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Introduction

Molecular methods such as 16S rRNA gene sequencing and, 
more recently, metagenomic analyses have revealed the vast 
diversity of microbes on Earth. Only a fraction of microbes 
have been cultured, and a majority of these are from a limited 
number of well-known, easy-to-culture phyla (Stewart 2012). 
The inability of microbiologists to culture organisms from 
major segments of microbial diversity is a key impediment to 
advancing the field, as it prevents investigators from perform-
ing detailed scientific studies, such as examining microbe-
microbe or microbe-host interactions, characterizing lipids and 
other small molecules, engineering genetic modifications, and 
exploiting industrial potential. Here we report the isolation and 
characterization of Saccharibacteria strains representing 3 pre-
viously uncultured human microbial taxa (Dewhirst et al. 
2010; Escapa et al. 2018).

Early studies of microbial diversity with 16S rRNA meth-
ods identified many novel bacterial phyla, such as TM7 
(Hugenholtz et al. 1998), currently named Saccharibacteria. 
The Candidate Phyla Radiation (CPR) is a recently discovered 
major lineage of previously uncultured phyla (Brown et al. 
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Abstract
Oral microbiome research has moved from asking “Who’s there?” to “What are they doing?” Understanding what microbes “do” 
involves multiple approaches, including obtaining genomic information and examining the interspecies interactions. Recently we isolated 
a human oral Saccharibacteria (TM7) bacterium, HMT-952, strain TM7x, which is an ultrasmall parasite of the oral bacterium Actinomyces 
odontolyticus. The host-parasite interactions, such as phage-bacterium or Saccharibacteria–host bacterium, are understudied areas with 
large potential for insight. The Saccharibacteria phylum is a member of Candidate Phyla Radiation, a large lineage previously devoid 
of cultivated members. However, expanding our understanding of Saccharibacteria-host interactions requires examining multiple 
phylogenetically distinct Saccharibacteria-host pairs. Here we report the isolation of 3 additional Saccharibacteria species from the human 
oral cavity in binary coculture with their bacterial hosts. They were obtained by filtering ultrasmall Saccharibacteria cells free of other 
larger bacteria and inoculating them into cultures of potential host bacteria. The binary cocultures obtained could be stably passaged and 
studied. Complete closed genomes were obtained and allowed full genome analyses. All have small genomes (<1 Mb) characteristic of 
parasitic species and dramatically limited de novo synthetic pathway capabilities but include either restriction modification or CRISPR-
Cas systems as part of an innate defense against foreign DNA. High levels of gene synteny exist among Saccharibacteria species. Having 
isolates growing in coculture with their hosts allowed time course studies of growth and parasite-host interactions by phase contrast, 
fluorescence in situ hybridization, and scanning electron microscopy. The cells of the 4 oral Saccharibacteria species are ultrasmall 
and could be seen attached to their larger Actinobacteria hosts. Parasite attachment appears to lead to host cell death and lysis. 
The successful cultivation of Saccharibacteria species has significantly expanded our understanding of these ultrasmall Candidate Phyla 
Radiation bacteria.
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2015) whose genetic potential is being studied intensively 
(Danczak et al. 2017). The CPR is predicted to comprise 
roughly one-quarter of bacterial diversity on Earth and to con-
tain >73 individual phyla, including the Saccharibacteria. 
Using genome comparison methods, Parks et al. (2018) pro-
posed a standardized bacterial taxonomy that places the CPR 
lineage in a single phylum. Regardless of how taxonomic 
issues are resolved, the CPR lineage is an important subdivi-
sion of Bacteria. Saccharibacteria species are routinely detected 
in many natural environments (Hugenholtz et al. 2001) and in 
the microbiome of several mammals, including human 
(Ouverney et al. 2003; Marcy et al. 2007; Camanocha and 
Dewhirst 2014). CPR organisms share small genomes and 
ultrasmall cell sizes (Miyoshi et al. 2005; Brown et al. 2015; 
Luef et al. 2015). The genomes of CPR bacteria often lack 
numerous biosynthetic pathways, such as those for the synthe-
sis of fatty acids, nucleotides, amino acids, and vitamin cofac-
tors (Brown et al. 2015).

