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Abstract

Objective.—We investigated the biometric specificity of the frequency following response 

(FFR), an EEG marker of early auditory processing that reflects phase-locked activity from neural 

ensembles in the auditory cortex and subcortex (Bidelman, 2015a, 2018; Chandrasekaran & 

Kraus, 2010; Coffey et al., 2017). Our objective is two-fold: demonstrate that the FFR contains 

information beyond stimulus properties and broad group-level markers, and to assess the practical 

viability of the FFR as a biometric across different sounds, auditory experiences, and recording 

days.

Approach.—We trained the hidden Markov model (HMM) to decode listener identity from FFR 

spectro-temporal patterns across multiple frequency bands. Our dataset included FFRs from 

twenty native speakers of English or Mandarin Chinese (10 per group) listening to Mandarin 

Chinese tones across three EEG sessions separated by days. We decoded subject identity within 

the same auditory context (same tone and session) and across different stimuli and recording 

sessions.

Main results.—The HMM decoded listeners for averaging sizes as small as one single FFR. 

However, model performance improved for larger averaging sizes (e.g., 25 FFRs), similarity in 

auditory context (same tone and day), and lack of familiarity with the sounds (i.e., native English 

relative to native Chinese listeners). Our results also revealed important biometric contributions 

from frequency bands in the cortical and subcortical EEG.

Significance.—Our study provides the first deep and systematic biometric characterization of 

the FFR and provides the basis for biometric identification systems incorporating this neural 

signal.
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1 Introduction

The scalp-recorded frequency-following response (FFR) is considered a potent 

electrophysiological marker of the integrity of stimulus encoding within the auditory system 
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(Bidelman, 2015a; Chandrasekaran & Kraus, 2010; Krishnan et al., 2005; Skoe & Kraus, 

2010). The FFR reflects stimulus properties to such an extent that when the response is 

sonified, the content of the speech is highly intelligible (e.g., Galbraith et al., 1995). While 

the FFR is highly faithful to the stimulus properties, the extent of faithfulness is shaped by 

short-term and long-term (positive or negative) listening experiences. For example, prior 

work has demonstrated enhanced stimulus encoding fidelity (more faithful FFRs) in some 

groups relative to others (e.g., musicians relative to non-musicians; Bidelman et al., 2011a–

b). The FFR is also shown to be less faithful in some groups (e.g. older adults relative to 

young adults, children with developmental dyslexia relative to neurotypical children; e.g., 

Skoe et al., 2013). Thus, the signal reconstructed by the auditory system reflects the 

properties of the evoking stimulus (typically measured as a correlation between the signal 

and the FFR), as well as group-level differences. In the current study we investigated an 

intriguing possibility: that in addition to reflecting the properties of the stimulus and group-

level differences, the FFR also reflects the individual. From a practical perspective, we will 

also assess the robustness of the FFR as a biomarker across a broad range of conditions. In 

the next few sections we will review prior efforts using the EEG as a biometric identification 

system, discuss the FFR in more detail, and finally highlight the specifics of the current 

study.

1.1 Biometric identification systems

The EEG reflects electrical oscillations that relate to sensory and cognitive functioning 

(Luck, 2004) as well as oscillations that are specific to subject biometrics (Vogel, 2000). 

Previous research has taken advantage of the specificity of electrical oscillation patterns to 

discriminate subjects from EEGs (Del Pozo-Banos et al., 2014). The interest in EEG metrics 

for personal identity is as old as the earliest EEG experiments. The first EEG biometric 

studies aimed to identify heritability markers in family members, including monozygotic and 

dizygotic twins (e.g., Davis & Davis, 1936; Young, Lader, & Fenton, 1972; for a review see 

Vogel 1970, 2000). In these studies, genetically close subjects (e.g., monozygotic twins) 

exhibited greater similarity in the alpha and beta waves of the resting EEG than subjects that 

were genetically less similar (e.g., non-relatives). This finding has been further investigated 

in EEG modalities other than the resting state and rhythms other than alpha and beta (Van 

Beijsterveldt et al., 1996; Van Beijsterveldt & Van Baal, 2002; Vogel, 2000; Zietsch et al., 

2007).

