and their total cellular expres-
sion was monitored over a 48-h period by Western blotting.
Consistent with previous results (56), the homodimeric WT
transporter fractionated as multiple bands that correspond to
its dissociated, newly-synthesized core-glycosylated (�85–90
kDa), and fully-glycosylated (�110 –130 kDa) monomeric spe-
cies, and its fully-glycosylated dimeric form (�250 kDa) that
does not fully dissociate under standard SDS-PAGE conditions
(Fig. 3A) (53). Dimeric assembly was observed for all constructs,
suggesting that formation of their quaternary structures was
not grossly perturbed. However, whereas post-translational oli-

Figure 1. Location of missense and nonsense mutations in SLC9A6/NHE6 variants of patients with Christianson syndrome. A, schematic planar drawing
of the predicted membrane topology of the longest splice-variant of mammalian NHE6 and location of the mutations (yellow circles). Two consensus N-linked
glycosylation sites (128NVT and 145NVS) within extracellular loop 2 have been verified experimentally (data not shown) and are illustrated in the drawing. B,
phylogenetic comparison of the primary sequence of segments containing the various mutations in NHE6. The affected residues are shaded in black.
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gosaccharide maturation proceeded normally for A9S and
R568Q, the ratio of fully-glycosylated (monomer and dimer) to
total NHE6 protein expression was noticeably impaired for the
other four mutants compared with WT (Fig. 3A), showing sig-
nificant reductions (�70 –90%; two-way ANOVA, p � 0.05)
at peak expression (between 24 and 32 h post-transfection)
as quantified by densitometry (see “Experimental proce-

dures” for details) (Fig. 3B). Total protein expression of these
latter mutants was also noticeably diminished at 48 h post-
transfection compared with WT, indicative of increased pro-
tein clearance.

The stability of the NHE6 constructs was further examined
by pulse– chase experiments. After 24 h of transient transfec-
tion, cells were treated with cycloheximide for an additional

Figure 2. Structure homology modeling of transmembrane NHE6 variants associated with Christianson syndrome. A, front (membrane aspect, left
panel) and top (extracellular aspect, right panel) views of a 3D structure homology model of dimeric human NHE6 based on the crystal structure of the bacterial
T. thermophilus Na�/H� antiporter NapA (TtNapA) (Protein Data Bank accession code 5bz3; 2.30 Å, 15% identity, 27% similarity), which provided the broadest
coverage, highest resolution, and best spatial fit compared with other crystallized bacterial Na�/H� antiporters. The proposed structure includes only the
membrane-spanning helices (M2–M12; amino acids 74 –540) that aligned with homologous segments of TtNapA. The top view includes the locations of the
transmembrane-localized residues Leu-188 and Gly-383 mutated in CS. B, molecular dynamics simulation of structural changes predicted to occur in TM4
(highlighted in cyan) upon substitution of Leu-188 with Pro (L188P). The monomeric forms of NHE6 WT and L188P are illustrated. C and D, structural perturba-
tions predicted to occur in the intramembranous re-entrant (R) loop between helices M8 and M9 upon substitution of Gly-383 with Asp (G383D). C, upper and
lower panels show front and top views, respectively, of Gly-383, which is packed tightly against amino acids Phe-373, Ala-376, and Glu-377 (top left). Mutation
of Gly-383 to Asp would result in steric clashes between these residues and interfere with the packing between these segments of the R-loop. D, G383D
substitution would also disrupt interactions of R-loop residues Trp-379, Phe-381, and especially Thr-382 with residues Asp-92 and Ile-296 in helix M7 and
residues Ile-330, Phe-331, and Ser-334 in helix M8.
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4 –24 h to inhibit de novo protein synthesis while monitoring
levels of the previously synthesized transporters as a function of
time. As shown in Fig. 4, levels of the core-glycosylated forms of
WT, A9S, and R568Q at 24 h post-transfection matured to their
fully-glycosylated states within 4 h after cycloheximide treat-
ment and then remained relatively stable over the ensuing 20-h
period. By contrast, the L188P, G383D, E547*, and W570*

mutants showed reduced oligosaccharide maturation and
abundance over the course of the pulse– chase period. As a
control for protein loading, we measured the expression of the
glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and found it to be constant over the treatment
period. These results are consistent with reduced stability of
these variants.

Figure 3. Assessment of the biosynthetic maturation of NHE6 variants. A, AP-1 cells transiently expressing NHE6GFP WT or CS-linked variants were lysed at
the indicated time points (6 – 48 h) post-transfection. Equal amounts of proteins (20 �g) were subjected to SDS-PAGE and immunoblotting with a polyclonal
anti-GFP antibody. NHE6 migrates as multiple bands: higher molecular weight bands represent the fully-glycosylated (fg) and core-glycosylated (cg) dimeric (d)
forms of the exchanger that do not fully dissociate under SDS-PAGE conditions, whereas lower molecular weight bands represent fully-glycosylated and
core-glycosylated forms of the dissociated monomeric (m) protein. The blots were stripped and reprobed with a mouse monoclonal anti-GAPDH antibody to
control for protein loading. B, ratios of fully-glycosylated protein (monomer and dimer)/total NHE6 protein (fg/total) were quantified by densitometry of X-ray
films exposed in the linear range and analyzed using ImageJ software. Values represent the mean � S.D. of three different experiments. Significance was
determined by two-way ANOVA with a post hoc Tukey test. The NHE6 variants clustered into two groups: 1) WT, A9S, and R568Q and 2) L188P, G383D, E547*,
and W570*, with variants within each cluster yielding similar statistical values. Population means of the NHE6 variants are significantly different (F value � 26.4,
p value � 1.5 	 10�16). Population means as a function of time are significantly different (F value � 48.6, p value � 1.9 	 10�19). § indicates significance (p �
0.01) of the means of NHE6 variants within a cluster relative to the 12-h time point. Asterisks indicate significance (�, p � 0.05, and ��, p � 0.01) of the means
between clusters of NHE6 variants at the indicated time points.
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The delayed processing and enhanced turnover of the L188P,
G383D, E547*, and W570* mutants could arise by redirecting
the defective transporters to proteasomes and/or lysosomes.
To assess this possibility, another pulse– chase experiment was
performed with transiently-transfected cells (24 h) expressing
the various NHE6 constructs incubated with cycloheximide
and inhibitors of proteasomal (MG132) (72) or lysosomal (leu-
peptin plus pepstatin, LeuP) (73, 74) proteolysis over an 8-h
period. As expected, both types of inhibitors had no appreciable
effect on WT, A9S, and R568Q levels compared with vehicle-
treated controls (Fig. 5). By comparison, suppression of protea-
somal, but not lysosomal, proteolysis partially reduced the cel-
lular loss of L188P, G383D, E547*, and W570* and resulted in
the appearance of a unique high-molecular-weight NHE6 band
above the fully-glycosylated dimeric band (indicated by an
asterisks) for each of these variants. Although the nature of this
band was not examined empirically, it likely represents polyu-
biquitinated or possibly aggregated forms of these variants that
accumulated upon proteasomal inhibition. The absence of an
effect of the lysosomal protease inhibitors leupeptin and pep-
statin, which are only moderately cell-permeant, prompted us
to test the effect of the lysosomotropic agent chloroquine, a
weak base that readily permeates and neutralizes acidic organ-
elles such as lysosomes and, as such, nonselectively represses
the actions of resident acid hydrolases (73, 75). Under these
conditions, chloroquine mildly impeded their clearance at 4 h,
but this was not sustained at the 8-h time point relative to dil-
uent-treated controls (Fig. 6). Collectively, these data implicate
a preferential role for the endoplasmic reticulum–associated

degradation (ERAD) pathway (76, 77), and to a lesser extent
lysosomes, in clearance of these variants.

