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Abstract

Protein–protein interactions are usually shown as interaction networks (graphs), where the proteins 

are represented as nodes and the connections between the interacting proteins are shown as edges. 

The graph abstraction of protein interactions is crucial for understanding the global behaviour of 

the network. In this mini review, we summarize basic graph topological properties, such as node 

degree and betweenness, and their relation to essentiality and modularity of protein interactions. 

The classification of hub proteins into date and party hubs with distinct properties has significant 

implications for relating topological properties to the behaviour of the network. We emphasize that 

the integration of protein interface structure into interaction graph models provides a better 

explanation of hub proteins, and strengthens the relationship between the role of the hubs in the 

cell and their topological properties.
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Introduction

Cellular functions are co-ordinated activities of many proteins and biological molecules such 

as DNA, RNA and ligands that interact with each other. A system of interacting elements 

can be abstracted with a mathematical structure called a graph. A basic graph is a collection 

of nodes (vertices) and edges. In most studies of biological networks, system elements such 

as proteins and genes are represented by graph nodes and the physical interactions between 

elements are represented by edges. Edges can be directed, identifying the source and target 

nodes in the interaction. Directed edges can be useful for interactions such as 

phosphorylation, where the source node is the protein to phosphorylate, the edge is the 

phosphorylation process, and the target is the same protein in the phosphorylated state. Here, 
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we will review topological and structural properties of large interaction networks, 

particularly the role of hub proteins (highly connected proteins) and the importance of 

structural information (protein interfaces) in the characterization of hubs.

Protein interaction networks are commonly represented by undirected graphs (graphs whose 

edges have no direction); hence, we will stay with undirected graph representations. Graphs 

can be characterized by several properties. The number of edges incident on a node, called 

the degree, is one of the basic properties. A molecule interacting with many other distinct 

molecules would have a high node degree; for example, ATP interacts with many distinct 

proteins. A simple path is a sequence of distinct, connected nodes in a graph. In signal 

transduction networks, a path could represent a sequence of interactions from the sensing of 

a signal to its target; for example, a molecule binding to a receptor eventually leading to a 

transcription factor binding to DNA. The shortest path between two nodes is the path with 

minimum length (usually length is the number of edges). The average path length (also 

known as characteristic path length) of a graph is computed by averaging over all shortest 

paths between all pairs of nodes. It is an important network statistic and represents closeness 
and consequently how quickly information can be transferred in a network. Most real world 

networks have unexpectedly short characteristic path lengths, as popularized with the six 

degrees of freedom play. This property is called small world property and is studied in detail 

in [1,2]. Figure 1(B) displays an example of a yeast protein–protein interaction network, and 

a small subgraph illustrating a hub protein (node A in Figure 1A).

During the past decade, with the increasing availability of data on real world networks, 

numerous studies have focused on large-scale topological network properties. The influential 

work by Barabasi and Albert [3] initiated the interest in topological properties of biological 

networks. In their work, the World Wide Web was mapped to a graph, where web pages 

were the nodes and the links between the pages were the edges. The number of links of a 

node was observed to follow a power law distribution, that is, the probability of a node 

having degree k is proportional to k−γ, and the distribution is independent of the number of 

nodes; hence these networks are called scale free. Scale-free networks have many nodes with 

small degrees and allow nodes with high degrees (hubs) with decreasing probability. Many 

(but not all, see [4–6]) biological networks exhibit scale-free behaviour. An extensive review 

of scale-free networks in biology is given in [7]. Scale-free networks are resistant to random 

node failures. Even if a significant number of randomly selected nodes are removed from the 

network, the remaining nodes will still be connected [8]. Random removal will take out 

many small-degree nodes, there are many of them; however, a few remaining highly 

connected hubs will still preserve the connectivity of the network. On the other hand, scale-

free networks are vulnerable to targeted attacks to the hubs. Jeong et al. [9] conducted a 

series of protein–protein interaction network simulations to study the impact of failures and 

attacks on protein networks. The network contained 1870 protein nodes and 2240 physical 

interactions gathered from yeast. The degree distribution of the network was consistent with 

power law, characterizing it as scale free. Large-scale phenotypic (gene knockout) 

experiments, have indicated that yeast can tolerate many single gene deletions. In accord 

with the experiments, simulation of random node deletion did not cause topological changes; 

on the other hand, removal of highly connected nodes increased the network diameter 