Since the first published EEG biometric identification system (Stassen, 1980), different 

studies have used cortical oscillation patterns to discriminate non-relatives across multiple 

conditions (Del Pozo-Banos et al., 2014). These conditions include the identification of 

subjects from EEGs elicited in the resting state with the eyes closed (Poulos et al., 2002) and 

open (Paranjape et al., 2001), motor tasks (Yang & Deravi, 2012), brain imaginary tasks 

(Bao, Wang & Hu, 2009; Xiao & Hu, 2010), and complex cognitive tasks involving 

mathematical operations and the discrimination of visual patterns (Palaniappan, 2005, 2006; 

Ravi & Palaniappan, 2005). The results of this bulk of research are not always consistent 

with respect to the frequency band and scalp montage providing the best biometric markers. 

In general, the optimal combination of parameters varies as a function of the task and 

features to decode (Del Pozo-Banos et al., 2014; Eischen, Luckritz & Polich, 1995; van 
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Beijsterveldt & van Baal, 2002). Interestingly, a recent biometric identification study 

informed by multiple EEG tasks has reported a task-independent subject-discrimination 

plateau starting at approximately 30 Hz, in the gamma range (Del Pozo-Banos et al., 2015).

The models and features used to discriminate subjects from cortical EEGs are also diverse, 

from simple linear classifiers input with event-related potentials (ERPs) selected ad hoc, 

such as the alpha peak or the P300 wave (Gupta, Palaiappan & Paramesran, 2012; van 

Beijsterveldt & van Baal, 2002), to complex data-driven classifiers trained with vectors of 

power spectral density (PSD) or autoregressive coefficients (Mohammadi et al., 2006; 

Nguyen, Tran, Huang, & Sharma, 2012; Poulos, Rangoussi, & Alexandris, 1999; Singhal & 

RamKumar, 2007). Here, data-driven classifiers tend to discriminate subjects better than 

hypothesis-driven features. This result suggests that discriminant information is sparse 

across multiple EEG dimensions.

1.2 The frequency following response

A common denominator of the previous EEG biometric identification studies is that -to the 

best of our knowledge- they were exclusively informed by cortical responses. Here, we 

examined the biometric specificity of the FFR, a scalp-recorded electrophysiological 

potential that reflects sustained phase-locking activity primarily from cortical and 

subcortical neural ensembles (Coffey et al., 2016; Coffey, Musacchia, & Zatorre, 2017; 

Jewett & Williston, 1971; Moushegian, Rupert, & Stillman, 1973; Sohmer, Pratt, & Kinarti, 

1977). The FFR reflects changes in scalp electrical potentials due to rapid neural 

synchronization to stimulus periodicity over time, thus providing a temporal coding of 

complex acoustic properties that underlies auditory processing (Chandrasekaran & Kraus, 

2010; Chandrasekaran, Skoe, & Kraus, 2014) (see Fig. 1).

While the primary source-generators of the FFR are thought to be in the rostral brainstem 

(Bidelman, 2018; Chandrasekaran & Kraus, 2010; Marsh, Brown & Smith, 1974), more 

recent evidence is suggestive of cortical sources as well (Coffey et al., 2016, 2017). Neural 

activity in subcortical structures can also be modulated by cortical structures via descending 

(or efferent) projections (Kral & Eggermont, 2017; Keuroghlian & Knudsen, 2007). Efferent 

projections play a role in enhancing the subcortical encoding of the acoustic properties that 

are behaviorally-relevant to the organism (Andéol et al., 2011; Malmierca, Anderson & 

Antunes, 2014). Therefore, the FFR also reflects functional aspects of auditory processing 

that go beyond the neural transduction of stimulus properties (e.g., selective attention, Xie, 

Reetzke & Chandrasekaran, 2018; and predictive coding, Luo, Wong, & Chandrasekaran, 

2016; Skoe & Chandrasekaran, 2014).

The effects of long-term auditory experience in the FFR are well documented in native 

speakers of tonal languages, like Mandarin Chinese (Bidelman, Gandour, & Krishnan, 

2011a, 2011b; Krishnan et al., 2005; Krishnan et al., 2004; Weiss & Bidelman, 2015). 

Mandarin Chinese speakers are systematically exposed to pitch modulations that are 

functionally relevant in their soundscape. For example, in Mandarin Chinese, the 

syllable /ma/ can be interpreted as ‘mother’, ‘horse’, ‘hemp’, or ‘scold’ depending on 

whether is pronounced with a high-level, low-dipping, low-rising, or high-falling 

fundamental frequency (F0) (Gandour, 1994) (see Fig. 2). Critically, FFRs from native 

Llanos et al. Page 3

J Neural Eng. Author manuscript; available in PMC 2020 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chinese speakers reflect a more faithful neural encoding of Mandarin tones than FFRs from 

native English speakers (Bidelman, Gandour, & Krishnan, 2011a, 2011b; Krishnan et al., 

2009; Krishnan et al., 2005).

