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Abstract
The progress of modern medicine would be impossible without the use of
general anesthetics (GAs). Despite advancements in refining anesthesia
approaches, the effects of GAs are not fully reversible upon GA withdrawal.
Neurocognitive deficiencies attributed to GA exposure may persist in neonates or
endure for weeks to years in the elderly. Human studies on the mechanisms of
the long-term adverse effects of GAs are needed to improve the safety of general
anesthesia but they are hampered not only by ethical limitations specific to
human research, but also by a lack of specific biological markers that can be used
in human studies to safely and objectively study such effects. The latter can
primarily be attributed to an insufficient understanding of the full range of the
biological effects induced by GAs and the molecular mechanisms mediating such
effects even in rodents, which are far more extensively studied than any other
species. Our most recent experimental findings in rodents suggest that GAs may
adversely affect many more people than is currently anticipated. Specifically, we
have shown that anesthesia with the commonly used GA sevoflurane induces in
exposed animals not only neuroendocrine abnormalities (somatic effects), but
also epigenetic reprogramming of germ cells (germ cell effects). The latter may
pass the neurobehavioral effects of parental sevoflurane exposure to the
offspring, who may be affected even at levels of anesthesia that are not harmful
to the exposed parents. The large number of patients who require general
anesthesia, the even larger number of their future unexposed offspring whose
health may be affected, and a growing number of neurodevelopmental disorders
of unknown etiology underscore the translational importance of investigating the
intergenerational effects of GAs. In this mini review, we discuss emerging
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experimental findings on neuroendocrine, epigenetic, and intergenerational
effects of GAs.
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Core tip: The GABAergic general anesthetics may act as stressors and endocrine
disruptors in neonates and young adults. They may induce two distinct types of long-
term adverse effects: Neuroendocrine effects (the somatic effects) and epigenetic
reprogramming of germ cells (the germ cell effects). The latter may pass
neurobehavioral abnormalities to male offspring. Compared to the somatic cells, the
germ cells may be more sensitive to the deleterious effects of general anesthetics, raising
the possibility that the offspring may be affected even when levels of anesthesia are not
harmful to the exposed parents. Further rigorous experimental testing of all these
possibilities is required.
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INTRODUCTION
The number of surgeries performed globally has rapidly increased from 226.4 million
in  2004  to  312.9  million  in  2012,  according  to  2016  World  Health  Organization
estimates[1].  Most  of  these  surgeries  and  many  non-surgical  procedures  require
general anesthesia, which can be viewed as a state of pharmacologically induced
“reversible brain coma”[2].  Despite complete reversibility of the primary effect of
general anesthetics (GAs), i.e., induction of the general anesthesia state, many studies
in humans and almost all studies in laboratory animals provide evidence that GAs
may leave persistent footprints of their brief presence in the body, i.e.,  anesthetic
exposure  may lead to  long-lasting functional  abnormalities[3-7].  Investigations  of
anesthesia-induced abnormalities are currently restricted primarily to evaluating
neurocognitive  function  in  the  exposed  subjects[8-12],  although  it  is  biologically
plausible that GAs may affect other functions/systems because their actions are not
limited to neuronal effects involved in the mediation of a general anesthesia state.
Still,  as  a  result  of  these  studies,  the  long-term  adverse  effects  of  GAs  are  an
increasingly recognized health concern, especially in the very young and elderly[3-7].
The adverse effects of GAs during the perinatal period are of special concern[13-17]

because mounting evidence indicates that at this stage of life the central nervous
system  and  other  body  systems  are  highly  susceptible  to  reprogramming  by
environmental factors/stressors[18-21]. Such environmental factors may include GAs,
given the multiple molecular targets known to mediate their actions in the brain and
throughout  the  body[22-25].  In  support  of  this  contention  are  reports  of  learning
disabilities,  long-term  memory  impairment,  and  attention-deficit  hyperactivity
disorders in patients who had anesthesia early in life[3,5,11,26,27]. Although several recent
studies have not found negative neurocognitive consequences of relatively short (≤ 1
h) anesthesia exposures in children[6,7,28], both clinical and laboratory studies, including
the most recent clinical assessments[29], agree that prolonged or repeated exposures to
GAs that are frequently required for very sick children may result  in significant
neurocognitive abnormalities later in life[30]. Furthermore, a recent report of the effects
on brain development of relatively short anesthesia exposure for cesarean delivery[31]

further confirms that the current understanding of this phenomenon remains in an
early stage.