(defined as characteristic path length). Highly connected nodes causing network failures and 
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essential genes (i.e. genes whose knockout leads to unviable cells) were observed to be 

correlated, a property known as lethality–centrality. The degree centrality has been used to 

characterize the node importance in several other studies as well [10–12]. Yu et al. [12] 

pointed out that most essential genes in regulatory networks correspond to house-keeping 

genes whose protein products perform basic functions; hence they must always function. 

Although degree distribution and the gene essentiality are found to be related, the degree 

distribution alone may not be sufficient to characterize the network since the same number 

of connections can be realized in various ways [13]. In fact, some recent works [14–16] 

report that correlations might be the result of bias in available interaction networks.

Betweenness centrality is yet another global property of networks [17]. By specifying how a 

node influences the communication between two nodes, it is possible to locate important, 

though not very highly connected network nodes. Figure 1(A) shows an example of high 

betweenness (node B). The betweenness of a node is defined as the ratio of the number of 

shortest paths passing through a node to the total number of paths passing through the nodes. 

Considering the modular and hierarchical architecture of biological networks [18–20], 

betweenness can be important for finding non-hub important nodes [21,22] or classifying 

hubs according to their positions in the network.

Intermodule hubs

Investigations aimed at distinguishing hubs from non-hub proteins increasingly uncover 

topological properties of the hubs in the protein–protein interaction networks. In many 

studies, typically, protein interaction networks were viewed as static structures, collapsed in 

time, due to their complexity and the limited availability of temporal data in biological 

interactions. In reality, interactions have both space and time dimensions. Integrating 

microarray mRNA expression profiles, which provide valuable temporal information on 

protein–protein interactions, into network models allows us to incorporate the time 

dimension. The motivation behind the integration is based on the assumption that products 

of co-regulated genes have higher chances of interacting with each other.

This assumption can be used to improve the prediction of cellular pathways. For example, 

Segal et al. [23] integrated mRNA expression profiles and protein–protein interaction data 

using a probabilistic graph model, resulting in more meaningful group of genes that might 

be part of a common pathway.

Time information might explain how hub proteins influence the network structure in space 

and time as well. Han et al. [19] integrated static high-quality yeast protein–protein 

interaction data with a compilation of mRNA microarray expression levels to characterize 

the hub proteins. The interaction data had 1379 proteins with an average degree of 3.6. The 

degree distribution revealed a power-law relationship exhibiting scale-free network 

architecture. The temporal characteristic of hub proteins is determined by computing the 

correlation of their mRNA expressions with the expressions for their partner proteins. Two 

types of hub proteins were identified. The ones with relatively high correlations between 

their mRNA levels and their partners, called party hubs, were assumed to be interacting with 
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their partners concurrently. The hubs with low correlation, on the other hand, were assumed 

to interact with their partners at different times, and they were called date hubs.

Party hubs are thought to have a local role in the network, with strong connections within 

functional modules; on the other hand, date hubs interconnect functional modules giving rise 

to the network topology, and consequently have a global role. For example, the date hub 

Cmd1 connects modules related to homoeostasis of cations, protein folding and stabilization, 

budding, and endoplasmic reticulum. On the other hand, the interactions of the party hub 

Vti1 are all in one module, that of the endoplasmic reticulum [19]. Systematic removal of 

hubs without distinguishing between party or date hubs was observed to be more harmful to 

the network connectivity than random protein removal in previous studies. However, Han et 

al. [19] proposed that the network failure was due to attacks on the date hubs, not on party 

hubs. When the network is attacked only at party hubs, the characteristic path length did not 

differ from random failures. On the other hand, the network started to disintegrate and the 

characteristic path length increased with attacks on date hubs. This is possible, for example, 

if the network has a modular structure and date hubs interconnect the modules [18]. 