In practice, the FFR is extracted from raw EEG responses with a latency of approximately 

10 ms and a band-pass filter, from 80 to 1000 Hz, that roughly reflects the phase-locking 

range of neurons in the rostral brainstem (Chandrasekaran & Kraus, 2010; Skoe & Kraus, 

2010; Krishnan, 2002; Moushegian et al., 1973). Within this frequency range, the FFR 

captures stimulus’ spectral patterns with remarkable fidelity (see Fig. 1) (Bidelman & 

Krishnan, 2009; Greenberg et al., 1987). Previous research has taken advantage of this 

property of the FFR to decode sound categories from FFR responses (Llanos, Xie, & 

Chandrasekaran, 2017; Reetzke et al., 2018; Yi et al., 2017). Building upon this finding, we 

aimed to decode listeners from FFRs as a proxy to assess the biometric specificity of the 

FFR.

Practically, the FFR presents several features that could be attractive for an EEG biometric 

system. First, the FFR can be easily recorded with a simple montage of three electrodes 

(Aiken & Picton, 2008; Skoe & Kraus, 2010). While cortical responses can also be recorded 

with a few scalp electrodes (e.g., Krishnan et al., 2012), the discrimination of subjects from 

cortical EEGs typically requires more than three electrodes (e.g., Abdullah et al., 2010). 

Second, relative to cortical responses, the FFR is less affected by changes in listeners’ 

cognitive states (e.g., Varghese, Bharadwaj, & Shinn-Cunningham, 2015). As a result, it is 

typically recorded while listeners are resting or watching a silent movie. Such procedure 

simplifies the data acquisition process and reduces the number of myogenic artifacts 

(Akhoun et al., 2008; Skoe & Kraus, 2010). Relatedly, in contrast to cortical responses, the 

FFR is quite robust against ocular artifacts, as these artifacts oscillate at frequencies below 

the typical FFR bandwidth. Third, the FFR is highly stable across EEG sessions separated 

by days (Bidelman et al., 2018; Xie et al., 2017), months (Reetzke, et al., 2018; Song, Nicol 

& Kraus, 2011), or even years (Hornickel, Knowles & Kraus, 2012). This property may 

facilitate the identification of subjects over time. Fourth, the FFR can be recorded easily in 

neonates, and across the lifespan. Finally, the FFR reflects a wide range of inter-subject 

variability due to subtle individual differences in auditory processing (Chandrasekaran, 

Kraus, & Wong, 2012; Coffey et al., 2017; Coffey et al., 2016; Hornickel et al., 2009. 

Ruggles, Bharadwaj, & Shinn-Cunningham, 2012) and auditory experience 

(Chandrasekaran, Krishnan, & Gandour, 2007; Krishnan, Gandour, & Bidelman, 2010; 

Krishnan et al., 2009; Wong et al., 2007). This property may also facilitate the 

discrimination of subjects from FFRs.

1.3 The present study

In the current study, we examined the biometric specificity of the FFR. To this end, we used 

a machine learning classifier to decode subject identify from a previously published FFR 

dataset from our lab (Xie et al., 2017). In this dataset, FFRs were collected in three 

(repeated) sessions separated by days from native speakers of Mandarin-Chinese and native 

speakers of English. In each session, participants listened to multiple repetitions of two 

Mandarin-Chinese tones. The use of behaviorally-relevant stimuli (e.g., Palaniappan & 
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Raveendran, 2002), or behaviorally-relevant tasks (Marcel & Millan, 2007), is not 

uncommon for the biometric identification practice. Behaviorally-relevant materials are 

expected to engage neural processing across multiple cognitive and neural domains and thus 

provide a wide variety of biometric markers. In previous FFR studies, the use of 

linguistically-relevant stimuli served to evoke functional markers of cognitive processing 

that were beyond the mere sensory encoding of acoustic properties (e.g., language-

dependent markers; Krishnan et al., 2005).