Because of  a  widely  accepted dogma that  the  brain is  most  susceptible  to  the
deleterious effects of environmental stressors at the extreme of ages, investigations of
the  long-term adverse  effects  of  GAs in  young adults  are  scarce  even in  animal
models.  Several  studies  have  assessed  the  effects  of  GAs  in  young  adult  rats,

WJP https://www.wjgnet.com May 19, 2020 Volume 10 Issue 5

Martynyuk AE et al. Intergenerational effects of general anesthetics

82



primarily using rats of this age as comparisons to other age groups[4,32-34]. Aside from
the fact that these studies found long-term effects of isoflurane in young adult rats,
different  isoflurane  concentrations  and  exposure  regimens  make  it  difficult  to
compare  the  effects  across  these  studies.  Clearly,  further  research  is  needed  to
elucidate the full range of long-term effects of GAs in young adults. Importantly, the
germ  cells,  which  pass  the  genetic  and  epigenetic  information  from  parents  to
offspring, can be susceptible to epigenetic reprogramming by environmental factors
throughout the lifespan[35-39].

Laboratory and clinical studies provide evidence that alcohol, stress, endocrine
disruptors, obesity, and even physical exercise may affect embryonic development
and the phenotype of the offspring[40-44]. GAs share many molecular mechanisms of
action with alcohol[45-49]  and may act  as  endocrine disruptors  and environmental
stressors in animal models and humans. The spectrum of molecular actions of GAs
and susceptibility  of  germ cells  to  epigenetic  reprogramming by environmental
factors across the lifespan support the possibility that the offspring may be affected by
parental exposure to GAs regardless of the parental age at the time of exposure to
GAs.  In  this  mini  review,  we  discuss  emerging  experimental  findings  on  the
neuroendocrine, epigenetic, and intergenerational effects of GAs.

NEUROENDOCRINE, EPIGENETIC, AND SECOND-
GENERATION EFFECTS OF GENERAL ANESTHETICS
Research studies on the epigenetic multigenerational effects of environmental factors,
such as alcohol, stress, endocrine disruptors, and others, have changed our thinking
about the susceptibility of somatic and germ cells to alterations by environmental
factors and the persistence of such alterations not only across the lifespan, but also
through generations[36-38,40,42]. The potential of GAs to induce similar epigenetic effects,
including  reprogramming  of  the  germ  cell  epigenome,  and  by  extension
intergenerational effects is supported by the notion that GAs share many molecular
mechanisms  of  action  with  alcohol  and  may  act  as  endocrine  disruptors  and
environmental stressors in animal models and humans[45-49].

Endocrine disruptors  can broadly be defined as  agents  that  interfere with the
functioning of the endocrine system. In support of the neuroendocrine effects of GAs
are reports of significant rises in cortisol levels in pediatric patients after surgery or
after  anesthesia without surgery in healthy children[50,51].  Also,  measurements of
salivary cortisol levels in response to different levels of sedation in healthy children
found a more than threefold increase in cortisol values, with the highest cortisol levels
during the recovery phase[52]. Adult patients who received isoflurane-based tracheal
general  anesthesia  compared to those who received bupivacaine-based epidural
anesthesia had more than two times higher plasma levels of cortisol at the end of
surgery, which was also more than four times higher compared to baseline levels in
the same patients[53]. For a recent comprehensive review on cortisol levels associated
with anesthesia/surgery see[54].  Importantly,  our findings in rodents support the
notion that GABAergic anesthetics act via specific molecular mechanisms to induce
stress-like responses, rather than that GA-caused increases in glucocorticoid levels are
the  result  of  the  systemic  stress  response  because  of  uncontrolled physiological
parameters during anesthesia. Thus, in neonatal rats, the gamma aminobutyric acid
(GABA) type A receptor (GABAAR) antagonist bicuculline at a low dose (0.01 mg/kg)
or aromatase inhibitor formestane, administered prior to anesthesia with sevoflurane,
prevented the sevoflurane-increased corticosterone secretion without an obvious
effect on the sedation depth induced by the anesthetic (unpublished observations).