To date, strains representing species in the phylum 
Saccharibacteria are the only CPR bacteria to be cultured. The 
first isolate, Saccharibacteria bacterium HMT-952, strain 
TM7x (He et al. 2015), was recently designated Nanosynbacter 
lyticus (McLean et al. 2018). With an ultrasmall cell size (200 
to 300 nm) and highly reduced genome of 699 genes (705 kb), 
TM7x cannot synthesize any amino acids, vitamins, or cell 
wall precursors, and it displays an unconventional lifestyle as 
an obligate epiparasite (Baker et al. 2017; Bor et al. 2019). 
TM7x is parasitic in nature and grows on its Actinomyces 
hosts, forming stable long-term binary cocultures in vitro. It 
can be separated from its host and transferred to infect new 
host strains and phylogenetically related species in the genus 
Actinomyces (Bor et al. 2018). Strains representing 3 addi-
tional human oral taxa of Saccharibacteria have recently been 
described by Podar’s laboratory (Cross et al. 2019).

The primary goal of this research was to isolate and culture 
novel Saccharibacteria from the human oral cavity based on 
insights from the first cultivation of the strain, TM7x. A second 
goal was to characterize the novel Saccharibacteria strains in 
coculture with their previously unknown hosts and obtain bio-
logical information not predictable from simple in silico 
genome analyses. This work reports the isolation of strains of 
3 novel species of human oral Saccharibacteria and provides 
preliminary phenotypic and genotypic descriptions.

Materials and Methods

Approach and Rationale

On the basis of the knowledge gained from examining 
Saccharibacteria strain TM7x (He et al. 2015), we attempted to 
isolate novel human oral Saccharibacteria from clinical sam-
ples by filtering the ultrasmall Saccharibacteria cells free from 
other bacteria and inoculating them into cultures of potential 
host or “bait” species. Success was defined as establishing a 
coculture of novel Saccharibacteria species with a host species 
that could be stably passaged.

Bacterial Media and Culture Conditions

Potential host bacteria were revived and passaged on brain 
heart infusion agar (Becton, Dickinson), trypticase soy agar 
(Becton, Dickinson), or trypticase soy agar and brain heart 
infusion (1:1) with yeast extract (TSBY; 10 g/L). Sheep’s 
blood (5%) was routinely added to TSBY agar plates. Hemin 
(5 mg/L), the vitamin K precursor 1,4-dihydroxy-2-naphthoic 
acid (DHNA; 50 µg/L), nicotinamide adenine dinucleotide 
(NAD+; 1 mg/L), and hog gastric mucin (1 g/L; Sigma-Aldrich) 
were added as noted for culture of some fastidious hosts. Broth 
media—namely, brain heart infusion broth, TSBY broth, or 
TSBY mixed 1:1 with RPMI 1640 (Gibco)—were used for 
coculture of Saccharibacteria and hosts (see Appendix Table 
1).

Anaerobic culture was performed in an anaerobic chamber 
(Coy) at 37 °C with an atmosphere of 5% H2, 10% CO2, and 
85% N2. Microaerophilic culture was performed in a hypoxic 
chamber (Coy or Don Whitely) at 37 °C with an atmosphere of 
2% O2, 5% CO2, and 93% N2. Aerobic culture was performed 
in a warm room (37 °C) in air.

Subjects and Sampling

Forty-four subjects aged ≥18 y were recruited to provide oral 
samples for bacterial cultivation. Sex balance and racial diver-
sity were sought; the study had Institutional Review Board 
approval (13-14, Forsyth; 13-001075, University of California 
Los Angeles); and all subjects provided informed consent. 
Supragingival plaque samples were collected with Gracey 
curettes and dispersed in 5 mL of Maximum Recovery Diluent 
buffer (Sigma-Aldrich). Two milliliters of unstimulated saliva 
was collected by having the subject drool into a sterile 15-mL 
screw cap centrifuge tube. Saliva samples were diluted 2-fold 
with sterile phosphate-buffered saline before being subject to 
filtration.