Although date hubs are those primarily responsible for the increase in network diameter and 

disintegration, both hub types were observed to have similar essentiality (i.e. removal of a 

hub is likely to be lethal). A party hub can be indispensable for a critical function, thus 

scoring high as an essential protein. However, it is argued that date hubs assist in the co-

ordination between functional modules and hence perturbation of date hubs might have a 

different impact on the network than that of party hubs.

Essential interactions

An alternative explanation to the centrality–lethality rule was proposed by He and Zhang 

[14]. According to this explanation, some interactions are more essential, and the functional 

importance of hubs is not due to their high degree, but rather to certain interactions. An 

essential protein–protein interaction is defined to be an interaction indispensable to the 

survival of an organism. Most network models treat all interactions as equally important. 

Differentiating interactions and treating them differently might provide improved 

interpretation of topological properties. Since experimental determination of essential 

protein–protein interactions is more difficult than determination of the essential proteins, He 

and Zhang have used a computational approach to relate essential protein–protein 

interactions to essential proteins and investigated their implications. Based on the 

assumption that an essential interaction makes the two proteins (involved in the interaction) 

essential, they estimated the number of essential interactions as a function of the IBEP 

(interaction between essential proteins). The yeast protein– protein interaction network 

manually compiled by the Yeast Comprehensive Genome Database with 4126 proteins and 

7356 edges has been used to find IBEPs. An IBEP does not have to be an essential 

interaction; but the number of essential interactions in a network is assumed to increase in 

proportion to the number of IBEPs. By repeated random rewiring of the interactions without 

changing the degree of the nodes, a distribution of the number of IBEPs in the network has 

been computed. The average calculated number of IBEPs was much lower than the observed 

IBEPs in the protein–protein interaction network, suggesting that the additional IBEPs in the 

real network are the outcome of the essential interactions. Analysis of the yeast protein–
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protein interaction network further suggested that the centrality–lethality rule might be 

attributed not only to the relative importance of hubs, but also to essential interactions. Hubs 

tend to have a higher chance of having essential interactions since they have many 

connections; hence their removal is expected to be more lethal as compared with non-hubs. 

The significance of essential interactions is supported by the observation that party and date 

hubs have similar essentiality [19], but their removal will have a different impact on the 

network connectivity: while removal of party hubs does not have an impact on the global 

network connectivity, removal of date hubs disintegrates the network. The lethality of party 

hubs might be due to the loss of some of their essential interactions. The study has suggested 

that different edges (interactions) in the network have different levels of importance. 

Treating these interactions accordingly, may lead to more potent drug targets.

Proteins with HBLC (high betweenness but low connectivity)

Several studies focusing on the betweenness in proteins shed light on a non-hub centric 

organization (co-ordination of modules by non-hub proteins) of the protein interaction 

networks and in a way supported the idea that some interactions are more important in the 

network structure. Valente and Cusick characterized the yeast proteome using a betweenness 

centrality and modularity score (the ratio of the numbers of intra-module edges/total edges) 

[24]. The co-ordinated functionality of the yeast interactome is likely to be achieved not only 

by hub proteins but also by the pairwise interactions of connectors. These connector nodes 

are high traffic nodes (i.e. they have high betweenness scores) mediating co-ordination 

across modules. Comparing a protein’s betweenness score and its essentiality among similar 

connectivity proteins did not show a significant correlation. Turning off one connector 

protein mediating between two distinct modules might not affect the functioning of the 

individual modules. One may speculate that attacking protein interaction networks (by 

drugs) on one node might not be enough [25], and knowledge of the connector proteins and 

the modular topology may provide information regarding which combination of nodes need 

to be attacked.