Subcellular distribution of NHE6 variants

To visualize the subcellular distribution of the various NHE6
constructs, dual-labeling fluorescence confocal microscopy
was performed with NHE6ChFP and organellar markers in tran-
siently-transfected AP-1 cells at 48 h. This time point was cho-
sen based on the extent of the biosynthetic maturation of the
WT transporter that showed nominal core-glycosylation at
48 h post-transfection (presented in Fig. 3), indicating that the
bulk of newly-synthesized NHE6 had exited the ER and reached
a steady-state subcellular distribution. Representative images
are shown in Fig. 7A. As expected, the WT transporter was
present in tubulovesicular carriers distributed throughout the
cell, with fluorescence signals concentrated in the para-Golgi/
pericentriolar region but also dispersed peripherally in a spatial
pattern that overlapped extensively with Alexa FluorTM 488 –
conjugated transferrin (Tf-AF488), a marker of both slow
Rab11-dependent (pericentriolar) and fast Rab4-dependent
(peripheral) recycling endosomes (78, 79). The fraction of WT
NHE6ChFP that overlapped with Tf-AF488 in several cells was
quantified by calculating the thresholded Manders’ co-localiza-
tion coefficient (MCC) (80 –82), which revealed a high degree
of co-occurrence (mean � S.D., WT-Tf, 0.709 � 0.062, n � 6)
(Fig. 7B). An identical pattern was also observed for the A9S
variant (A9S-Tf: 0.622 � 0.038, n � 7, one-way repeated mea-
sures ANOVA with a post hoc Dunnett’s test, p � 0.05). The
R568Q mutant was similarly distributed but also tended to
accrue more visibly at the cell surface, which resulted in a small,
but statistically significant, decrease in its co-localization with
internalized Tf-AF488 (R568Q-Tf: 0.519 � 0.052, n � 6, p �
0.001) compared with WT. The L188P and G383D mutants
showed a more restricted and reduced overlap with Tf-AF488–
labeled endosomes, with the signals overlapping only partially
in the pericentriolar region and markedly less in the cell periph-
ery. This was reflected by significant decreases in their MCC
values for co-localization with Tf-AF488 compared with WT
(L188P-Tf: 0.522 � 0.039, n � 8; G383D-Tf: 0.467 � 0.105, n �
7; p � 0.001). Instead, sizable fractions of these mutants were
dispersed in a diffuse latticed pattern suggestive of partial accu-
mulation in the endoplasmic reticulum (ER). This was con-
firmed by enhanced overlap with the ER-resident protein
calnexin (CANX) (L188P–CANX: 0.410 � 0.060, n � 11;
G383D–CANX: 0.551 � 0.096, n � 10; p � 0.001), whereas
WT, A9S, and R568Q showed minimal co-localization with
CANX (WT–CANX: 0.269 � 0.036, n � 8; A9S–CANX:
0.311 � 0.057, n � 8; R568Q–CANX: 0.257 � 0.028, n � 8) (Fig.
8, A and B). The fluorescence signals for E547* and W570*
showed even lower co-localization with Tf-AF488 (E547*-Tf,
0.312 � 0.042, n � 7 and W570*-Tf: 0.348 � 0.059, n � 6; p �
0.001) (Fig. 7, A and B) and a more prominent overlap with
CANX (E547*–CANX: 0.648 � 0.042, n � 8; W570*–CANX:
0.645 � 0.066, n � 9, p � 0.001) (Fig. 8, A and B) compared with
WT, consistent with significant accumulation in the ER.

To biochemically assess the ability of the NHE6 variants to
traffic to the plasma membrane, plasmalemmal proteins were
extracted using a cell-surface biotinylation procedure and ana-

Figure 4. Assessment of the protein stability of NHE6 variants. AP-1 cells
were transiently transfected with NHE6HA WT of CS-linked variants for 24 h
and then treated with 150 �g/ml cycloheximide (CHX) for the indicated time
points and lysed, and equal amounts of protein (20 �g) were analyzed by
Western blotting using a mouse monoclonal anti-HA antibody. Blots were
reprobed with a mouse monoclonal anti-GAPDH antibody to control for load-
ing. Blots are representative images from four separate experiments. fg, fully-
glycosylated; cg, core-glycosylated; d, dimeric; m, monomeric.
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lyzed by Western blotting. We previously showed that �5% of
the total cellular pool of NHE6 is located at the cell surface of
transfected AP-1 cells (57). Because of the low levels of expres-
sion of some of the NHE6 variants, we loaded varying amounts
of protein in each lane (as indicated) so that their signal inten-
sities would be comparable and easily visualized within a single
X-ray film exposure of the immunoblots. As presented in Fig.
9A, all mutants were detected at the plasma membrane,
although the fractional surface abundances of L188P, G383D,
E547*, and W570* were noticeably reduced compared with
WT, A9S, and R568Q after taking into account differences in
gel protein loading. Notably, despite their lower levels, the
L188P, G383D, E547*, and W570* mutants at the cell surface
were largely fully-glycosylated (monomer and dimer). This
indicates that these variants have the potential to fold properly
and undergo oligosaccharide maturation along the exocytic
pathway, although at greatly reduced efficiency. The absence of
the core-glycosylated forms (monomer and dimer) in the bioti-
nylated fractions is consistent with their intracellular location
(i.e. mainly ER). To compare their plasmalemmal abundances
more quantitatively, we used a cell-based enzyme-linked
immunosorbent assay (ELISA). For these experiments, AP-1
cells were transiently transfected with NHE6 constructs con-
taining a triple-Flag epitope-tag inserted in the first exofacial
loop as described previously (53). Consistent with cell-surface
biotinylation, the WT and A9S variants showed equivalent lev-
els of surface expression. The plasmalemmal abundance of

R568Q was detectably higher, consistent with image analyses,
but this increase did not reach statistical significance (Fig. 9B).
By contrast, surface abundances of the other mutants were
markedly reduced by �55–70%, especially for G383D, E547*,
and W570* (*, p � 0.05, one-way repeated measures ANOVA
followed by a post hoc Dunnett’s test).

Based on the sensitivity of the ELISA, we proceeded to mea-
sure endocytosis of the different NHE6 variants. For these
experiments, cells transiently expressing the various constructs
were placed on ice and incubated with a primary mouse mono-
clonal anti-Flag antibody and secondary goat anti-mouse anti-
body to label cell surface 3FNHE6HA, and then endocytosis of
the labeled pool was initiated by incubating the cells at 37 °C
over a 15-min period. As shown in Fig. 9C, the levels of inter-
nalization of surface-labeled A9S and R568Q were equivalent to
WT, whereas L188P, G383D, E547*, and W570* were translo-
cated more slowly (p � 0.05), indicative of their differential
handling by the endocytic trafficking machinery.

Effect of NHE6 variants on recycling endosomal cargo
trafficking and pH

Previous studies have shown that overexpression and knock-
down of NHE6 promoted up- and down-regulation, respec-
tively, of clathrin-mediated endocytosis of certain integral
plasma membrane proteins, such as the ligand-activated trans-
ferrin receptor (Tf–TfR) but not the epidermal growth factor

Figure 5. Effect of proteasomal and lysosomal inhibitors on cellular clearance of NHE6 variants. AP-1 cells were transiently transfected with NHE6HA WT
or CS-linked variants for 24 h and then treated with 150 �g/ml cycloheximide (CHX) for the indicated time points in the presence of diluent (DMSO) and the
proteasomal inhibitor MG-132 (40 �M) or the lysosomal inhibitor leupeptin/pepstatin (LeuP, 100 �g/ml). Total-cell lysates were analyzed by Western blotting
with a mouse monoclonal HA antibody. Membranes were also probed for �-tubulin expression as a loading control. The immunoblots are representative of
three separate experiments. fg, fully-glycosylated; cg, core-glycosylated; d, dimeric; m, monomeric.
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receptor, in a manner that depended on its ability to modulate
intravesicular pH (51, 53).