We decoded subject identity from native and non-native speakers of Mandarin Chinese to 

investigate the role of long-term auditory experience on the FFR biometrics. We investigated 

the extent to which the biometric specificity of the FFR is permeable to long-term auditory 

experience. This question was promoted by research findings showing that the stimulus 

fidelity of the FFR is enhanced by long-term auditory experience (e.g., Krishnan et al., 2005; 

Xie et al., 2017). Specifically, we assessed whether listeners familiar with the evoking 

stimulus (native Chinese-listeners) were better decoded than listeners unfamiliar with the 

evoking stimulus (native English-listeners). To further assess the effects of long-term 

auditory experience on the FFR biometrics, we also examined whether native speakers of the 

same language (either English or Chinese) were biometrically more similar than native 

speakers of different languages.

We used the performance of a hidden Markov model (HMM), trained to decode subjects 

from FFRs, as a metric to quantify the biometric specificity of the FFR. The HMM captures 

short-term dependencies in complex time series (Juang, & Rabiner, 1991; Rabiner, 1990) 

and is therefore suitable to model complex time-varying signals, like the FFR. In a previous 

study (Llanos et al., 2017), we used the HMM to decode Mandarin tone categories from 

FFRs recorded from native speakers of Mandarin Chinese and English. Our results yielded a 

significantly greater tone decoding accuracy for the Mandarin Chinese group. This finding 

suggests that the HMM can pick up on subtle, biologically-relevant differences that could be 

useful to discriminate subjects.

We decoded subject identity in the same auditory context (i.e., same tone and EEG session) 

and across different auditory contexts (i.e., different EEG sessions and different Mandarin 

tones). Since the goal of a biometric identification system is to authenticate personal identity 

over time, we decoded the same subject identity across different EEG sessions to assess the 

temporal stability of biometric profiles. We also decoded subject identity across different 

Mandarin tones to investigate the presence of pitch-free biometric markers. Finally, we 

addressed two further questions relevant for biometric identification purposes. To increase 

the signal-to-noise ratio (SNR) of the FFR, FFRs are averaged across multiple stimulus 

repetitions (Kraus & Skoe, 2010). Since large averaging sizes are more time consuming than 

small sizes because they require a greater number of experimental trials, our first question 

was on the smallest averaging size required to identity subjects. The second question was on 

the EEG bands providing the best discriminant information. Since the cortical components 

of the FFR manifest at frequencies lower than approximately 200 Hz (Bidelman, 2018), and 

the FFR bandwidth goes up to 1 kHz, this analysis helped us to weight the biometric 

contributions of cortical and subcortical oscillation patterns. With our results, we expect to 

provide the first deep and systematic biometric characterization of the FFR.
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2 Methods

2.1 Dataset

Our FFR dataset (Xie et al., 2017) included EEGs from ten adult native speakers of 

Mandarin Chinese and ten adult native speakers of American English with no prior language 

experience with Chinese or any other tonal language. We included no participants with 

formal instruction in music to minimize the effect of music experience on the FFR 

(Bidelman et al., 2011a, 2011b). Participants completed three independent EEG sessions 

with no task interpolated between them. The average number of days between the first two 

EEG sessions was 1.25 days (ranging from 1 to 3 days). The third EEG session was always 

administered the day after the second session. In each session, participants listened to 1000 

repetitions of the same Chinese syllable (/a/, 256 ms) pronounced with a high-level 

Mandarin tone and a low-rising Mandarin tone. Stimulus F0-contours ranged from 100 to 

130 Hz (see Fig. 2B). Auditory stimuli were blocked by tone category and presented with 

alternate polarities to attenuate the cochlear microphonic effect (Skoe & Kraus, 2010). 

Participants were instructed to ignore the sounds and focus on a silent movie of choice.

EEGs were acquired with same system (Brain Vision ActiCHamp), software (Pycorder 

1.0.7), and scalp montage across sessions. The scalp montage consisted of three Ag-AgCI 

scalp electrodes connected to a 50-gain pre-amplifier from the left mastoid (ground), right 

mastoid (reference), and Cz (active). We used the vertex electrode to enhance the 

representation of neural activity from the rostral brainstem and attenuate the cochlear 

microphonic effect (Skoe & Kraus, 2010). The use of a mastoid reference is consistent with 

our previous work (Xie et al., 2017) and prior work from other labs (Bidelman & Krishnan, 

2010; Krishnan et al. 2010). This vertical montage provided us with good SNR levels for 

FFR averaging sizes smaller or equal to those documented in the FFR literature (e.g., 1000 

trials).

Single-trial FFRs were pre-processed from raw EEGs with customized scripts written in 

MATLAB (R2017a). We band-pass filtered the EEG channel from 80 to 1000 Hz using a 

second-order zero-phase Butterworth filter. Single-trial FFRs were segmented from the 

filtered channel using a latency of 10 ms and the duration of the evoking stimulus (256 ms). 