Isolation of Saccharibacteria Strains in Coculture 
with Host Bacteria

Because Saccharibacteria cells are known to be ultrasmall 
(<0.2 µm; Miyoshi et al. 2005; He et al. 2015) they were sepa-
rated from other bacteria in clinical samples by filtration. 
Saliva samples were filtered through 0.45-µm polyvinylidene 
fluoride membranes and plaques samples through 0.2-µm 
track-etched polycarbonate filters (Millipore). The filtered 
Saccharibacteria cells were pelleted by ultracentrifugation 
(saliva, 80,000g; plaque, 60,000g), an approach modified from 
a reported method for extracellular vesicle enrichment (Théry 
et al. 2006). The collected and resuspended Saccharibacteria 
cells were added to overnight broth monocultures of several 
potential host or bait species, and the resultant cocultures were 
passaged every 24 to 48 h for at least 5 passages. The presence 
of Saccharibacteria cells in the final cultures was confirmed by 
microscopic examination and specific polymerase chain reac-
tion for Saccharibacteria (see Appendix).
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Bacterial Imaging

Detailed imaging methods can be found in the Appendix. In 
brief, bacterial monocultures or binary cocultures were grown 
to an early stationary phase and processed for imaging. For 
fluorescence in situ hybridization (FISH), cells were fixed and 
followed by DNA probe labeling in hybridization buffer (Bor 
et al. 2016). Stained cells were imaged with fluorescence con-
focal microscope. For scanning electron microscopy (SEM) 
imaging, cells were seeded on a glass coverslip, followed by 
treatment with fixing reagent overnight. Cells were washed, 
with critical points dried and coated with platinum-palladium 
before imaging.

Additional Methods

In addition to imaging methods, the Appendix contains 
detailed methods for polymerase chain reaction detection of 
Saccharibacteria, genome sequencing, genome assembly and 
annotation, acquisition and analysis of growth curves, and test-
ing of Saccharibacteria species host ranges.

Results

Isolation and Cultivation of Novel 
Saccharibacteria Species

Several potential host or bait species were used in experiments 
that led to the successful isolation of 3 novel Saccharibacteria spe-
cies. The 18 potential host bacteria species tried in the isolation 
experiments, including medium and atmosphere conditions, are 
presented in Appendix Table 1. Of 18 bait species, 2 were suc-
cessful: 1) Saccharibacteria HMT-957, strain BB001, was isolated 
on Actinomyces sp. HMT-171, strain F0337; 2) Saccharibacteria 
HMT-488, strain AC001, and Saccharibacteria HMT-955, 
strain PM004, were isolated on Pseudopropionibacterium pro-
pionicum HMT-739, strain F0230. A maximum likelihood 16S 
rRNA phylogenetic tree showing the relationship of these spe-
cies to other Saccharibacteria is shown in Figure 1. Note that 
strains TM7x, BB001, and AC001 are closely related and fall 
in G-1 subgroup A (blue), while PM004 was in the phyloge-
netically distinct G-1 subgroup B (red). The percentage simi-
larity among these 4 species is presented in Appendix Table 2.

Genome Sequencing, Description,  
and Comparative Genomics

Complete closed genomes were obtained for 3 newly isolated 
Saccharibacteria. Three environmental Saccharibacteria genomes 
(RAAC3 and GWC2 from groundwater and Saccharimonas 
aalborgensis from sludge bioreactor) were available as closed 
assemblies at the time of this study (Albertsen et al. 2013; 
Kantor et al. 2013) and were included in genome comparisons 
across the G1 group.

All 7 complete genomes were small, with most being <1 Mb. 
Three environmental Saccharibacteria genomes had relatively 

larger genome sizes (845, 1,013, 1,039 kb) with a mean length 
of 966 kb and 1,003 open reading frames, while the 4 oral 
strains had smaller genomes (705, 780, 890, 842 kb) with a 
mean size of 804 kb and 806 open reading frames (Fig. 2A, 
Appendix Table 3). After the start position for all genomes was 
reassigned with dnaA, the whole genomes were aligned. 
Remarkably, the maintenance of gene order and large syntenic 
blocks of genes across 500 kb between the oral and environ-
mental genomes, previously seen with just a few 
Saccharibacteria genomes (He et al. 2015; McLean et al. 2018), 
was again very evident across this new set (Fig. 2A).