To determine the effect of the NHE6 variants on internaliza-
tion of Tf, we measured the initial rate of uptake (5-min period)
of Alexa FluorTM 633-conjugated Tf (Tf-AF633) by flow cytom-
etry in live HeLa cells transiently expressing with GFP alone
(control) or GFP-tagged constructs of NHE6 as described pre-
viously (53). For these experiments, HeLa cells were used
because their TfR levels are severalfold higher than in AP-1 cells
and therefore provided a stronger signal-to-noise ratio for
detecting the initial uptake of Tf-AF633 (53). The patterns of
protein biosynthesis and oligosaccharide maturation for the
various NHE6 constructs in transfected HeLa cells were equiv-
alent to those observed in AP-1 cells (data not shown). Equiva-
lent numbers of live GFP-positive HeLa cells (104 GFP� cells)
were analyzed for each construct; live cells were distinguished
from nonviable cells by their ability to exclude the membrane-
impermeant fluorescent dye 7-amino-actinomycin D. HeLa
cells overexpressing WT, A9S, and R568Q exhibited significant

increases (�25–35%) in Tf-AF633 uptake compared with con-
trol GFP-only expressing cells (p � 0.001, one-way repeated
measures ANOVA followed by a post hoc Dunnett’s test) (Fig.
9D). However, this up-regulation was greatly diminished or
absent in cells expressing the L188P, G383D, E547*, and W570*
mutants (p � 0.05).

The regulation of endosomal trafficking by NHE6 is depen-
dent on its ability to regulate endosomal pHe, although the
underlying mechanism linking transporter function to vesicle
trafficking is unknown. NHE6, like other NHE family members,
is a secondary active transporter that moves monovalent cat-
ions down their respective concentration gradients, and thus at
steady-state it should operate as a “H� leak” pathway (i.e. alka-
linizing mechanism) to counter acidification driven by the
vacuolar H�-ATPase. To examine whether this property is
affected, we measured the pHe of recycling endosomes in situ
by fluorescence ratiometric image analysis (FRIA) (83) using
the pH-sensitive fluorophore fluorescein isothiocyanate (FITC)
conjugated to transferrin (Tf–FITC) as a probe. Briefly, AP-1

Figure 6. Effect of the lysosomotropic agent chloroquine on cellular clearance of NHE6 variants. AP-1 cells were transiently transfected with NHE6HA WT
or CS-linked variants for 24 h and then treated with 150 �g/ml cycloheximide for the indicated time points in the presence of diluent (H2O) or chloroquine (CQ,
500 �M). Total-cell lysates were analyzed by Western blotting with a mouse monoclonal HA antibody. Membranes were also probed for �-tubulin expression
as a loading control. The immunoblots are representative of four separate experiments. fg, fully-glycosylated; cg, core-glycosylated; d, dimeric; m, monomeric.
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cells were transiently transfected (48 h) with ChFP alone or the
different NHE6ChFP constructs, followed by a 60-min incuba-
tion with Tf–FITC at 37 °C to allow for sufficient accumulation
of the probe throughout the recycling endosomal pathway. The
steady-state pHe spectrum of vesicles or puncta under each
condition was determined by analyzing fluorescence signals
pooled from a total of 25–36 cells (�2700 –5300 vesicles col-
lected from 8 to 12 cells per transfectant per experiment,
repeated three times). In each case, the pHe spectrum of the
vesicles exhibited a unimodal distribution (see Fig. S1). When
the data were expressed as the mean recycling endosomal pHe
per cell, the level for AP-1 cells lacking NHE6 was very acidic at
pHe 5.79 � 0.11 (mean � S.D., n � 27 cells) (Fig. 9E). By con-
trast, endosomal pHe values for WT-, A9S-, and R568Q-ex-
pressing cells were significantly more alkaline and equivalent to
each other relative to parental AP-1 cells (WT: 6.23 � 0.16, n �
28; A9S: 6.22 � 0.19, n � 34; R568Q: 6.20 � 0.15, n � 28; p �
0.001, one-way ANOVA followed by a post hoc Tukey test). In
contrast, endosomal pHe levels of L188P- and G383D-express-
ing cells were intermediate and significantly different from

both control and WT-transfectants (L188P: 6.05 � 0.15, n � 36;
G383D: 5.96 � 0.13, n � 34; p � 0.001). These intermediate
pHe values could reflect incomplete distribution of these NHE6
variants throughout the recycling endosomal compartments
containing Tf–FITC (i.e. the averaged pHe of NHE6-containing
and noncontaining recycling endosomes), but they may also
result from impairment of their catalytic activity (i.e. dimin-
ished H� efflux) in recycling endosomes or a combination of
both possibilities. Finally, the E547* and W570* variants had no
significant effect on recycling endosomal pHe compared with
parental AP-1 cells (AP-1: 5.79 � 0.11, n � 27; E547*: 5.90 �
0.13, n � 35; W570*: 5.88 � 0.12, n � 25; p � 0.05), an expected
outcome given their pronounced retention in the ER.

Because the L188P, G383D, E547*, and W570* variants
showed significant accumulation in the ER, we next evaluated
whether they influenced the luminal pHe of this compartment.
To this end, AP-1 cells were co-transfected with the various
mCherry-tagged NHE6 (NHE6ChFP) constructs and a ratiomet-
ric pH-sensitive GFP (i.e. pHluorin2 or pH2) (84) containing an
ER signal sequence from calreticulin at its N terminus and an

Figure 7. Subcellular detection of NHE6 variants in recycling endosomes in transfected AP-1 cells. A, AP-1 cells were transiently transfected with mCherry
fluorescent protein-tagged NHE6 (NHE6ChFP) WT or CS-linked variants. Forty eight hours post-transfection, cells were incubated with the recycling endosomal
marker Alexa Fluor 488 – conjugated transferrin (Tf-AF488, 10 �g/ml) for 45 min, fixed in 4% paraformaldehyde, mounted onto glass slides, and examined by
confocal microscopy. Images show each channel individually, with merged images of the NHE6ChFP and Tf-AF488 channels. Scale bars represent 10 �M. B,
quantitation of the degree of NHE6 overlapping with Tf-AF488 as determined by calculating the thresholded Mander’s coefficient (M1) using ImageJ software
and the JACoP plugin. Data are plotted as a box chart, with the central white square indicating the mean, the box representing the S.E., and the error bars
showing the S.D. (n � 6 – 8 cells). Significance from WT was determined by one-way repeated measures ANOVA (F value � 6479.8, p value � 5.6 	 10�9), with
a post hoc Dunnett’s test, ���, p � 0.001.
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ER retention sequence (KDEL) at its C terminus (construct
called ERpH2). ER pHe in AP-1 cells was 7.28 � 0.11 (mean �
S.D., n � 8 cells) (Fig. S2), a value comparable with resting ER
pHe (pH 7.1–7.4) reported for other cell types (85–87). As
expected, this level was unchanged in cells co-expressing recy-
cling endosome-sorted WT (7.23 � 0.12, n � 14), A9S (7.22 �
0.10, n � 13), or R568Q (7.29 � 0.13, n � 14). ER pH was also
unaffected by the L188P (7.26 � 0.15, n � 16), G383D (7.16 �
0.18, n � 13), E547* (7.29 � 0.11, n � 15), and W570* (7.24 �
0.13, n � 14) variants, indicating that they are not demonstrably
active when retained in the ER. Additional control experiments
using cytoplasmic-localized phluorin2 (CytopH2) showed that
cytoplasmic pH (pHc 7.59 � 0.17, n � 21) was also unaltered in
the presence of NHE6ChFP WT or its variants (see Fig. S3).