Single-trial FFRs were baseline corrected by subtracting the mean EEG magnitude of the 

baseline noise (from −40 to 0 ms) and baseline corrected trials with a maximum absolute 

magnitude higher than 35 μV were rejected as potential artifacts. Since previous studies 

(e.g., Del Pozo-Banos et al., 2015) have identified biometric contributions from EEG 

bandwidths below the typical FFR bandwidth (80 – 1000 Hz), we kept a low-pass filtered 

(<80 Hz) version of each unrejected trial for analysis purposes.

2.2 Decoding of subject identity

Each subject identity (N=20) was decoded with a different HMM, customized in MATLAB 

(R2017a). Each HMM was trained with Viterbi (Levinson, Rabiner, & Sondhi, 1983; Lou, 

1995) to recognize FFRs from a single subject. The HMM was structured as a chain of three 

hidden states feedforward connected to the following states. This number of states was 

chosen to account for biometric patterns at the onset, mid and offset portions of the FFR. To 

Llanos et al. Page 6

J Neural Eng. Author manuscript; available in PMC 2020 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase the SNR of the FFR, training and testing sets were sub-averaged with a moving 

average window including a balanced number of responses to different stimulus polarity 

items (see Fig. 3). We computed the short-term fast-Fourier transform (ST-FFT) of each sub-

averaged FFR in decibels. Then, we kept the first 13 coefficients of the discrete-cosine 

transform (DCT) of each ST-FFT time frame. This number of coefficients allowed us to 

reduce input dimensionality while preserving the overall spectral shape of each ST-FFT 

frame (Davis & Mermelstein, 1990; Nadeu, Macho & Hernando, 2001). Each sequence of 

short-term DCT frames was encoded into a sequence of HMM emissions using the same 

codebook. The codebook was created by clustering all the DCT frames in all training sets. 

We used a k-means approach (Lloyd, 1982) to split the distribution of DCT frames into a 

series of Voronoi cells, one cell for each centroid in the k-means cluster. Each sequence of 

DCT frames was then quantized into a series of discrete HMM emissions by mapping each 

DCT frame in the sequence into the identification number of its corresponding cell in the 

DCT space. Each HMM was trained with the FFRs included in the training set of the 

corresponding subject and tested with the FFRs conveyed by the testing sets of all subjects.

The overlap between consecutive ST-FFT frames was set to 75%. This overlap has been 

shown to capture changes in FFR spectral-quality over time without consuming too much 

computational time (Llanos et al., 2017; Krishnan et al., 2005; Krishnan et al., 2009). The 

other model parameters were estimated with an optimization method. These parameters 

were the length of the ST-FFT frame (10, 20, or 40 ms), the codebook length (50, 100, or 

150 codewords), the training size (500, 750, or 875 FFRs, out of 1000), and the FFR 

averaging size (50, 100, or 200 trials). We applied a first-order iterative method to find the 

combination of parameters that maximized model performance for the high-level tone and 

the first EEG session; we used the FFRs to the other tone and sessions to evaluate the 

stability of biometric profiles across different auditory contexts (e.g., over time and across 

sounds). We initialized the optimization method with a frame length of 40 ms, a codebook 

length of 50 codewords, a training size of 500 FFRs, and an averaging size of 200 trials. 

These parameters were adapted from a previous study using the HMM to decode Mandarin 

Chinese tones from FFRs (Llanos et al., 2017). We updated these parameters in subsequent 

iterations by searching for the frame length, codebook length, training size, and averaging 

size that maximized subject decoding performance when the other three parameters were 

fixed. We continued updating the parameters until they converged to a local maximum.

Model performance was scored as the area under the receiver operating characteristic curve 

(AUROC). The receiver operating characteristic (ROC) curve models the trading between 

true positives (y-axis) and false alarms (x-axis) across different detection thresholds. 