The  inhibitory  control  of  the  corticotropin-releasing  hormone-secreting
hypothalamic  paraventricular  neurons  by  GABAAR-mediated  signaling  and the
positive  modulation  of  this  signaling  by  neuroactive  steroids  is  one  of  the
fundamental mechanisms of downregulating the stress response[55,56]. Due to relatively
high and low expressions of the Cl- transporters Na+-K+-2Cl- (NKCC1) and K+-2Cl-

(KCC2), respectively, immature neurons have elevated intracellular concentrations of
Cl-, the main charge carriers through GABAAR channels[57-61], a major substrate for the
otherwise inhibitory effects of GABAergic anesthetics[22-25]. Activation of GABAARs in
immature neurons causes  Cl-  efflux,  membrane depolarization,  activation of  the
voltage-gated Ca++ channels, and relief of the Mg++-block of Ca++ permeable N-methyl-
D-aspartate receptors[58-62]. The GABA-initiated Ca++ influxes regulate a wide spectrum
of developmental processes from gene expression to synapse formation[61,62]. During
the second postnatal week, GABAAR-mediated signaling in the brain undergoes a
fundamental transition from predominantly stimulating/excitatory to inhibitory,
which is caused by a concomitant developmental downregulation of NKCC1 and,
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most importantly, upregulation of neuronal-specific KCC2[61,62]. It is plausible that in
the neonatal brain such GABAAR inhibitory signaling-mediated control of the stress
response system is weakened or GABAergic anesthetics may even stimulate the stress
response through positive modulation of depolarizing/excitatory GABAAR signaling
at this age.

Consistent with stressor-like effects of GABAergic anesthetics, we found that a
single exposure of neonatal rats to the GABAergic GAs sevoflurane or propofol was
sufficient  to  cause  multifold  increases  in  corticosterone  secretion  and
electroencephalography-detectable  seizures  at  the  time  of  anesthesia[63-67].  The
anesthetic-caused increases in excitatory GABAAR signaling and corticosterone levels
may be required for neonatal GABAergic anesthetic-induced seizures to occur[68,69].
Importantly,  a  single  exposure  to  sevoflurane  or  propofol  early  in  life  induced
neuroendocrine abnormalities[64,66,70-73] similar to those induced by repeated, but not
single, maternal separations, a widely used rodent model of developmental effects of
early-life  stress  in  humans[74-78].  The  GABAergic  anesthetic-induced  long-term
neuroendocrine abnormalities, which were more robust in males, included increased
anxiety-like  behavior  and exacerbated corticosterone  responses  to  stress[64-67].  In
addition, the rats, neonatally exposed to anesthesia, had elevated Crh mRNA levels in
the hypothalamus, as well as up- and downregulated hypothalamic and hippocampal
mRNA levels of Nkcc1 and Kcc2, respectively[66,67,73]. Notably, delays in the GABAAR
signaling transition to inhibitory have been linked in animal models and humans to a
number  of  cognitive  neuropsychiatric  disorders,  such  as  schizophrenia,  autism
spectrum disorder (ASD), and Rett syndrome[79-85]. For example, in Rett syndrome, a
severe form of ASD, the methyl CpG binding protein 2 deficiency-induced KCC2
downregulation may play an important causal role[84,85].