Effect of NHE6 variants on cell viability

Previous studies have revealed that genetic disruption of
NHE6 expression causes degeneration of a subset of neurons
within the cortex, hippocampus, and especially the cerebellum,
which exhibits extensive Purkinje cell loss with age (32, 34, 35).

Neurons in other brain regions, despite the loss of NHE6
expression, do not appear as severely affected. The reason for
these differences in cell viability is unclear. AP-1 cells, which
also lack NHE6, also show little evidence of cell death under
normal culture conditions (53). However, ectopic expression
of a CS-linked in-frame deletion variant of NHE6 (p.E287–
S288del, 
287ES288) in AP-1 cells and in primary mouse hip-
pocampal neurons could induce programmed cell death (53).
Thus, AP-1 cells serve as a useful proxy for assessing the poten-
tial in vitro consequences of NHE6 variants on cell survival. To
this end, AP-1 cells were transiently transfected with GFP alone
or GFP-tagged NHE6 variants for 48 h. These cells then were
incubated in the presence of the fluorescent annexin V–
allophycocyanin conjugate (annexin V–APC) and propidium
iodide (PI), and GFP-positive cells (104 cells per experiment)
were analyzed by flow cytometry to determine the fraction of
apoptotic cells as described previously (53). Annexin V–APC-
positive and PI-negative cells represent the early stages of apo-
ptosis, whereas annexin V–APC/PI– double-positive cells are
late apoptotic or necrotic, and PI-only–positive cells are con-

Figure 8. Subcellular localization of certain CS variants in the endoplasmic reticulum in transfected AP-1 cells. A, AP-1 cells were transiently transfected
with mCherry fluorescent protein-tagged NHE6 (NHE6ChFP) WT or CS-linked variants. Forty eight hours post-transfection, cells were immunostained for
endogenous CANX, fixed in 4% paraformaldehyde, mounted onto glass slides, and examined by confocal microscopy. Images show each channel individually,
with merged images of the NHE6ChFP and CANX channels. Scale bars represent 10 �m. B, quantitation of the degree of NHE6 overlapping with CANX as
determined by calculating the thresholded Mander’s coefficient (M1) using ImageJ software and the JACoP plugin. Data are plotted as a box chart, with the
central white square indicating the mean, the box representing the S.E., and the error bars showing the S.D. (n � 6 – 8 cells). Significance from WT was determined
by one-way repeated measures ANOVA (F value � 3012.9, p value � 1.7 	 10�10), with a post hoc Dunnett’s test, ���, p � 0.001.
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sidered necrotic. As presented in Fig. 10, a significantly higher
proportion of early apoptotic cells was detected in cells express-
ing L188P, G383D, E547*, and W570* (�22–27%) compared
with WT, A9S, or R568Q transfectants (�12–14%) (p � 0.001).

At this time point, there were no significant increases in late
apoptotic or necrotic cells among the CS-linked variants rela-
tive to WT. Curiously, expression of WT, A9S, and R568Q also
significantly increased the percentage of apoptotic cells relative

Figure 9. Assessment of the functional properties of NHE6 variants. A, biochemical determination of plasma membrane trafficking of NHE6GFP WT or
CS-linked variants using a cell-surface biotinylation assay. Cell-surface proteins were labeled with N-hydroxysulfosuccinimidyl–SS– biotin in AP-1 cells express-
ing the NHE6GFP constructs after 48 h. Total-cell lysates (left panel; protein loading ranged from 10 to 50 �g of protein per sample as indicated below the blot)
and biotinylated fractions (right panel; representing 20 –100% of plasma membrane proteins extracted per sample) were examined by Western blotting with
polyclonal anti-GFP and monoclonal anti-GAPDH antibodies. Representative blots from three experiments are shown. B and C, surface expression and
endocytosis of external triple flag tag–labeled NHE6 (3FNHE6HA) constructs in transiently transfected (48 h) AP-1 cells using a cell-based ELISA. Mean intensity
fluorescence (M.I.F.) units were determined as a function of the cellular protein concentration and then normalized as percentage (M.I.F. units for WT (100%):
25,100 � 6,348, n � 4). The surface expression of each construct at time 0 min (before the start of internalization) is charted in B (n � 3– 4 experiments).
Significance from WT-expressing cells was determined using a one-way repeated measures ANOVA (F value � 463.3, p value � 0.0022), with a post hoc
Dunnett’s test; *, p � 0.05. Percentage internalization of NHE6 constructs normalized to the zero time point are presented in C and represent the mean � S.D.
(n � 3– 4 experiments). The NHE6 variants clustered into two groups: 1) WT, A9S, and R568Q, and 2) L188P, G383D, E547*, and W570*, with variants within each
cluster yielding similar statistical values. Significance from WT cells at the 5- and 15-min time points was determined using a one-way ANOVA (F value � 9.43,
p value � 4.48 	 10�5), with a post hoc Tukey test; �, p � 0.05. D, transferrin uptake in HeLa cells transiently transfected (48 h) with GFP or NHE6GFP constructs.
The initial uptake (5 min) of Alexa 633– conjugated transferrin (Tf-AF633) was measured in 1 	 104 GFP-positive HeLa cells per experiment by flow cytometry
(M.I.F. units for GFP control: 10,204 � 1554, n � 4). Data were normalized as a percentage and displayed as percent change from GFP control cells. Significance
from control cells was determined using a one-way repeated measures ANOVA (F value � 320.7, p value � 3.8 	 10�4), with a post hoc Dunnett’s test; ��, p �
0.001. E, recycling endosomal pH (pHe) was measured in AP-1 cells in the absence or presence of transiently transfected (48 h) NHE6ChFP constructs by
fluorescence ratio image analysis of the internalized pH-sensitive probe FITC-conjugated human transferrin (Tf–FITC). Data represent the average endosomal
pHe per cell pooled from three separate experiments (8 –12 cells per construct/experiment; n � 24 –36). Significance was determined by one-way ANOVA
(F value � 40.02, p value � 0), with a post-hoc Tukey test; ��, p � 0.001. Data in B, D, and E are plotted as box charts, with the central white square indicating
the mean; the box representing the S.E.; and the error bars showing the S.D. fg, fully-glycosylated; cg, core-glycosylated; d, dimeric; m, monomeric.
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to AP-1 cells (p � 0.001), but not as greatly as the other four
defective variants. The reason for this is unclear and will require
further study. Nevertheless, these findings suggest that L188P,
G383D, E547*, and W570* have the potential to reduce cell
viability relative to WT, although the underlying mechanisms
remain obscure.