The 4 oral Saccharibacteria isolates shared 446 core genes 
(Fig. 2B, Appendix Table 4), of which 129 (28.9%) cannot be 
assigned a specific biological function (hypothetical) and the 
remaining 317 were annotated (71.1%) and placed into a spe-
cific functional group (Appendix Fig. 1A, Appendix Table 5). 
Four groups accounted for 69% of the core genes—specifi-
cally, hypothetical, translation, DNA, and RNA metabolism 
genes. Consistent with previous studies (McLean et al. 2018), 
many of the biosynthetic pathways were incomplete, such as 
lipid, nucleotide, and essential amino acid biosynthesis pathways. 
In addition, when the core functional categories were compared 
with that of the synthetic minimal genome (531 kb, 473 genes) 
of independently growing Mycoplasma mycoides JCVI-syn3.0 
(Appendix Fig. 1B; Hutchison et al. 2016), it was evident that 
JCVI-syn3.0 had significantly more functionality in the cate-
gories of biosynthesis and processing of macromolecules such 
as lipids, nucleotides, and cofactors/vitamins (Appendix Fig. 
1C). TM7x, BB001, AC001, and PM004 had 110, 150, 279, 
and 273 unique genes, respectively (Fig. 2B, Appendix Table 
6). Unfortunately, the majority of the unique genes (70% to 
77%) cannot be assigned a specific biological function.

Differential Defense Systems against Foreign DNA

One of the more prominent features of the unique genes among 
the 4 strains were defense systems against invasive foreign 
DNA. Restriction-modification (RM) systems are prominent 
defenses that utilize 1) a restriction endonuclease, which cuts 
inappropriately methylated DNA sequences on foreign DNA 
within a specific target motif, and 2) a methyltransferase, 
which protects the same motif on the host genome through the 
addition of a methyl group (m6A/m4C/m5C). These systems 
can be differentiated into 4 types (types I to IV) based on their 
recognized target, subunit composition, and substrate specific-
ity. RM systems were found encoded in all strains except for 
PM004 (Fig. 3A). PacBio sequencing enabled single-base reso-
lution of methylated bases across genomes (Flusberg et al. 
2010), and in combination with the Restriction Enzyme 
Database, we confirmed the activity status of each system 
(Appendix Table 7). TM7x contained 2 type I systems (modi-
fied motifs: TTAN7TARC and CAAYN4RTC); AC001 con-
tained a type II system (predicted to modify a currently 
unknown m5C-based target motif) and type III system (modi-
fied motif: CCGAT); and BB001 contained a single type III 
system (modified motif: AAATC; Fig. 3B). In each strain, 
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despite the diversity in RM systems found, all strains contained 
a single RM system/mobile genetic element within a conserved 
genetic locus, flanked by a 5′ 1.7-kb region containing a pepti-
doglycan-N-acetylmuramic acid deacetylase gene and a 3′  
5.2-kb region containing genes associated with ferredoxin 
reductase and an anaerobic ribonucleoside-triphosphate reduc-
tase (Appendix Fig. 2), perhaps indicating an integrative 
hotspot for such a mobile genetic element.

PM004 was the only strain to have CRISPR-Cas genes. The 
CRISPR-Cas system is an RNA-guided adaptive immune sys-
tem against invasive genetic elements (Jinek et al. 2012) and is 
detected in various CPR organisms, including the oral 
Saccharibacteria (Burstein et al. 2017; McLean et al. 2018). 
PM004 CRISPR-Cas loci consisted of cas9, cas1, cas2, and 
CRISPR RNA array in a type IIC CRISPR system arrangement 
(Fig. 3C). Of all the CRISPR-Cas systems, type IIC is the 

simplest, consisting of the fewest cas genes (Chylinski et al. 
2013). The PM004 CRISPR RNA array consists of 24 unique 
spacers flanked by the same 25-repeating sequence (Fig. 3C, 
Appendix Table 8). Blasting the spacer sequences in the 
Actinobacteriophage database or other phage databases did not 
yield confident identification of the target phage. The cas9 
endonuclease was 1,119 amino acids in length and most closely 
related to other Saccharibacteria cas9 proteins in the G-1 phy-
logenetic group, followed by Clostridium and Geobacillus 
cas9 genes (NCBI blast).