When used at a low dose, bumetanide, a loop diuretic, is the most selective of the
available inhibitors of NKCC1 activity[86,87]. Our lab and others have demonstrated that
pretreatment  of  neonatal  rats  with  bumetanide  prior  to  anesthetic  exposure
ameliorated many of  the  acute  and lasting developmental  effects  of  GABAergic
anesthetics, including: (1) Seizures; (2) Downregulated Kcc2 levels; (3) Elevated levels
of  Crh  mRNA;  (4)  Exacerbated  corticosterone  responses  to  acute  stress;  and  (5)
Behavioral  abnormalities[63-66,88].  Bumetanide’s  ameliorating  effects  suggest  that
anesthetic-exacerbated GABAAR-mediated stimulation/excitation in the neonatal
rodent brain is an initial step in anesthetic-induced developmental abnormalities.
Importantly,  bumetanide  exhibits  promising  therapeutic  effects  against  ASD,
schizophrenia, and Fragile X syndrome in animal models and humans[89-93], suggesting
that these diseases and the GABAergic anesthetic-induced abnormalities may share
similar mediating mechanisms. Our current understanding of rodent and human
ontogeny supports the possibility that similar GA-sensitive mechanisms operate in
rodents and humans early in life. Based on the intensity of synaptogenesis, a 1-wk-old
rat can be compared to a 2- to 3-year-old human[94-98]. In animals, neonatal anesthetic
exposure[63,65,72,99,100]  and early-life  stress[101-103]  have profound long-term effects  on
synaptic morphology and function, suggesting that humans are vulnerable well into
the postnatal period. Similar to the rodent brain during the first 2 postnatal weeks, the
human brain is more excitable during the first year of life than at any other time, with
seizures occurring in 3.5 per 1000 live births[104-106].  Human neonatal  seizures are
resistant to GABAergic antiepileptic drugs (AEDs) because of depolarizing/excitatory
GABAAR signaling at this age[107,108]. Many human neonatal seizures can be detected
only through electroencephalographies because they are not accompanied by clinical
signs such as convulsions[109],  which helps explain why epileptic seizures are not
routinely reported in anesthetized human infants. In neonatal seizures with clinical
manifestations, GABAAR-enhancing AEDs depress convulsions but may exacerbate
electrographic cortical seizure activity (electroclinical uncoupling)[110]. The NKCC1
inhibitor bumetanide, administered alone or in combination with GABAergic AEDs,
may alleviate neonatal seizures in rodents and humans[111,112]. In humans, the KCC2
protein levels at birth are only about 20% of adult levels and significantly increase
during the first postnatal year[86]. This late KCC2 increase during brain development
may  make  KCC2  a  highly  susceptible  molecular  target  for  modulation  by
environmental factors, including GAs.

The heightened corticosterone responses to acute stress months after exposure to
the GABAergic anesthetics early in life suggest that stressors in post-anesthesia life
can  further  exacerbate  developmental  abnormalities,  initially  programmed  by
GABAergic anesthetics. This concept is supported by our findings that adult rats
exposed  neonatally  for  a  relatively  short  time  to  anesthesia  with  etomidate  or
sevoflurane followed by a subsequent single episode of maternal separation exhibited
developmental abnormalities significantly greater than those exposed to only one of
the two interventions[66,73,113]. In further support of the idea that the long-term adverse
outcomes of early-life anesthesia may result from a combination of the effects of GAs
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at the time of anesthesia and the effects of “post-anesthesia” environmental factors,
several laboratories have demonstrated that the adverse developmental effects of
neonatal  anesthesia  in  rodents  may  be  alleviated,  not  only  by  pharmacological
interventions before exposure to anesthesia, but also by post-weaning housing of the
exposed  animals  in  an  enriched  environment[114-116].  Environmental  factors  may
alleviate or exacerbate the effects of neonatal anesthesia. In other words, two subjects
exposed to the same anesthesia regimen may have different long-term outcomes
based on post-anesthesia life experiences. In support of this possibility, Zhang et al[117]

reported that rats neonatally exposed to sevoflurane and then housed from the time of
weaning in isolation in enrichment-deprived environments exhibited reduced levels
of brain-derived neurotrophic factor (BDNF), synaptic protein markers, and survival
of new granule cells in the hippocampus, as well as behavioral abnormalities. On the
other  hand,  rats  that  were  exposed  to  the  same  regimen  of  anesthesia  with
sevoflurane and housed in groups in enriched environments had the same outcomes
as their counterparts who were not exposed to sevoflurane. These findings further
support the possibility that GABAergic anesthetics administered during early life can
be considered environmental stressors that predispose the exposed subjects to stress
vulnerability later in life. Identifying environmental factors that predispose humans to
abnormal stress reactivity later in life and the mechanisms underlying their effects is
of important clinical and basic neuroscience concern because dysregulated stress
response  systems  have  been  linked  to  the  pathophysiology  of  several  neuro-
psychiatric disorders[118].