Discussion

CS patients display a wide range of neurological and somatic
symptoms (1, 15), with their acuteness ostensibly governed by
the nature of the mutation as well as other intrinsic compensa-
tory or aggravating influences. The findings reported herein
reveal differences in the biochemical properties and cellular
handling of several SLC9A6/NHE6 variants associated with CS.
Of the six variants examined, four (L188P, G383D, E547*, and
W570*) showed varying degrees of impairment in post-transla-
tional oligosaccharide maturation, protein stability, and mem-
brane targeting. L188P and G383D partially accumulated in the
ER, but measurable fractions of L188P and to a lesser extent
G383D were fully-glycosylated and sorted to a pericentriolar
endosomal compartment. By contrast, both E547* and W570*
were largely retained in the ER, although minor fractions did
exit the ER and became fully-glycosylated. However, in each
case their trafficking to the cell surface and internalization into

recycling endosomes was compromised, albeit to different
extents (WT � L188P � G383D � E547* � W570*). Each
variant exhibited correspondingly diminished abilities to stim-
ulate the internalization of endosomal cargo (i.e. ligand-acti-
vated transferrin receptor), to regulate acidification of recycling
endosomes, and to maintain cell viability. Remarkably, two of
the purported CS variants, A9S (3, 13, 25) and R568Q (4, 25),
exhibited properties that were essentially indistinguishable
from the WT transporter that obscures their disease signifi-
cance, at least when examined in AP-1 cells. Although this
experimental cell system has proven informative in deciphering
NHE6 function, we cannot exclude the possibility that any del-
eterious consequences of the A9S and R568Q variants may be
more subtle and manifested only in certain neuronal cell types.
However, during the preparation of this manuscript, Ouyang
and co-workers (88) reported that mice genetically manipu-
lated by CRISPR/Cas9 technology to harbor the homologous
human NHE6 A9S variant (i.e. mouse A11S) appeared normal
in terms of brain morphology, NHE6 subcellular localization,
and intra-endosomal pH of hippocampal neurons. Although a
behavioral assessment of these mice was not described, we
envision that human A9S and possibly the R568Q variants are
likely benign and possibly misattributed as the cause of the

Figure 10. Apoptosis is enhanced in AP-1 cells expressing L188P, G383D, E547*, and W570* mutants. Measurement of apoptosis by flow cytometry
analysis of AP-1 cells transfected with NHE6GFP WT and CS-linked variants is shown. Forty eight hours post-transfection, cells were labeled with annexin V–APC
and PI, and 1 	 104 GFP-positive cells were examined by flow cytometry for each transfectant. A, annexin V and PI double-negative cells represent viable cells.
B, PI-positive cells represent necrotic cells. C, annexin V–positive cells represent early apoptotic cells. D, annexin V and PI double-positive cells represent late
apoptotic cells. Results are shown as mean � S.D. of three independent experiments. Significance was determined by one-way ANOVA (A, F value � 27.7, p
value � 8.5 	 10�8; B, F value � 2.1, p value � 0.11; C, F value � 40.9, p value � 4.9 	 10�9; D, F value � 5.4, p value � 0.0025), with a post hoc Tukey test; �,
p � 0.05; ��, p � 0.01; and ���, p � 0.001.
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patients’ neurological symptoms. This suggestion is further
supported by the common occurrence of both variants in the
general human population (genome aggregation database, gno-
mAD; RRID:SCR_014964).

Preferential degradation of defective NHE6 variants by ERAD

A biochemical feature of mature WT NHE6 is the covalent
attachment of N-linked oligosaccharides (53). In unpublished
studies,3 we have identified two neighboring asparagine resi-
dues located in canonical N-glycosylation motifs (Asn–Xaa–
Ser/Thr) in the second extracellular loop, Asn128–Val–Thr and
Asn145–Val–Ser, that serve as the sole targets for N-glycan
addition. Post-translational addition of N-glycans (as well as
O-glycans) in the ER and Golgi is known to facilitate intracel-
lular processes such as the folding, multisubunit assembly,
membrane trafficking, and function of many glycoproteins
(89 –91). As described herein, the L188P, G383D, E547*, and
W570* variants showed marked reductions in their N-oligosac-
charide maturation and membrane targeting, especially the lat-
ter three, and correlated with increased retention in the ER and
cellular clearance. These hypo-glycosylated variants assembled
correctly as homodimers, indicating that their quaternary
structures were not grossly perturbed. Instead, their glycosyla-
tion impairments are more consistent with localized misfold-
ing, as was predicted for the L188P and G383D variants by
structural modeling analyses. Aberrant conformations of
N-glycoproteins, which can include exposed hydrophobic seg-
ments, improper disulfide bond formation, and immature gly-
cans, are recognized by the ER protein quality control machin-
ery that encompasses multiple systems capable of detecting
discrete structural malformations situated in the ER lumen,
within the membrane (i.e. L188P and G383D), or facing the
cytoplasm (i.e. E547* and W570*) (92–94). Misshapen proteins
are then subjected to repeated cycles of deglucosylation–
reglucosylation of the initial core N-glycan structure (Glc3–
Man9–GlcNAc2) and binding to the lectin chaperones calnexin
and calreticulin, which assist in protein refolding until the proper
conformation is attained (95, 96). However, deformed proteins
refractory to the refolding process after a prolonged ER residency
are targeted for ERAD by proteasomes (93). This enhanced pro-
teasomal proteolysis was evident for the L188P, G383D, E547*,
and W570* variants. In the case of the E547* and W570* trunca-
tion variants, aside from possible misfolding, their pronounced
accumulation in the ER might also result from the loss of one or
more specific ER-export signal motifs (97, 98). Absence of such
signals could delay their exit from the ER and favor retrotranslo-
cation to the proteasome (99). The fate of the minor fraction of
these variants that did escape ERAD, possibly in part due to over-
expression, could be degradation in lysosomes. However, blocking
lysosomal proteolysis with leupeptin/pepstatin or chloroquine did
not substantially prevent their clearance, suggesting that other
pathways such as cellular expulsion in exosomes might be an alter-
nate route (100). Such a mechanism has been proposed for another
CS-linked variant p.Gly2183Arg (57) and remains to be tested for
these variants.

Defective NHE6 variants disrupt recycling endosomal pH
homeostasis and trafficking

The severity of sorting defects for L188P, G383D, E547*, and
W570* correlated with corresponding deficits in recycling
endosomal function, as revealed by excessive luminal acidifica-
tion and reduced uptake of recycling endosomal cargo (e.g.
ligand-activated transferrin receptor) relative to WT transfec-
tants. Optimal acidification of organelles is required not only
for efficient biochemical processing of their contents, but also
for effective sorting and trafficking of proteins and lipids along
the biosynthetic and endocytic pathways (48, 101–103). Yet
how intravesicular pH influences vesicle movement is not fully
understood. Recent studies have indicated that the vacuolar
H�-ATPase pump functions not only in organellar acidifica-
tion but also as a luminal pH-sensor and binding platform for
members of the ADP-ribosylation factor family of small
GTPases involved in vesicular trafficking (49, 50, 104). Curi-
ously, despite the broad organellar distribution of the vacuolar
H�-ATPase, inhibiting its activity with pharmacological agents
disrupted only vesicular movement between the early and late
endosome/lysosomal compartments, while trafficking along
the recycling endosomal pathway was relatively unaffected (49).
This raises the possibility that other endosomal pH-regulatory
transporters may compensate and play more prominent multi-
functional roles in vesicular trafficking along other endomem-
brane pathways. In keeping with this notion, the yeast Saccha-
romyces cerevisiae endomembrane (Na�,K�)/H� exchanger
Nhx1/Vps44 was found to form a complex with the GTPase-
activating protein Gyp6 and one of its effectors Ypt6, the ho-
molog of the mammalian Rab6 GTPase, and served to coordi-
nate endosomal shuttling between the Golgi and prevacuolar
(late endosomes) compartments (105). Loss of Nhx1 caused
hyperacidification and disruption of endosomal protein traf-
ficking and fusion to the vacuole (106 –109). In an analogous
manner, mammalian NHE6 might fulfill a similar role in pH-
sensing and modulation of vesicular trafficking along the recy-
cling endosomal pathway, a process that is diminished by loss of
NHE6 function (33, 51–53). Indeed, we found that excessive
acidification and impaired trafficking of recycling endosomes
were most pronounced for E547*- and W570*-expressing cells
at levels comparable with those of NHE6-deficient AP-1 cells.
This would be expected as these variants are not properly
sorted to recycling endosomes. By contrast, values for luminal
pHe and trafficking of L188P-containing endosomes were
intermediate between WT transfectants and AP-1 cells, indi-
cating that this variant retained some activity to counter H�

influx driven by the vacuolar H�-ATPase. Leu188 is a highly-
conserved amino acid in transmembrane helix M4, a segment
previously identified as a critical part of the ion permeation
pore of the plasmalemmal NHE1 isoform (60, 67, 68). Thus,
insertion of an additional proline residue in this region is likely
to cause steric or rotamer constraints on the geometry of M4
that compromises catalytic activity. G383D also exhibited some
nominal ability to elevate recycling endosomal pHe above that
measured in AP-1 cells, but this level was insufficient to signif-
icantly stimulate uptake of transferrin. The crippling effect of
the G383D mutation was predicted from the structural homo-3 A. Ilie and J. Orlowski, unpublished data.
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logy modeling analyses and consistent with earlier findings (69)
showing that nonpolar and polar amino acid substitutions of
the homologous Gly residue in NHE1 (i.e. human Gly352 and rat
Gly356) greatly reduced its catalytic activity (�10% of WT) as
well as the binding of amiloride- and benzoylguanidine-based
antagonists. Thus, all four variants elicit deleterious effects on
recycling endosomal function.

Expression of defective NHE6 variants reduces cell viability

Progressive cerebellar atrophy, loss of Purkinje neurons, and
motor regression are common features of a majority (�60%) of
CS patients examined thus far (1, 2, 6, 7, 10, 14). Less severe
neuronal loss and gliosis have been documented in other brain
regions, such as the cerebral cortex and hippocampus (6). Sim-
ilar degeneration of the cerebellum and mild undergrowth and
atrophy of the hippocampus, striatum, and cortex were also
observed in Slc9a6 knockout mice (32, 34, 35). The variable
penetrance and seemingly selective deterioration of certain
neuronal populations upon loss of NHE6 function, despite its
broad expression throughout the CNS, is not well-understood
but may reflect the nature of the mutation as well as other
ill-defined genetic modifier effects or compensatory mecha-
nisms. The latter could include expression of its close paralog
NHE9/SLC9A9, which is also important for neurological func-
tion, as defects in NHE9 expression have been linked to atten-
tion-deficit hyperactivity and autism spectrum disorders in
humans (26, 110–114) and autism-like behavior in mice (115,
116). Using the AP-1 cell line as a surrogate model for assessing
cell viability, we found that AP-1 cells lacking NHE6 showed
only nominal cell death (�10%). Surprisingly, expressing WT,
A9S, and R568Q raised this percentage (�23%), but it was fur-
ther elevated in the presence of the L188P, G383D, E547*, and
W570* variants (33– 40%). The mechanisms by which NHE6
modulates cell viability have yet to be elucidated. However,
insights can be gleaned from recent studies showing that NHE6
and the neurotrophin TrkB receptor co-localize in recycling
endosomes of cultured mouse hippocampal neurons (33). The
Trk family of neurotrophin receptors are known positive regu-
lators of nervous system development, survival, and plasticity
(117–119). Notably, loss of NHE6 results in overacidification of
recycling endosomes and diminished TrkB receptor signaling,
neurite branching, synapse number, and circuit connectivity
(33). Remarkably, these morphological and functional deficits
could be rescued by activation of residual TrkB receptors with
high levels of exogenous brain-derived neurotrophic factor
(33). Thus, we posit that NHE6 impairment of neurotrophin
Trk receptor-mediated prosurvival signals may shift the equi-
librium toward neurotrophin p75NTR receptor-mediated pro-
apoptotic signals (120 –122) leading to degeneration and death
of certain neuronal populations. Likewise, imbalances of endo-
somal trafficking and signaling of prosurvival growth factor
receptor and proapoptotic death- or dependence-receptor sig-
naling pathways in non-neuronal cells (123–126) may also
explain the observed changes in survival of AP-1 cells express-
ing the various NHE6 constructs.

Aside from imbalances in prosurvival versus proapoptotic
signaling pathways, ER stress (127) may also be another factor
that decreases the function and viability of certain cells possess-

ing the CS-linked variants. Accumulation of malformed pro-
teins in the ER initiates the unfolded protein response and
ERAD in order to restore cellular homeostasis (128, 129). How-
ever, prolonged ER stress can activate several protein kinases,
including glycogen synthase kinase-3� (GSK-3�) (130) and
inositol-requiring kinase 1 (IRE1)/apoptosis signal-regulating
kinase 1 (ASK1)/c-Jun N-terminal kinase signaling cascade
(127, 131), ultimately stimulating caspase-mediated cell death.
Post-mitotic neurons are particularly vulnerable to ER stress, as
they are unable to dissipate any accumulated misfolded pro-
teins through cell division. This inability to undergo mitosis
may be an additional contributing factor in the progression of
CS as well as many other neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, and Huntington’s dis-
ease (132).

In summary, our results provide additional insight into the
molecular mechanisms by which different NHE6 variants
linked to CS impair recycling endosomal pH homeostasis and
cargo trafficking, and ultimately cell viability. These analyses
will guide future investigations to delineate the molecular net-
work of proteins that interact with NHE6 and influence recep-
tor trafficking, synaptic plasticity, and learning deficits. Such
knowledge has the potential to identify novel diagnostic and
treatment options for CS that may also be applicable to other
disorders such as autism and attention deficit hyperactivity
disorders.

Experimental procedures

Antibodies and reagents

Mouse monoclonal anti-hemagglutinin (HA) antibody was
purchased from Covance Inc. (Berkeley, CA); rabbit polyclonal
anti-HA and mouse monoclonal anti-GAPDH were obtained
from Abcam Inc. (Cambridge, MA); mouse monoclonal anti-
Flag M2 and anti-�-tubulin antibodies were from Sigma; rabbit
polyclonal anti-GFP antibody was from Life Technologies, Inc.;
and rabbit polyclonal anti-calnexin was from Enzo Life Sci-
ences, Inc. Horseradish peroxidase-conjugated secondary IgG
antibodies were purchased from Jackson ImmunoResearch
(West Grove, PA). All Alexa Fluor�-conjugated secondary
antibodies, Alexa Fluor� 488- and 633-conjugated transferrin
(Tf-AF488 and Tf-AF633, respectively), and Tf-FITC were pur-
chased from Molecular Probes (Eugene, OR). �-Minimum
essential medium (�-MEM), fetal bovine serum, penicillin/
streptomycin, and trypsin-EDTA were purchased from Wisent
(Saint-Bruno, Quebec, Canada). All other chemical and re-
agents were obtained from BioShop Canada (Burlington,
Ontario, Canada), Sigma, or Thermo Fisher Scientific and were
of the highest grade available.

Recombinant DNA constructs and mutagenesis

The long transcript splice-variant of human NHE6 (NHE6v1;
NCBI NM_001042537) was engineered to contain the influenza
virus HA (YPYDVPDYAS) epitope at its extreme C terminus
(NHE6HA), as described previously (56). NHE6HA was then
used as a template to introduce a triple-Flag epitope (AAADY-
KDDDDKGDYKDDDDKGDYKDDDDKAAA) in the first
extracellular loop immediately after residue Met53 (3FNHE6HA)
(56). Enhanced GFP and monomeric ChFP were also fused to

Characterization of Christianson syndrome SLC9A6 variants

7088 J. Biol. Chem. (2020) 295(20) 7075–7095



the C terminus of WT NHE6 (NHE6GFP and NHE6ChFP). The
various tagged NHE6 constructs were then used as templates to
engineer the various CS-linked mutations by PCR mutagenesis.
Insertion of the different epitope tags in the various positions
did not alter the biochemical properties or cellular distribution
of exogenous NHE6 compared with the endogenous protein
(56). All constructs were sequenced to ensure that no additional
mutations were introduced during PCR.