Characterization of Saccharibacteria Species 
and Their Hosts by Microscopy

The cocultivation of Saccharibacteria with its bacterial host 
allowed a detailed characterization of cell morphology with 

Figure 1. Neighbor-joining 16S rRNA phylogenetic gene tree for candidate division Saccharibacteria. Blue (group G-1A) and red (group G-1B) are 
separately rooted monophyletic clades that both fall into group 1 (Camanocha and Dewhirst 2014). Blue and red bold strains are currently isolated 
strains and used in this study. The scale is 2.5 substitutions per site.
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various imaging techniques. All images were taken at the early 
stationary phase. Phase contrast and FISH imaging showed 
that the new strains lived on the surface of their host bacteria. 

While TM7x and BB001 appeared mainly as a small cocci, 
AC001 and PM004 were a mix of small cocci and rods (Fig. 
4A, B; Appendix Fig. 3A, B). SEM images largely supported 
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these findings, although TM7x and BB001 appeared to be 
small rods rather than cocci (Fig. 4C, Appendix Fig. 3C), sug-
gesting that the resolution of phase contrast and FISH imaging 
does not allow accurate distinction. Infected host cells were 
observed with 1 to >10 Saccharibacteria attached. TM7x mor-
phology was distinct from the other Saccharibacteria species in 
that they were often “bowling pin” shaped, which may repre-
sent budding (Fig. 4C). Furthermore, all 3 newly isolated 
Saccharibacteria strains were shown to induce elongation and 
swelling of their host bacteria (Fig. 4A, Appendix Fig. 3A) as 
previously seen with TM7x (Bedree et al. 2018; Bor et al. 
2018). Cells experiencing stress often show elongation and 
swelling, and it is not surprising for cells being parasitized to 
exhibit symptoms of stress.

Impact of Parasitism on Host Growth

Parasitism did slow the growth of host species as determined 
by monitoring the cell density through image-based oCello-
Scope measurements (Fig. 4D, E). Binary cocultures of TM7x/
XH001 and BB001/F0337 had slight but significantly increased 
generation/doubling times, 153 ± 8 and 138 ± 6 min (mean ± 
SD), respectively, as compared with the monocultures of 

XH001 and F0337, 120 ± 18 and 122 ±11 min (Fig. 4D, E; 
Appendix Table 9), while their maximum cell density at the 
stationary phase was comparable. Growth curves for AC001 
and PM004 with Pseudopropionibacterium propionicum 
F0700 were precluded by clumping of host cells. The binary 
coculture of AC001/F0700 could be passaged indefinitely by 
1:10 dilution into fresh medium. Binary coculture of PM004/
F0700 required addition of fresh host at each passage, as essen-
tially all host cells were killed at 48 h. Consistent with growth 
characteristics, live-dead staining of the stationary phase 
cocultures demonstrated that cocultures of TM7x/XH001 and 
BB001/F0337 had marginally more dead cells than their mono-
culture hosts (Appendix Fig. 4A, B). In contrast, AC001/F0700 
and PM004/F0700 cocultures displayed drastically increased 
cell death when compared with F0700 monoculture (Appendix 
Fig. 4C), as reflected by the increased red signals from the 
membrane-compromised dead cells.

Host Range of Saccharibacteria Strains

The results of studies to examine the host range of the 4 isolated 
Saccharibacteria species is shown in Figure 5. Saccharibacteria 
HMT-952 (TM7x) and Saccharibacteria HMT-957 (BB001), 
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while closely related by 16S rRNA sequence identity (99.4%; 
Fig. 2) and shared genomic amino acid identity (73.1%), pre-
ferred different sets of Actinomyces species from different 
clades (Fig. 5; red vs. green clade). However, Saccharibacteria 

HMT-488 (AC001) and Saccharibacteria HMT-955 (PM004), 
which are phylogenetically distant by 16S rRNA (88%; Fig. 2) 
and share low amino acid identity (58.6%), parasitized strains 
of the single species P. propionicum (Fig. 5, blue clade). All 4 

Figure 4. Phenotypic characterization of isolated Saccharibacteria strains. (A) Phase contrast, (B) fluorescence in situ hybridization (FISH), and (C) 
scanning electron microscope images were taken for each Saccharibacteria strain–host binary coculture and compared with that of the monocultures 
(see Appendix Fig. 3). In the FISH images, red and green represent Saccharibacteria and host bacteria, respectively. Scale bars are 10 µm for phase 
contrast and FISH images and 1 µm for the scanning electron microscope images. Red arrows point out the “bowling pin”–like morphology of TM7x. 
(D, E) Growth curve of 2 Saccharibacteria–host binary cocultures (TM7x, BB001) and host monocultures were acquired with image-based cell density 
measurement by oCelloScope. Generation time (gt) for each mono- and coculture was determined (see Methods and Appendix Table 9) and presented 
next to the line graph in matching color. Values are means of 3 independent generation times with SD as an error bar. 
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oral strains failed to infect and stably grow with other common 
oral bacterial strains tested (Fig. 5, dark clade).