Environmental enrichment, which may alleviate the neurodevelopmental effects of
early-life  exposure to  GAs in rodents,  is  not  an issue for  the majority  of  human
patients because this is typical for most children. If similar mechanisms operate in
humans, then brain development in healthy human patients who experience normal
stress levels may be minimally affected, if at all, after exposure to general anesthesia
early in life. However, most children who require general anesthesia during the early
postnatal  period  inevitably  experience  a  variety  of  stressors  during  life  post-
anesthesia exposure (e.g., diseases, pain, hunger, psychological stress). Such patients
may be at risk of developing early-life, anesthetic-programmed neuroendocrine and
neurocognitive abnormalities. The exacerbating effects of environmental stressors on
long-term adverse outcomes of early-life exposure to GAs may be why several recent
studies have not found negative neurocognitive consequences of relatively short (≤ 1
h) anesthesia exposures in healthy children[6,7,28], while studies in very sick children
have[29]. It will be important to take this factor into consideration when planning new
clinical studies. Further investigation of the interaction of adverse effects of early-life
exposure to GAs and post-anesthesia stressors is important because it may identify
not only the most vulnerable patients, but also those who are at diminished risk and
would not benefit from delaying needed anesthesia-required interventions.

Histone acetylation and DNA methylation are important epigenetic mechanisms
whereby environmental factors, in particular stress, affect brain development and
function[119-121]. Histone acetylation facilitates gene transcription by enabling chromatin
relaxation, while histone deacetylation results in stronger histone interaction with
DNA,  more  compact  chromatin  structure,  and repression  of  gene  transcription.
Histone acetylation is regulated by adding and removing acetyl groups to the N-
terminal  of  histone  tails  by  acetyltransferases  and  histone  deacetylases,
respectively[122-126].  Jia  et  al[99]  found  that  repeated  exposure  of  neonatal  rats  to
sevoflurane led to increased levels of histone deacetylases 3 and 8 and reduced levels
of acetylated histones H3 and H4 in the hippocampus. The sevoflurane-exposed rats
had lower hippocampal density of dendritic spines and synaptic protein markers and
exhibited  impaired  hippocampus  function-based  behavior.  These  effects  of
sevoflurane were alleviated by treatments with the histone deacetylase inhibitor
sodium butyrate,  suggesting a potential  role of  histone acetylation as one of  the
mediators of the developmental effects of GAs. The role of histone acetylation in GA-
induced  abnormalities  in  neonatal  rodents  has  also  been  reported  by  other
laboratories[127,128]. Furthermore, histone acetylation may be involved in the mediation
of learning and memory dysfunction in offspring after  pregnant rats  exposed to
sevoflurane, isoflurane, or propofol[129-131].

Ju  et  al[100]  have  found that  repeated  exposure  of  neonatal  rats  to  sevoflurane
resulted in increased expression of  hippocampal  DNA methyltransferases  3A/B
(DNMT3A/B), but not DNA methyltransferase 1 (DNMT1). These enzymes catalyze
DNA methylation at the 5′ position of cytosine residues adjacent to guanines (CpG
sites),  typically  leading  to  long-term  transcriptional  repression.  The  activity  of
DNMT1 is  responsible for maintenance of  the remaining 5mC marks during cell
divisions because of DNMT1 selectivity to hemi-methylated DNA, while DNMT3A/B
are de novo  DNMTs, which are induced by internal and external (environmental)
stimuli[132,133]. In addition to increased expression of DNMT3A/B, the rats neonatally
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exposed  to  sevoflurane  had  downregulated  methyl  CpG  binding  protein  2,
hypermethylated  the  Bdnf  gene,  downregulated  BDNF  levels,  and  exhibited
behavioral deficiencies[100]. The ability of sevoflurane to induce these abnormalities
was significantly diminished in rats that were pretreated with a non-selective DNMT
inhibitor, 5-aza-2'-deoxycytidin, prior to sevoflurane exposure[100]. On the other hand,
Wu et  al[134]  found that  exposure  of  neonatal  rats  to  isoflurane,  another  inhaled
anesthetic that has positive modulation of GABAAR activity like sevoflurane, induced
a significant increase in the expression of hippocampal DNMT1. More experimental
studies  are  needed  before  we  can  draw  conclusions  on  the  specific  epigenetic
mechanisms involved in the mediation of the adverse effects of a given GA or a class
of GAs.