In the growth model proposed by Barabasi and Albert [3], a new node forms interactions 

with other nodes with a probability proportional to the degree of the target node (preferential 

attachment), leading to a scale-free topology. Preferential attachment by itself is not based 

on processes promoting the growth of biological networks, hence fails to model modularity 

properties observed in such networks. The main biological processes that contribute to the 

growth (evolutionary dynamics) of biological networks are point mutations and gene 

duplications. Growth models based on the gene-duplication growth add proteins randomly 

with their interactions duplicated. To imitate mutations of duplicated genes, some existing 

links are rewired [26,27]. Valente and Cusick [24] report that the gene-duplication model 

fails as well to produce a non-hub-centric modular organization of the yeast interactome. On 

the other hand, introduction of a process called link dynamics that simulates gain or loss of 

interactions due to mutations in addition to gene duplication [26,27] resulted in the 

formation of module structures in the generated network.

Proteins with low connectivity but high betweenness may play a key role in the modular 

structure of the yeast interactome. A study by Joy et al. [21] using a graph theoretical 
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betweenness of the yeast protein interaction data from the recent DIP and MIPS (2005) 

interaction databases showed that HBLC nodes are abundant in the yeast proteome and 

suggests a modular structure, with some proteins outside the highly connected modules co-

ordinating the information flow between the modules. HBLC nodes are not explained either 

by the growth model of Barabasi and Albert [3] or by gene-duplication alone [28]. However, 

the link dynamics model [26] resulted in the formation of HBLC structures in the generated 

network. Link dynamics corresponds to mutations in protein interfaces which affect certain 

interactions, which is a biologically more realistic process than random introduction of 

nodes. Separation of mutation and gene duplication rates are based on the fact that, on the 

evolutionary scale, mutational events leading to gain or loss of certain protein–protein 

interactions are faster than gene duplication. To support the significance of HBLC nodes, in 

a very recent study by Yu et al. [22], non-hub bottleneck nodes (HBLC nodes) are shown to 

be more essential, and betweenness is found to be a more significant indicator of essentiality 

than degree.

Subgraph centrality and essential proteins

Real biological networks also have a high clustering coefficient [29], i.e. the neighbours are 

likely to be connected. Network motifs found in biological networks are small subgraphs 

that represent a specific communication module or process [30,31]. Estrada and Rodríguez-

Velázquez proposed taking motifs, or subgraphs, into consideration as a measure of 

centrality [32]. Subgraph centrality characterizes nodes by considering long-range effects 

due to participation in structurally nearby subgraphs. This is the major difference between a 

subgraph centrality and other centrality measures: the influence of a node by participation in 

small subgraphs. A comparison of subgraph centrality with other centrality measures for the 

yeast protein interaction network is reported in [32]. The ranking of proteins by degree 

centrality and subgraph centrality revealed that more essential proteins are ranked higher 

with subgraph centrality. Frequent participation in small structural motifs rather than the 

number of direct interactions makes a protein indispensable (centrality–lethality relation).

Structural analysis of hubs and interfaces in protein interaction networks

The hub-centric view of modularity and the party and date hub proteins distinction have 

been questioned recently by Batada et al. [33]. Using multi-validated HC (high-confidence) 

yeast interaction data, Batada et al. [33] reported that hub–hub interactions are not 

suppressed, in contrast with the results of [11,19]. In addition, the evidence for date and 

party hub distinction cannot be instantiated within the HC dataset. The contradicting results 

are probably due either to biased data (Y2H data) [34] or, although more accurate, still 

incomplete (HC) data [35].

Most of the work studying the protein interaction networks did not consider structural 

information at the atomic resolution level (protein interfaces). Protein interfaces provide 

valuable insight on how proteins interact with each other [36–40] and can be used to 

improve the prediction of protein interactions, for example [41–44]. One of the early 

attempts to combine three-dimensional structure information of proteins with interactions in 

the context of systems biology includes the work of Aloy and Russell [45–47]. They used 
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knowledge of structures to interpret the interactions identified by two-hybrid methods. Some 

interactions were found to be indirect (mediated by other proteins) by comparing interacting 

proteins and their participation in three-dimensional complexes.