Discussion
The human oral cavity is reported to have at least 16 species of 
Saccharibacteria (Escapa et al. 2018). Including the initial iso-
late, TM7x (He et al. 2015), the 3 species isolated in this work, 
and the 4 species reported by Podar’s laboratory (Cross et al. 
2019), half of the human oral Saccharibacteria species have 
been cultured by oral microbiologists. The approach of taking 
complex microbial samples from oral sites, filtering to remove 
all but ultrasmall bacteria, and then inoculating them into broth 
culture of potential host or bait bacterial species has been vali-
dated by this work.

Having Saccharibacteria species in binary coculture with 
their hosts has allowed isolation of significant biomass, pro-
duction of tens of micrograms of DNA, and highly accurate 
sequencing to produce closed and complete genomes. 
Comparative genomics demonstrates that the 3 novel species 
have greatly reduced genomes and lack many pathways for 
synthesis of fatty acids, amino acids, nucleotides, and vitamin 
cofactors. This is fully consistent with these bacteria being 

obligate parasites. The remarkable degree of genomic synteny 
across genomes may reflect strong selection for functional 
relationships among genes within highly streamlined genomes. 
The smaller size of Saccharibacteria species genomes in spe-
cies living in the human oral microbiome versus those in the 
environment may reflect the stability of the microbial consortia 
in the oral niche.

While restriction-modification systems are common to 
CPR bacteria (Westra et al. 2015), CRISPR-Cas systems are 
uncommon in environmental CPR (Burstein et al. 2016) but 
have been found in Saccharibacteria species associated the 
human and mammalian oral cavity (McLean et al. 2018). The 
presence of a CRISPR-Cas system in Saccharibacteria HMT-
955, strain PM004, growing in stable coculture with its host 
should facilitate future molecular characterization studies. By 
working with the new isolates, it should be possible to examine 
parasite (or symbiont)–host relationships at 4 levels: phage, 
Saccharibacteria, bacterial host, and human host (or animal 
model).

Establishing 4 Saccharibacteria species in stable long-term 
binary coculture with hosts has allowed us to perform longitu-
dinal microscopy and growth studies of host parasite interac-
tions. While species differences exist, the 4 Saccharibacteria 
species all eventually killed host cells to which they attached, 

Figure 5. Host range of cultivated isolates. Phylogenetic tree was created with the 16S rRNA sequences of different Actinomyces sp. (red and green), 
Pseudopropionibacterium sp. (blue), and common oral bacteria (black). Attempts were made to infect each bacterium with each of the 4 isolated 
Saccharibacteria species. Those that supported and did not support the growth of each Saccharibacteria are denoted by plus (+) and minus (–) signs, 
respectively. The scale equals 0.04 substitutions per site. TM7x is a strain of Saccharibacteria HMT-952; BB001 is a strain of Saccharibacteria HMT-957; 
AC001 is a strain of Saccharibacteria HMT-488; and PM004 is a strain of Saccharibacteria HMT-955.
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prevented division of infected cells, and slowed the overall 
growth rate of infected host cultures. Human oral Saccharibac- 
teria seem to infect specific host bacteria, possibly through 
binding to specific cell surface structures that are shared by 
only closely related hosts. It is interesting that 2 closely related 
Saccharibacteria have phylogenetically distinct hosts, while 2 
distantly related Saccharibacteria have the same host bacteria. 
As we learn more about the attachment of Saccharibacteria to 
their host bacteria, it will be interesting to compare and con-
trast attachment mechanisms used by Saccharibacteria and 
phage. Much remains to be learned about the full life cycle of 
Saccharibacteria and other CPR bacteria and their interactions 
with hosts, but having multiple human oral Saccharibacteria in 
binary coculture with their hosts provides an excellent founda-
tion for future studies.
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