Cell culture

Chinese hamster ovary AP-1 and HeLa cells were cultured in
�-MEM supplemented with 10% fetal bovine serum, penicillin
(100 units/ml), streptomycin (100 �g/ml), and 25 mM NaHCO3
(pH 7.4), as described previously (56).

Western blotting

For Western blotting analyses, AP-1 and HeLa cells were
grown in 10-cm dishes and transiently transfected with 5 �g of
plasmid DNA encoding NHE6GFP or NHE6HA WT or mutant
constructs using Lipofectamine2000TM (Invitrogen) according
to the manufacturer’s recommended procedure. Cell lysates
were prepared following 6 – 48 h post-transfection (as indicated
in the figure legends) by washing cells twice on ice with ice-cold
PBS, followed by scraping in 0.5 ml of lysis buffer (1% NP-40,
0.25% sodium deoxycholate, PBS supplemented with protease
inhibitor mixture (Roche Diagnostics)). Lysates were incubated
for 30 min on a rocker at 4 °C and then centrifuged at 16,000 	
g for 20 min at 4 °C to pellet the nuclei and cellular debris. Ten
to 50 �g of protein (as indicated in the figure legends) from the
resulting supernatants were diluted in SDS-sample buffer (50
mM Tris-HCl, pH 6.8, 1% SDS, 50 mM DTT, 10% glycerol, 1%
bromphenol blue), subjected to 9% SDS-PAGE, and then trans-
ferred to polyvinylidene fluoride membranes (Millipore,
Nepean, Ontario, Canada) for immunoblotting. The mem-
branes were blocked with 5% nonfat skim milk for 1 h and then
incubated with the specified primary antibodies (rabbit poly-
clonal GFP 1:8000, mouse monoclonal HA 1:5000, �-tubulin
1:10,000, or GAPDH 1:50,000) in PBS containing 0.1% Tween
20, followed by extensive washes and incubation with goat anti-
mouse (1:5000) or goat anti-rabbit (1:8000) horseradish perox-
idase (HRP)-conjugated secondary antibodies for 1 h. Immu-
noreactive bands were detected using Western LightningTM

Plus–ECL blotting detection reagents (PerkinElmer Life Sci-
ences). Quantification of immunoreactive signals was deter-
mined by densitometry of X-ray films exposed in the linear
range and analyzed using ImageJ software.

Cell-surface biotinylation

AP-1 cells expressing NHE6GFP WT or mutant constructs
were cultured in 10-cm dishes to subconfluence, placed on ice,
and washed three times with ice-cold PBS containing 1 mM

MgCl2 and 0.1 mM CaCl2, pH 8.0 (PBS-CM). Next, cells were
incubated at 4 °C for 30 min with the membrane-impermeable
reagent N-hydroxysulfosuccinimidyl–SS-biotin (0.5 mg/ml)
(Thermo Fisher Scientific, Rockford, IL). Cells were washed
and incubated twice in quenching buffer (50 mM glycine in PBS-
CM) for 7 min each on ice to remove unreacted biotin. After
two more washes in PBS-CM, the cells were lysed for 30 min on

ice and then centrifuged at 16,000 	 g for 20 min at 4 °C to
remove insoluble cellular debris. A fraction of the resulting
supernatant was removed, and this represents the total fraction.
The remaining supernatant was incubated with 100 �l of 50%
NeutrAvidin�–agarose resin slurry (Thermo Fisher Scientific,
Whitby, Ontario, Canada) in lysis buffer overnight at 4 °C to
extract biotinylated membrane proteins. The proteins were
then resolved by SDS-PAGE and analyzed by Western blotting.

Immunofluorescence confocal microscopy

AP-1 cells were cultured on fibronectin-coated 18-mm glass
coverslips, transfected with the NHE6 constructs, and fixed
post-transfection (at indicated times) with 4% paraformalde-
hyde for 20 min at room temperature. To examine the subcel-
lular distribution of the NHE6 constructs, AP-1 cells were co-
transfected with the various NHE6ChFP constructs and different
organellar markers. To label transferrin-containing recycling
endosomes, AP-1 cells were transfected with NHE6ChFP con-
structs for 48 h and then incubated with Alexa Fluor� 488-
conjugated transferrin (Tf–AF488) for 45 min in serum-free
�-MEM, washed, fixed, and mounted. To visualize the ER, AP-1
cells expressing NHE6ChFP constructs were fixed 48 h after
transfection and labeled with rabbit polyclonal anti-CANX fol-
lowed by goat anti-rabbit Alexa Fluor� 488-conjugated second-
ary antibodies, washed, and mounted. Cells were examined by
laser-scanning confocal microscopy using the ZEN software of
a Zeiss LSM 780 microscope equipped with a photomultiplier
tube (PMT) detector, with images acquired using a 	63/1.4 NA
oil immersion objective lens.

Fluorescence-based endocytosis assay

Cell-surface expression and internalization of the 3FNHE6HA

constructs was determined using an ELISA, as described previ-
ously (53). Briefly, AP-1 cells were grown in 10-cm dishes and
transiently transfected with 6 �g of empty plasmid vector
(pcDNA3) or vectors containing 3FNHE6HA WT or mutant
DNA constructs. Twenty four h post-transfection, cells were
transferred to 12-well plates and grown for an additional 12–24
h. Cells were chilled on ice, washed with ice-cold PBS-CM, pH
7.4, blocked in 10% goat serum/PBS-CM, and then incubated
with a mouse monoclonal anti-Flag antibody (1:3000) (Sigma)
on ice. Internalization of the bound antibody was initiated by
incubating the cells with warm (37 °C) �-MEM for the indi-
cated time points and terminated by placing the plates on ice.
Cell were washed and labeled with goat anti-mouse HRP-con-
jugated secondary antibody (1:1000) (GE Healthcare). After
extensive washes with PBS-CM, cells were treated on ice with
Amplex� Red reagent (Invitrogen). Aliquots were transferred
to 96-well plates, and fluorescence readings were taken with a
POLARstar OPTIMA (BMG Labtech. Inc, Offenburg, Ger-
many) plate reader using 544-nm excitation and 585-nm emis-
sion wavelengths. All experiments were performed in triplicate
and repeated at least three times. Results were expressed as a
percentage of the fluorescence recorded prior to internaliza-
tion, after subtraction of the value measured with empty vector-
transfected cells.
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Measurements of organellar pH

Recycling endosomes—AP-1 cells were grown in 6-well plates
and transfected with 1 �g of ChFP alone (control) or the
NHE6ChFP constructs using Lipofectamine2000 according to
the manufacturer’s instructions. Twenty four hours after trans-
fection, cells were transferred to fibronectin-coated (2 �g/ml in
PBS, pH 7.4, overnight at 4 °C) FluoroDishesTM (World Preci-
sion Instruments, Inc.) and grown overnight. Before loading
with transferrin, cells were serum-starved in serum-free
�-MEM for 1 h at 37 °C and 5% CO2. Next, the cells were incu-
bated with FITC-conjugated human transferrin (Tf–FITC)
(Molecular Probes) at 6.6 �g/ml in serum-free �-MEM for 1 h
at 37 °C and 5% CO2. Cells were subsequently washed twice
with warm �-MEM supplemented with 10% fetal bovine serum,
keeping the second wash for 1 min to allow for internalization
of remaining plasma-membrane bound Tf–FITC. Next, cells
were washed three times in ice-cold PBS-CM (PBS containing 1
mM MgCl2 and 0.1 mM CaCl2, pH 7.4) and imaged in the same
solution at room temperature. Endosomal pH was measured by
single-cell FRIA using a Carl Zeiss MicroImaging AxioOb-
server Z1 inverted microscope with a Plan-Apochromat 	63/
1.4 numerical aperture oil immersion objective and equipped
with a X-Cite 120Q fluorescence illumination system (Lumen
Dynamics Group Inc.) and an Evolve 512 electron-multiplying
charged-coupled device camera (Photometrics Technology).
MetaFluor software (Molecular Devices) was used for image
acquisition and vesicle selection. Images were acquired at 490-
and 440-nm excitation wavelengths. Average intensities of flu-
orescent puncta (0.3–3 �m in diameter) (570-nm emission
using a long-pass 525-nm emission filter) were obtained for
both the 440 and 490 images, and the 490/440 ratios were
calculated.