By using structural information in the analysis of hub proteins, Kim et al. [48] clarified some 

of the questions related to the distinction between date and party hubs. Proteins from a (HC) 

high consensus yeast interaction network are mapped to known structures using Pfam 

(Protein Families Database of Alignments and Hidden Markov Models; http://

www.sanger.ac.uk/Software/Pfam/) domains [49]. Only those interactions that are contained 

in protein complexes are retained in the final network. The structures of complexes are used 

to find interface regions on the protein surfaces. An interaction is classified as mutually 

exclusive if the interface it uses is shared by another interaction; otherwise it is classified as 

simultaneous. This approach allowed them to classify the hub proteins as: (i) singlish-

interface hubs interacting with several other proteins using only one shared binding surface, 

which corresponds to date hubs; and (ii) multi-interface hubs corresponding to party hubs 

(interacting with many proteins simultaneously). They report that multi-interface hubs 

evolve more slowly than the others. The multi-interface hubs are found to be more closely 

correlated with their partners’ expression levels compared with singlish-interface hubs. 

These results are in agreement with the previous studies discriminating hub proteins [19,50]. 

Figure 2 illustrates the usage of interfaces to distinguish between date and party hubs.

Conclusions

With the availability of an enormous amount of diverse biological data, including complete 

genome sequences (e.g. the human genome project) and protein structures (with the Protein 

Data Bank growing exponentially), computational methods have become increasingly 

successful in inferring protein–protein interactions. Microarray experiments investigate the 

expression of thousands of genes. Knowledge of co-regulated genes further allows us to 

infer interactions. While there are false positives and false negatives within this massive 

amount of information, these advances, nevertheless, lead to a huge amount of interaction 

data. Systems biology seeks to organize this information to allow quantitative modelling of 

the dynamics of complex cellular pathways and facilitate comprehension of how cells are 

regulated.

Graph theory can be applied successfully to biological networks to relate the structure of the 

network to biological functions. Protein interactions are commonly represented by 

undirected graphs. One of the basic properties of nodes, degree, has been extensively used to 

characterize the proteins, namely hub proteins. Hub proteins have been observed to be 

related to essential genes. Increasing interest and recent work on network analysis of protein 

interaction data revealed, however, that degree by itself, although very informative, is not 

sufficient to relate network properties of hubs to their function. For example, hub proteins 

have been classified as date and party hubs by using additional data such as microarray 

expression profiles. Betweenness of nodes in a graph seems to be another very important 

property. Some important but non-hub nodes (HBLC proteins) were related to proteins 

mediating co-ordination between modules.
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Using only the network of protein interaction data, however, does not support these findings 

strongly, and one needs to be careful in drawing conclusions relating network structure to 

biological function. The source of the problem is the incompleteness or bias in protein 

interaction data coming from experimental and computational predictions. However, 

incorporation of structural data (protein structure and interfaces) into networks allowed us to 

re-enforce the previous findings and further provided a better explanation of hub proteins. 

The analysis of hub proteins by considering their interfaces (single- or multi-interface hubs) 

together with important interactions (HBLC nodes) can have important implications on 

modelling protein interaction networks and evaluating drug design targeting protein–protein 

interactions such multi-target drugs.
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Figure 1 |. Protein interaction networks
(A) A simple graph model of a protein interaction network. Node A is a hub, node B is a 

non-hub (a high-betweenness node). (B) A sample protein interaction network derived from 

yeast protein interactions.
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Figure 2 |. Use of interfaces to indicate simultaneous and unshared interactions
Circle nodes represent proteins, diamonds indicate their interfaces; S for shared, U for 

unshared interface. Node A corresponds to a party hub (has many unshared interfaces for 

simultaneous interactions). Node B is a date hub. The shared interface is used for different 

interactions at different times.
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