It  has  been  established  in  a  wide  range  of  species,  including  humans,  that
environmental factors, in particular stress, acting via  epigenetic mechanisms may
affect not only the exposed subjects, but also future generations[135-139]. In contrast to
studies of famine or war survivors, in which large groups of people in relatively
compact living areas within a specific time period were affected[135,137,140], it is not trivial
to link someone’s neurodevelopmental abnormalities to his/her parent’s relatively
short exposure to GAs. Still, the emerging laboratory and clinical data demonstrate
that the adverse effects of GAs may include epigenetic modifications, not only in the
somatic cells of the exposed subjects, but also in their germ cell epigenome. Of most
direct support of the possibility of epigenetic germ cell effects of general anesthesia in
humans, Donkin et al[141] found that the DNA methylation status of 1509 genes in the
sperm of male patients was changed 1 wk after bariatric surgery. The findings of
epigenetic changes in spermatozoa just 1 wk after anesthesia/surgery suggest that the
anesthesia/surgery may be an important cause of such changes and that even the
mature human sperm is susceptible to epigenetic reprogramming by environmental
factors. The latter is supported by the presence of DNMTs in mature human sperm[142].
Importantly, of the 1509 genes altered at 1 wk after the anesthesia/surgery, 1004
genes  remained  altered  1  year  later[141].  Alarmingly,  several  small  pilot  clinical
assessments found that anesthesia care providers may have altered female/male
offspring ratios, also suggesting that persistent exposure to traces of the escaped GAs
from scavenging in operating rooms might affect germ cells, and, hence, the next
generation(s)[143-147].

To test whether neonatal exposure to anesthesia with sevoflurane can affect not
only the exposed animals, but also their future offspring, we exposed male and female
postnatal day (P) 5 rats (generation F0) to 6 h anesthesia with 2.1% sevoflurane[67]. On
P90,  the  exposed and control  rats  were  used as  breeders  to  produce  the  second
generation of rats (generation F1). We have found that adult offspring of parents who
were neonatally exposed to sevoflurane exhibited neurobehavioral abnormalities.
Irrespective  of  whether  sires,  dams,  or  both  parents  were  exposed  to  neonatal
sevoflurane, only F1 males, but not F1 females, were affected. F1 males exhibited
reduced  Kcc2  Cl-  exporter  expression  and  behavioral  abnormalities.  Bisulfate
sequencing revealed CpG dinucleotide hypermethylation in the Kcc2 promoter in the
F0 sperm and ovary and in the hypothalamus and hippocampus of F1 males[67]. The
correlation of impaired hippocampal Kcc2 expression and hippocampus-dependent
behavior in F1 males points to the involvement of epigenetic Kcc2 modulation in the
mediation of the intergenerational effects of sevoflurane[67]. Because DNA methylation
is often associated with transcriptional repression, these data suggest that methylation
of  the  Kcc2  promoter  in  F0  gametes  may  contribute  to  sevoflurane-induced
intergenerational impairment in Kcc2 expression. The role of DNA methylation in the
intergenerational effects of neonatal sevoflurane exposure in rats was also reported by
Chastain-Potts  et  al[148].  Surprisingly,  despite  similar,  but  not  identical,  neuro-
behavioral abnormalities in the exposed parents and their male offspring, including
downregulation  of  the  Kcc2  expression,  the  male  offspring,  in  contrast  to  their
exposed parents, exhibited corticosterone responses to stress that were the same as the
corticosterone responses to stress in the male offspring of control parents[67]. These
findings, taken together with the effects of GABAergic anesthetics in the exposed
animals, suggest that GA-induced modulation of GABAAR signaling through reduced
expression of Kcc2 may be required but not sufficient to induce exacerbated responses
to stress in adulthood.