Calibration curves of fluorescence as a function of vesicular
pH values were performed in situ in AP-1 cells containing
Tf–FITC by clamping the vesicular pH between 5 and 7.8 in
K�-rich medium (135 mM KCl, 10 mM NaCl, 20 mM Hepes or 20
mM MES, 1 mM MgCl2, and 0.1 mM CaCl2) with 10 �M nigericin,
10 �M monensin, 0.4 �M bafilomycin, and 20 �M CCCP and
recording the 490/440 fluorescence ratios, as described above.
The calibration curves and Gaussian distributions of vesicular
pH values were plotted with OriginPro 8 software (OriginLab,
Northampton, MA).

Endoplasmic reticulum—To measure pH in the ER, an ER-
targeted pH-sensitive probe was engineered by replacing Den-
dra 2 in Dendra2_ER-5 (a gift from Michael Davidson, Addgene
plasmid no. 57716) by the pH-sensitive GFP pHluorin2 using
the AgeI and BspEI restriction sites. This modified construct
contains an ER signal sequence from calreticulin at its N termi-
nus and an ER retention sequence (KDEL) at its C terminus
(named ERpH2). AP-1 cells were grown in 6-well plates and
transfected with 1 �g of ERpH2 alone or together with 1 �g of
ChFP NHE6ChFP WT or mutants using Lipofectamine2000
according to the manufacturer’s instructions. Twenty four
hours after transfections, cells were transferred to fibronectin-
coated FluoroDishesTM (World Precision Instruments, Inc.)
and grown overnight. ER pH was measured by single-cell FRIA
at 37 °C, using a Zeiss LSM 780 confocal microscope, equipped

with a PMT detector. Images were acquired with a 	63/1.4 NA
oil immersion objective lens by sequential line scanning at 405
and 488 excitation wavelengths, with emission set at 500 –550
for both channels. All cells were imaged in a heated chamber
(37 °C, 5% CO2) at 	3 zoom, and the laser power, resolution,
speed of scanning, digital gain and offset, pinhole opening, and
line averaging were identical for both channels. Average inten-
sities of fluorescent puncta or regions of interest (0.3 to 3 �m in
diameter) were obtained for both the 405 and 488 channels
using the MetaXpress software (Molecular Devices, Downing-
town, PA), and 488/405 ratios were calculated. Calibration
curves of fluorescence as a function of pHe were performed in
situ in AP-1 cells expressing ERpH2 by clamping the intracel-
lular pH between 5 and 7.8 in K�-rich medium (135 mM KCl, 10
mM NaCl, 20 mM Hepes or 20 mM MES, 1 mM MgCl2, and 0.1
mM CaCl2) with 10 �M nigericin, 10 �M monensin, 0.4 �M bafi-
lomycin, and 20 �M CCCP and recording the 488/405 fluores-
cence ratios, as described above. The calibration curves and
Gaussian distributions of pH values were plotted with Origin-
Pro 8 software (OriginLab, Northampton, MA).

Flow cytometry

To measure transferrin uptake by flow cytometry, HeLa cells
were transfected with GFP alone or the NHE6GFP constructs
using FuGENE6 (Promega). Twenty four hours after transfec-
tion, the cells were serum-depleted for 2 h, then incubated with
Alexa Fluor� 633-conjugated transferrin (Tf-AF633, 10 �g/ml)
for 5 min at 37 °C, and followed by washes to remove unbound
transferrin. Cells were detached from the plates by trypsiniza-
tion, and 5 �l of the cell viability dye 7-amino-actinomycin D
(7-AAD, eBioscience) was added to each cell suspension. Cells
were analyzed by flow cytometry using a FACS Aria Sorter (BD
Biosciences). A gate was set around the GFP-positive cells, and
the amount of Tf-AF633 taken up by 104 GFP-expressing live
cells (i.e. 7-AAD negative) was measured using the FACS Diva
software (BD Biosciences).

Apoptosis assays

Apoptosis in AP-1 cells was measured using a flow cytometry
assay that measures changes in plasma membrane asymmetry
binding of annexin V–allophycocyanin conjugate (annexin
V–APC) to phosphatidylserine and permeability to propidium
iodide (PI) as described previously (53). Briefly, AP-1 cells were
grown in 6-cm dishes and transfected with 1 �g of GFP or 4 �g
of NHE6v1GFP WT or mutant constructs using Lipofec-
tamine2000 (Invitrogen). Forty eight hours post-transfection,
the cells were washed twice with warm (37 °C) PBS, detached
using Cell Dissociation Buffer (Gibco), and then collected by
centrifugation. The cell pellets were resuspended in PBS and
labeled using the annexin V–APC apoptosis detection kit
(eBioscience) according to the manufacturer’s instructions.
After labeling, cells were placed on ice, and 1 	 104 GFP-posi-
tive cells were examined on a BDTMLSR II flow cytometer, and
the percentage of annexin V-positive cells (i.e. early apoptotic),
PI-positive (i.e. necrotic), and annexin V/PI-double positive
cells (i.e. late apoptotic) was determined.
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MD simulation

The construction of a homology structure model of mono-
meric human NHE6 (transcript splice-variant 1) was described
in our previous publication (57). The objective of the simulation
was to characterize the potential effects of the L188P mutation
located in membrane-spanning helix M4 and the G383D muta-
tion in the re-entrant loop between helices M8 and M9 of
NHE6. The mutations were introduced into the homology
model by using the program Coot (133). Energy minimization
and MD simulation were carried out with the GROMACS
package (134). First, the topology for the NHE6 model was gen-
erated with the GROMACS pdb2gmx module and the OPLS
all-atom force field parameters (135). The protein was then
placed in a periodic cubic simulation box, with the minimum
distance of 1.0 nm to the box edge. For system solvation, the
SPC/E model was used (136). After charge neutralization with
counterions, the system was energy-minimized to the target
Fmax of no greater than 1000 kJ mol�1 nm�1 by using the steep-
est descent algorithm implemented in GROMACS. To con-
strain covalent bond lengths, the LINear Constraint Solver
(LINCS) algorithm was applied. To model long-range electro-
static interactions, the Particle Mesh Ewald method was used.
Short-range van der Waals and Coulomb cutoff distances were
both 1.0 nm. For the production run, the V-rescale thermostat
and the Parrinello-Rahman barostat were used to couple the
system to a constant temperature of 300 K and a pressure of 1
bar. The total simulation period was 10 ns, and the equations of
motion were integrated with the leap-frog algorithm in time
steps of 2 fs.

Statistical analyses

Statistical analyses were performed using OriginPro soft-
ware. The data are presented as the mean � S.D. unless stated
otherwise. Means of multiple samples were compared using
either a one-way, one-way repeated measures, or two-way
ANOVA followed by post hoc Tukey or Dunnett’s test, as indi-
cated. Data (where n � 6) were analyzed for statistical outliers
using a Grubbs test. A few outliers were detected for some
experiments that did not significantly affect the mean, so all the
data were retained in the final calculations. A minimum p value
of �0.05 was considered significant.
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