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Abstract

Exposure to fine particulate matter (PM2.5), of which secondary organic aerosol (SOA) is a major 

constituent, is linked to adverse health outcomes, including cardiovascular disease, lung cancer, 

and preterm birth. Atmospheric oxidation of isoprene, the most abundant nonmethane 

hydrocarbon emitted into Earth’s atmosphere primarily from vegetation, contributes to SOA 

formation. Isoprene-derived SOA has previously been found to alter inflammatory/oxidative stress 

genes. MicroRNAs (miRNAs) are epigenetic regulators that serve as post-transcriptional modifiers 

and key mediators of gene expression. To assess whether isoprene-derived SOA alters miRNA 

expression, BEAS-2B lung cells were exposed to laboratory-generated isoprene-derived SOA 

constituents derived from the acid-driven multiphase chemistry of authentic methacrylic acid 

epoxide (MAE) or isomeric isoprene epoxydiols (IEPOX) with acidic sulfate aerosol particles. 

These IEPOX- and MAE-derived SOA constituents have been shown to be measured in large 

quantities within PM25 collected from isoprene-rich areas affected by acidic sulfate aerosol 

particles derived from human activities. A total of 29 miRNAs were identified as differentially 

expressed when exposed to IEPOX-derived SOA and 2 when exposed to MAE-derived SOA, a 
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number of which are inflammatory/oxidative stress associated. These results suggest that miRNAs 

may modulate the inflammatory/oxidative stress response to SOA exposure, thereby advancing the 

understanding of airway cell epigenetic response to SOA.

Graphical Abstract

1. INTRODUCTION

Exposure to atmospheric fine particulate matter (PM2.5, aerosol with aerodynamic diameter 

<2.5 μm) is associated with significant adverse health outcomes such as cardiovascular 

disease,1–3 respiratory system damage and lung cancer4–11 as well as preterm birth.12–15 

PM25 is a heterogeneous mixture of organic and inorganic solid and/or liquid particles 

suspended in air.15,16 A dominant component of PM2.5 is secondary organic aerosol (SOA), 

the majority of which is formed through gas-phase photooxidation (i.e., hydroxyl radical 

(OH)-initiated oxidation) of isoprene (2-methyl-1,3-butadiene).16–19 Isoprene, released 

primarily from broad-leaf trees, is the most abundant nonmethane hydrocarbon emitted into 

Earth’s atmosphere (~600 Tg year−1).20 The interaction of gas-phase isoprene-derived 

oxidation products with anthropogenic pollutants, in particular acidic sulfate aerosol derived 

from combustion sources, produces isoprene-derived SOA.17 Thus, the composition of 

isoprene-derived SOA is strongly influenced by controllable anthropogenic emissions.21 

Intermediates in isoprene-derived SOA formation, including isomeric isoprene epoxydiols 

(IEPOX), isoprene hydroxyhy-droperoxide (ISOPOOH), and methacrylic acid epoxide 

(MAE), are critical gas-phase SOA precursors.21

PM2.5-induced oxidative stress plays a key role in respiratory system damage caused by air 

pollution.22,23 Oxidative stress, an oxidant/antioxidant imbalance in favor of oxidants, is a 

key driver of injury and inflammatory response in respiratory diseases, including asthma and 

chronic obstructive pulmonary disease.24,25 Given its size, PM2.5 can completely penetrate 

the lungs, resulting in direct exposure of lung cells.22 Our previous work has shown that 

isoprene-derived SOA induced the expression of oxidative stress and inflammation genes in 

human lung cells.16,21,26,27 Of the SOA components tested in these previous studies, MAE-

derived SOA was identified as being a more potent inducer of inflammatory and oxidative 

stress gene expression response than IEPOX-derived SOA or ISOPOOH-derived SOA.21 
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While the gene activation studies are important in providing insight into the cellular 

response to isoprene-derived SOA, other aspects of the regulatory pathway remain to be 

elucidated’ namely post-transcriptional regulation of mRNA.

MicroRNAs (miRNAs) are noncoding single-stranded RNA molecules approximately 22 

nucleotides in length.28 miRNAs serve as post-transcriptional modifiers and key mediators 

of gene expression. Thus, they act as epigenetic regulators of genomic response to 

environmental exposures. In general, miRNAs interact with complementary regions of target 

mRNAs to induce mRNA degradation and repress translation.29 In some cases, however, 

miRNAs have been shown to activate translation.29

We hypothesized that exposure to isoprene-derived SOA would alter the expression of 

miRNAs that modulate genes previously found to be responsive to isoprene-derived SOA 

exposure. To test this hypothesis, we exposed BEAS-2B cells to both MAE- and IEPOX-

derived SOA and evaluated sub-sequent miRNA expression relative to a control exposure. 