Importantly, stress-like effects of GABAergic anesthetics may not be limited to the
early  postnatal  period.  Thus,  exposure  of  young  adult  rats  to  sevoflurane  on  3
alternating days  starting on P56 resulted in  similar  increases  in  serum levels  of
corticosterone in male and female rats 1 h after the last exposure to the anesthetic[149].
However, long term, the exposed female rats were the same as the controls; they were
not affected. On the other hand, contrary to the currently generally accepted view and
our initial hypothesis that adult rats are resilient to the long-term adverse effects of
GAs, the exposed young adult male rats developed neuroendocrine and behavioral
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abnormalities. More than 3 months after exposure to sevoflurane, they exhibited not
only an exacerbated hypothalamic pituitary adrenal axis response to stress, but their
serum  levels  of  luteinizing  and  testosterone  hormones  were  also  significantly
increased,  as  was  their  expression  of  the  hypothalamic  gonadotropin-releasing
hormone gene. The hypothalamic pituitary testicular axis functioning in the exposed
adult  male  rats  was also  altered at  the  level  of  expressions  of  the  hypothalamic
aromatase and estrogen receptor α and β genes. The expressions of the aromatase and
estrogen receptor α genes were significantly increased, while the expression of the
estrogen receptor β gene was slightly, but significantly, decreased[149]. These findings
demonstrate  that  anesthesia  with  sevoflurane  alters  (disrupts)  not  only  the
functioning of the hypothalamic pituitary adrenal axis, but also the hypothalamic
pituitary testicular axis functioning[53]. We have previously demonstrated the role of
estradiol in the acute adverse effects of sevoflurane in neonatal rats[69].

Similar to the effects of neonatal exposure to sevoflurane, sevoflurane administered
to  young  adult  male  rats  induced  significant  impairment  in  expressions  of  the
hypothalamic and hippocampal Kcc2 genes. Similar to adult rats that were neonatally
exposed  to  sevoflurane,  male  and  female  rats  exposed  to  sevoflurane  in  young
adulthood  had  hypermethylated  Kcc2  gene  in  spermatozoa  and  ovarian  tissue,
respectively[149].  Interestingly,  we have analyzed the  same CpG sites  in  the  Kcc2
promoter region in the germ cells of rats that were exposed to sevoflurane neonatally
or in young adulthood and found similar changes in their methylation regardless of
the age of sevoflurane exposure[67,149]. These findings suggest that sevoflurane may
induce germ cell effects via similar mediating mechanisms when administered to rats
over a wide range of ages, from neonates to young adults. The similarities between
the effects of neonatal and young adult exposure to sevoflurane were also evident in
the offspring of the exposed parents. Thus, the Kcc2 gene was hypermethylated and
exhibited reduced expression in the hypothalamus and hippocampus of the F1 male,
but not female, offspring of the exposed parents. These changes in the Kcc2 gene in
the hypothalamus and hippocampus of adult F1 male offspring were accompanied by
behavioral deficiencies in the elevated plus maze and prepulse inhibition (PPI) of
acoustic startle response tests, but their corticosterone responses to stress were not
different  from the controls[67,149].  The sevoflurane-exposed young adult  male and
female rats had similar acute increases in serum corticosterone levels and changes in
DNA methylation status of the Kcc2  gene in spermatozoa and ovarian tissue and
passed neurobehavioral abnormalities to their male offspring, despite the finding that
the  exposed  dams  lacked  the  somatic  effects[149].  These  findings  allow  us  to
hypothesize  that  sevoflurane-induced  corticosterone  secretion  at  the  time  of
anesthesia is involved in the anesthetic-induced germ cell effects and by extension the
intergenerational  effects.  Also,  the  findings  that  the  exposed  but  long-term
physiologically  unaffected dams,  similar  to  the exposed and affected sires,  pass
deleterious effects of sevoflurane to their unexposed male offspring suggest that
compared to the somatic cells, the germ cells are more sensitive to the deleterious
effects of sevoflurane. This raises the possibility that male offspring may be affected
even  when  the  anesthesia  level/duration  is  insufficient  to  induce  significant
abnormalities in their exposed parents. Future studies will be needed to test these
hypotheses that may have important translational applicability.

We have tested the role of the neuron-specific Kcc2 gene as a mediator of the germ
cell  and intergenerational  effects  of  sevoflurane only because we have extensive
background data supporting its involvement in the mediation of the somatic effects of
neonatal and young adult exposure to sevoflurane in the exposed animals[64-67,149]. The
findings that the Kcc2 gene was affected in the parental somatic (brain) cells and germ
cells, two effects that may not necessarily have similar mediating mechanisms, was
surprising, on the one hand, but on the other hand suggested that the Kcc2 gene could
be one of many genes involved in passing on the intergenerational effects of the
anesthetic. Indeed, using genome-wide reduced representation bisulfite sequencing,
we found more than 2000 differentially methylated DNA regions in the sperm of
adult  rats  neonatally  exposed  to  sevoflurane  compared  to  unexposed  controls
(unpublished observations). Future detailed investigation of various genes that are
involved in the mediation of the intergenerational effects of sevoflurane and other
GAs may help to identify a full spectrum of the biological intergenerational effects of
GAs and may lead to new, unexpected parental GA-induced phenotypes in offspring.
It is likely that the intergenerational effects of exposure to GAs in young adulthood
are not limited to sevoflurane, as Tang et al[150] have shown behavioral abnormalities in
the offspring of mice that were exposed to enflurane at 11 wk of age.

The weakness of most rodent behavioral paradigms is that they are difficult to
directly replicate in humans. The results of our studies demonstrate that the PPI of
startle  was  impaired in  F0  rats  exposed to  sevoflurane  as  neonates  or  in  young
adulthood, as well as in their F1 male offspring[64-67,149]. Also, male and female rats,
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exposed to sevoflurane neonatally, and male rats exposed to sevoflurane in young
adulthood, exhibited heightened corticosterone responses to stress long term[64-67,149]. In
humans, PPI can be measured safely via changes in the eyeblink reflex using nearly
identical parameters as in rodents[151-155], while heightened stress-related cortisol levels
can be readily measured in saliva[156,157]. If GAs induce similar effects in humans, the
PPI of startle and saliva levels of cortisol may be used as objective, translatable, and
easily and safely measurable biological  markers of  the adverse effects  of  GAs in
humans.  Identification of  such a  biomarker(s)  will  facilitate  investigation of  the
underlying  mechanisms  of  the  adverse  effects  of  GAs  in  humans  to  guide
development  of  safer  anesthetic  approaches.  Of  particular  relevance,  one of  the
effective,  tested  therapeutic  agents  to  alleviate  the  developmental  effects  of
GABAergic anesthetics in rodent models, the NKCC1 inhibitor bumetanide[63-66,88], is
approved for the treatment of various pediatric conditions and exhibits promising
therapeutic effects in human studies of neurodevelopmental disorders[89-93].

Considering relatively well-studied molecular targets for GA actions and emerging
evidence of similarities between the adverse outcomes of exposure to GABAergic
anesthetics and psychiatric disorders, understanding the molecular mechanisms of
the adverse effects of GAs may help to elucidate the mechanistic basis and etiology of
complex neurodevelopmental disorders.

CONCLUSION
The results of recent studies raise many intriguing questions related to the types of
adverse effects of GABAergic GAs and their underlying mechanisms, the answers to
which may have important translational applicability for establishing safer general
anesthesia,  in  particular,  and  for  better  understanding  of  the  nature  of
neuropsychiatric  disorders,  in  general.  They  suggest  that  GABAergic  GAs,  in
particular sevoflurane, may act as stressors and endocrine disruptors in neonates and
young adults. These stress-like effects of GABAergic GAs may be involved in the
mediation of two distinct types of long-term adverse effects of GAs in the exposed
rodents: neuroendocrine effects (the somatic effects) and epigenetic reprogramming of
their  germ  cells  (the  germ  cell  effects).  The  latter  may  pass  neurobehavioral
abnormalities  to male offspring.  The intergenerational  effects  of  sevoflurane are
similar,  but  not  identical,  when administered to  neonatal  and young adult  rats,
suggesting that similar mediating mechanisms are involved over a wide range of ages
at the time of anesthesia. The initial data suggest that compared to the somatic cells,
the germ cells are more sensitive to the deleterious effects of sevoflurane, raising the
possibility that the offspring may be affected even when levels of anesthesia are not
harmful to the exposed parents. The long-term adverse effects of GAs in the exposed
young adult male rats suggest that current views on the window of vulnerability to
the adverse effects of GAs in rodents (up to the first 2 postnatal weeks)[158,159], and,
hence, the United States Food and Drug Administration recommendations to avoid
GAs in children younger than 3[160],  may need to be reconsidered to include more
advanced  ages.  All  of  these  possibilities  may  have  important  translational
applicability if confirmed; further rigorous experimental testing is required.
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