These results provide molecular level evidence linking isoprene-derived SOA exposure and 

observed system level respiratory outcomes.

2. EXPERIMENTAL METHODS

Synthesis of SOA Precursors.

Experimental procedures for the synthesis and characterization of SOA precursors trans-β-

IEPOX and MAE and extraction of SOA constituents have been published previously.16,30,31 

Identity and purity (>99%) of the precursors was confirmed by 1H and 13C nuclear magnetic 

resonance (NMR) as well as by gas chromatography/electron ionization mass spectrometry 

(GC/EI-MS) analysis with prior trimethylsilylation (TMS) or ultraperformance liquid 

chromatography coupled to electrospray ionization high-resolution quadrupole time-of flight 

mass spectrometry (UPLC/ESI-HR-QTOFMS).30,31

Generation and Chemical Characterization of IEPOX- and MAE-Derived SOA.

To generate SOA, authentic trans-β-IEPOX or MAE was injected into a 10-m3 flexible 

Teflon indoor chamber in the presence of acidic sulfate aerosol. This was conducted under 

dark conditions; therefore, radicals and peroxides were not expected to be present. Detailed 

operating procedures for this chamber facility for the purpose of in vitro exposures have 

been described previously.16,30,32 Filter extraction procedures have been described 

elsewhere.32 In brief, efficiency of removal of IEPOX- and MAE-derived SOA from filters 

was estimated to be over 90%. Filter samples were chemically characterized by GC/EI-MS 

and UPLC/ESI-HR-QTOFMS as described previously.16 Detailed sample preparation, 

column conditions, and operating parameters for GC/EI-MS and UPLC/ESI-HR-QTOFMS 

have been published elsewhere.33,34

Cell Culture.

BEAS-2B cells were cultured in keratinocyte growth medium (KGM) (KGM BulletKit, 

Lonza), which contains serum-free KBM, bovine pituitary extract, human epidermal growth 

factor, insulin, hydrocortisone, and GA-1000 (gentamincin, amphotericin B) and grown at 
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37 °C and 5% CO2 in a humidified incubator. A serum-free medium was chosen to 

maximize comparability to other studies evaluating in vitro exposure to isoprene-derived 

SOA, to follow ACCT recommendations, and because studies have noted that serum-

exposed BEAS-2B cells are not an ideal model of the epithelial phenotype.16,21,26,35,36

Extraction of SOA Constituents for Cell Exposure.

Sonication in high-purity methanol was used to extract the Teflon filter membranes. Several 

filter extracts were combined to achieve the desired dose level, then dried under a gentle 

stream of nitrogen and redissolved in growth factor-deprived serum-free keratinocyte basal 

medium (KBM). The acidified sulfate aerosol-only control filters were processed in the 

same way. SOA constituents are known to be highly methanol and water-soluble, and thus, 

the SOA constituents can be assumed to have been fully dissolved in the cell medium.37

Cell Exposure.

For the exposure, cells were seeded in 24-well plates at a density of 2.5 × 104 cells/well in 

250 μL of KGM 2 days before exposure. At 60–70% confluence, cells were washed twice 

with the phosphate-buffered saline (PBS) and then exposed for 24 h to KBM medium 

containing 0.01, 0.1, and 1 mg/mL SOA. This procedure was repeated for extracts of the 

acidic sulfate aerosol control filters. Experiments were conducted in triplicate per treatment 

group.

Assessment of Cytotoxicity.

To ensure that toxicity of exposure levels would not affect gene expression, toxicity at each 

exposure level was assayed using a lactate dehydrogenase (LDH) cytotoxicity detection kit 

(Takara Bio, Mountain View, California) according to the manufacturer’s protocol. After 

being exposed for 24 h, the supernatants were collected to assess LDH levels. Cells exposed 

to filter extracts from acidified sulfate aerosol-only experiments and cells maintained in 

KBM alone were treated as control groups.

miRNA Extraction.

Cells were lysed with 350 μL of Trizol Reagent (Life Technologies, Carlsbad, California) 

after 24 hours for total RNA isolation.16 Spin column-based Direct-zol RNA MiniPrep kit 

(Zymo Research, Irvine, California) was used to purify the RNA samples. RNA quantity was 

determined with Nanodrop (Thermo Scientific, Wilmington, Delaware) and quality with 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California). Total RNA was 

hybridized to the nCounter Human v3 miRNA panel comprising 798 human miRNA targets 

and 5 housekeeping genes (NanoString Technologies, Inc., Seattle, Washington). The Nano-

String hybridization was performed by the Translational Genomics Laboratory at the UNC 

at Chapel Hill Lineberger Comprehensive Cancer Center.

Statistical Analysis.

Raw expression data were extracted using the nSolver Analysis Software 4.0 (NanoString 

Technologies, Inc., Seattle, Washington) and normalized both to positive controls and 

housekeeping genes as recommended by the manufacturer.38 miRNA expression changes in 
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cells exposed to SOA constituents were compared to changes in cells exposed to the extracts 

from acidic sulfate aerosol controls to assess the effects induced solely by the extracted SOA 

constituents using log fold changes calculated via an ANOVA model. Log fold changes are 

defined as the value of the geometric mean of the normalized miRNA expression in the cells 

exposed to 0.1 mg/mL IEPOX- or MAE-derived SOA, divided by the geometric mean of the 

normalized miRNA expression in the cells exposed to 0.1 mg/mL acidified sulfate aerosol. 

This was conducted in Partek Genomics Suite software (Partek Inc., St. Louis, MO, United 

States) and significant differential expression was defined as a log fold change with an 

associated false discovery rate adjusted q < 0.05. Ingenuity Pathway Analysis (IPA) software 

miRNA Target Filter tool (Ingenuity Systems, Inc., Redwood City, CA, United States) was 

used to identify two comprehensive lists of computationally predicted gene targets of the 

miRNAs differentially expressed in response to IEPOX- and MAE-derived SOA, 

respectively. Expression pairs were defined as miRNA-mRNA pairs in which the miRNA’s 

computationally predicted gene targets were also found to be differentially expressed in gene 

expression studies of isoprene-SOA exposure.16,21 To validate the predicted gene target, we 

queried the European Bioinformatics Institute’s Expression Atlas’ “RNA-seq analysis of 2 

cell line models of lung disease (A549 and BEAS-2B) and primary bronchial epithelial cells 

in Project 3 of Open Targets 020”, which contained mRNA baseline data.39 Additionally, 

network analysis to identify enriched biological pathways associated with the miRNAs 

differentially expressed was conducted using IPA software (Ingenuity Systems, Inc., 

Redwood City, CA, United States). Cellular networks representing perturbed pathways were 

identified through enrichment analysis performed using the Fisher’s Exact test as detailed 

previously40. Over-represented diseases and/or biological functions were defined as those 

associated with more gene product targets than expected by chance using a p-value <0.01.

3. RESULTS

Exposure Characterization.

Detailed exposure conditions have been described elsewhere, including description of 

aerosol chemical composition analysis.16 SOA mass yields from the reactive uptake of trans-
β-IEPOX onto acidified sulfate aerosol are substantially larger than those from reactive 

uptake of MAE under the same experimental conditions (<10% RH) and time scale (2 hour 

reaction time), which is consistent with ambient measures from the southeastern United 

States.41 Additionally, the SOA constituents found in the filter extracts of IEPOX- and 

MAE-derived SOA were also observed in ambient PM2.5 samples collected from isoprene-

rich regions like the southeastern United States, which further supports the validity of the 

chamber experiments as representative of ambient SOA composition.16,27,41 The amount of 

SOA material the cells were exposed to was also relevant to a human ambient acute 

exposure. Ambient isoprene-derived SOA mass concentrations can range from 500 ng/m3 to 

10–16 μg/m3.42,43 If a worst-case exposure scenario of 16 μg/m3 for 8 hours is assumed, 

with an inhalation rate of 6 L/min (i.e., 12 breaths per minute and the tidal volume ~0.5 L), 

then ambient exposure for 8 hours is 16 μg/m3 X 6 L/min X60 min/h X8 h X 0.001 m3/L = 

46.08 μg = 0.046 mg.
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Cytotoxicity Measurements.

Cells exposed to a level of 0.1 mg/mL were selected for miRNA expression analysis as this 

dose was determined to be noncytotoxic. Significant cell death was observed in acidified 

sulfate aerosol-only controls at a concentration of 1 mg/mL (cell death, ~27%; p = 0.02), 

while acidified sulfate aerosol-only controls at concentrations of ≤0.1 mg/mL were not 

cytotoxic (cell death, ≤10%; p > 0.05).

Altered Expression of miRNAs Induced by Exposure to Isoprene-Derived SOA.

A total of 29 miRNAs were identified that displayed differential expression when exposed to 

IEPOX-derived SOA (Table 1). Two miRNAs were identified that were differentially 

expressed when exposed to MAE-derived SOA (Table 1). IEPOX-derived SOA exhibited a 

more robust response in absolute magnitude of expression log fold changes and number of 

miRNAs differentially expressed (Figure 1). All miRNAs differentially expressed in 

response to IEPOX-derived SOA were down-regulated (negative log fold change), while the 

two miRNAs differentially expressed in response to MAE-derived SOA were up-regulated 

(positive log fold change). miRNAs differentially expressed in response to IEPOX-derived 

SOA exhibited greater absolute log fold changes than those in response to MAE-derived 

SOA. The largest log fold change in response to MAE-derived SOA was +2.99, versus 

−12.67 in response to IEPOX-derived SOA.

Network Analysis and miRNA-mRNA Expression Pairing.

There was substantial overlap in the computationally predicted gene targets of miRNAs that 

were differentially expressed in the current study and genes that we have previously found to 

be differentially expressed in response to isoprene-derived SOA exposure.16,21 For IEPOX-

derived SOA, 52 gene target-miRNA expression pairings were identified (Table S1). Forty-

five of these pairs showed an inverse expression pattern, suggestive of miRNA repression of 

mRNA levels. For MAE-derived SOA, 7 gene target-miRNA expression pairings were 

identified, 6 of which involved miR-423–5p (Table S2). For these expression pairs 

responsive to MAE-derived SOA exposure, both miRNA and mRNA demonstrated 

increased expression in response to exposure, counter to the expected pattern. Of the 59 total 

miRNA–mRNA expression pairs identified, 55 of the mRNA genes are known to be 

expressed in BEAS-2B cells according to baseline RNA-sequencing, thus providing 

confidence in the computationally predicted parings (Tables S1 and S2).

Network analysis revealed that of the 59 total miRNA–mRNA pairings identified as 

responsive to IEPOX-derived SOA, 33 of the pairings had NRF2-mediated oxidative stress 

response as one of their associated pathways. Given that there were only 2 miRNAs 

responsive to MAE-derived SOA, network analysis was not performed. However, the 29 

miRNAs differentially expressed when exposed to IEPOX-derived SOA were analyzed for 

enrichment within biological pathways and networks. Two biological networks were highly 

enriched. Network 1 (Supplementary Figure S1) is associated with inflammatory disease, 

inflammatory response, organismal injuries and abnormalities (p-value = 10−34). Network 2 

(Supplementary Figure S2) is associated with cancer, organismal injury and abnormalities, 

and reproductive system disease (p-value = 10−10).

Eaves et al. Page 6

Chem Res Toxicol. Author manuscript; available in PMC 2020 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. DISCUSSION

Our previous work found that isoprene-derived SOA induced the expression of oxidative 

response and inflammatory genes.16,21,26,27 Here, we demonstrate that inflammatory and 

oxidative stress associated miRNAs are also differentially expressed in response to isoprene-

derived SOA. There were three major findings from this study: first, miRNAs are likely 

involved in the modulation of the genomic response to isoprene-derived SOA; second, 

marked differences exist between the miRNA response to IEPOX-derived SOA and MAE-

derived SOA; third, miRNAs may specifically modulate inflammatory response to IEPOX-

derived SOA exposure.

The present study suggests that miRNAs are functioning as genomic regulators in relation to 

SOA in lung cells. There was substantial overlap in the gene targets predicted from the 

miRNAs differentially expressed in the present study and genes previously identified as 

differentially expressed in response to isoprene-derived SOA. Of the 52 miRNA–gene target 

parings identified in response to IEPOX-derived SOA, 45 of them showed the expected 

inverse relationship (i.e., miRNA reduced expression, mRNA increased expression) 

suggestive of miRNA suppression of mRNA expression. On the other hand, all pairings 

identified in response to MAE-derived SOA demonstrated an upregulation of both miRNA 

and mRNA, which is not indicative of miRNA suppression. Positive correlation between 

upregulated miRNA levels and gene expression may be explained by the action of the 

miRNA blocking a suppressor transcription factor or by an indirect pathway, as has been 

observed with other miRNAs.44,45 Therefore, the current study suggests that miRNAs are 

involved in the genomic response to SOA and perhaps more extensively involved in the 

epigenetic regulation of the response to IEPOX-derived SOA than the response to MAE-

derived SOA.

The striking differences in miRNA response between the IEPOX- and MAE-derived SOA is 

consistent with previous studies that show variations in gene expression response based on 

the specific SOA; however, the exact interplay between miRNAs and gene expression in this 

context remains to be elucidated fully. Previous studies have shown that MAE-derived SOA 

induces a gene expression response more robust than that of IEPOX-derived SOA.16,21 The 

present study finds that the miRNA response is more robust in response to IEPOX-derived 

SOA. In fact, while previous studies have shown specifically inflammatory related genes to 

be upregulated in response to MAE-derived SOA more than IEPOX-derived SOA, here we 

find that inflammatory-related miRNAs are downregulated in response to IEPOX-derived 

SOA, which would lead to upregulation of their respective gene targets. Thus, it is likely that 

other epigenetic mechanisms are also at play in the control of genomic response to isoprene-

derived SOA.

IEPOX-derived SOA responsive miRNAs were found to be associated with inflammatory 

function and disease. Two biological networks with inflammatory and cancer functions were 

identified in network analysis of IEPOX-derived SOA responsive miRNAs. The first of these 

contained insulin as a central node. Increased exposure to air pollution has been linked to 

insulin resistance in meta-analyses of epidemiologic evidence46 as well as in experimental 

studies.47 Additionally, insulin resistance is a known risk factor of asthma.48 The second 
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network contained TP53, which represents a potential newly identified pathway not 

previously found in our gene activation studies of isoprene-derived SOA exposure.16,21,27 

TP53 encodes the tumor suppressor p53, which is thought to mediate PM-induced epithelial 

cell mitochondria-regulated apoptosis, which is relevant to the pathogenesis of lung cancer.
49 Moreover, NRF2-mediated oxidative stress response was an associated pathway of 33 of 

the target gene-miRNA pairings responsive to IEPOX-derived SOA NRF2, a transcription 

factor that activates various antioxidant and detoxification enzymes to reduce reactive 

oxygen species, has been linked in many studies to PM25 exposure.50–53 Notably, NRF2-

mediated oxidative stress response was shown to be enriched in the gene sets previously 

found to be responsive to IEPOX- and MAE-derived SOA16 as well as total isoprene-derived 

SOA.27 Hence, the networks identified here provide further evidence that the identified 

miRNAs play a role in IEPOX-derived SOA inflammatory/oxidative stress related epigenetic 

changes and resultant health outcomes. This is of particular importance to public health 

because IEPOX-derived SOA has been shown to be the largest contributor to global 

isoprene-derived SOA, which is up to 30–40% of the total organic material in PM2.5.54–56

While this study provides novel information regarding cellular response to isoprene-derived 

SOA, it is not without limitations. The use of an immortalized cell line as well as the 

limitation of delivering PM to submerged cells should be noted. To address these limitations, 

future studies could explore PM deposition using in vitro air–liquid interface technologies or 

utilize in vivo inhalation designs to investigate transcriptional and epigenetic changes 

induced by isoprene-derived SOA exposure. Additionally, future studies are warranted to 

assess whether specific miRNAs or a set of miRNAs identified here can act as biomarkers of 

exposure to isoprene-derived SOA and to evaluate the role of other epigenetic machinery in 

the genomic response to isoprene-derived SOA.

In summary, in areas such as the southeastern United States, where isoprene emissions are 

high, understanding the specific cellular responses to isoprene-derived SOA is crucial to 

public health.42,43,54,57 This study provides evidence that miRNAs play a role in isoprene-

derived SOA-induced morbidity and do so in a manner that is specific to chemical 

composition of the SOA.
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ABBREVIATIONS

SOA secondary organic aerosol

MAE methacrylic acid epoxide

IEPOX isomeric isoprene epoxydiols

miRNA micro-RNA

PM2.5 fine particulate matter (aerosol with aerodynamic diameter <2.5 μm)

KBM keratinocyte basal medium

KGM keratinocyte growth medium

LDH lactate dehydrogenase

PBS phosphate-buffered saline
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Figure 1. 
Log fold changes of miRNA expression when exposed to IEPOX- or MAE-derived SOA 

compared to acidified sulfate aerosol control.
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