Improvements in identification rate are characterized by larger true positive rates over false 

alarm rates across threshold levels, leading to larger AUROCs (Bradley, 1997). The 

detection threshold was defined as the smallest likelihood accepted to classify an FFR into 

the subject class of the HMM. We created a ROC curve for each subject-specific model by 

varying the detection threshold across multiple levels spanning the likelihood range of the 

HMMs. Then, we plotted the true positive rate (i.e., the proportion of testing trials above 

threshold) against the false alarm rate (i.e., the proportion of testing trials below threshold) 

for each level. The ROC curve is currently a standard metric of model performance in 

machine learning and data mining work (Streiner & Cairney, 2007; Swets, Dawes & 
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Monahan, 2000), including machine learning studies with a focus on clinical diagnosis 

(Linden, 2006). While no metric is perfect, ROC analysis presents some properties of 

interest, relative to classic accuracy analysis. First, accuracy analysis only controls for type I 

errors, whereas ROC analysis simultaneously controls for type I and II errors. As a result, 

ROC analysis helps us to estimate model performance across different potential scenarios, 

where the investigator may choose boosting the true positive rate at the expense of the false 

alarm rate or vice versa. In addition, the level of chance in accuracy analysis decreases as the 

sample size increases, thus increasing the probability of the same model being over chance. 

In contrast, the level of chance in ROC analysis (AUROC = 0.5) remains stable across 

sample sizes. Since the level of chance is a common standard in machine learning 

approaches to cognitive neuroscience (e.g., Bohland et al., 2012; Feng et al., 2017), ROC 

analysis provides a fairer chance level comparison across studies using different sample 

sizes.

One limitation of the ROC analysis is that true positives and false alarms are computed for 

each model independently. While this approach is very fruitful to calibrate the detection 

threshold that minimizes the trade-off cost between true positives and false alarms for each 

subject-specific model (single-subject recognition designs), it does not offer a 

straightforward interpretation of model performance in a multi-subject classification design, 

where the same subject is classified across different models. To provide a more 

comprehensive picture of model performance in this context, we also examined the accuracy 

of a multi-subject classifier informed by the performance of each subject-specific HMM. 

Here, each FFR in the testing sets was classified into subject class of the HMM providing 

the highest likelihood. We used the accuracy of the classifier as a metric of model 

performance in a multi-subject classification design.

2.3 Analyses

We trained the HMM to decode a different subject at a time (20 subjects total). To assess the 

subject specificity of the FFR within the same auditory context, the HMM was trained and 

tested with FFRs to the high-level tone in the first session (i.e., these were the tone and 

session used to optimized model parameters). We also used these FFRs to investigate the 

performance of the model in a multi-subject classification design, the effects of long-term 

auditory experience, averaging size, and EEG bandwidth on subject identification. We used 

the FFRs to the other tone and in the other sessions to investigate the stability of biometric 

profiles over time and across different sounds. In this case, the HMM was trained and tested 

across different sessions and tones (i.e., across different auditory contexts).

The optimal model parameters obtained with the optimization method were 20 ms (ST-FFT 

frame length), 150 codewords (codebook length), 750 FFRs (training size, out of 1000 

FFRs), and 200 trials (averaging size). These parameters were not changed across analyses, 

except when we investigated the effects of averaging size on model performance. In this 

case, averaging size was systematically manipulated to answer the corresponding research 

question. In a similar vein, the HMM was input with spectral coefficients within the standard 

FFR bandwidth (80 Hz - 1 kHz), except when we examined the amount of biometric 

information conveyed at specific frequency bands. In this case, the HMM was also input 
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with spectral coefficient below 80 Hz, in the cortical EEG range. The number of cross-

validation folds was also fixed across analyses. Since the training size was 250 FFRs (= 

1000 FFRs - training size), the performance of the HMM was cross-validated with four 

folds.

2.3.1 Subject specificity and auditory experience—We used the following rating 

scale (Carter, Pan & Galandjuk, 2016) to categorize the performance of the HMM: excellent 
(AUROC > 0.9), good (> 0.8), fair (> 0.7), poor (> 0.6), or bad (> 0.5). To assess the effects 

of long-term auditory experience with the evoking stimuli on subject identification, we 

compared Chinese and English AUROCs with a two-sample t-test. To assess whether native 

speakers of the same language were biometrically more similar than native speakers of 

different languages, we examined the distribution of language profiles (English and Chinese) 

in the same biometric space. To create this space, we classified all testing FFRs into the 

subject class of the HMMs that maximized their likelihood function. Then, we arranged 

English and Chinese biometric profiles into the same two-dimensional scaling space as a 

function of the relative distance of their models in the confusion matrix provided by the 

classification process. We clustered the biometric profiles in the biometric space using an 

unsupervised clustering of Gaussian mixtures (full and shared covariance; McLachlan, 

2000). The number of mixtures, from 1 to 5, was selected with the Davies-Bouldin criterion 

(Davies & Bouldin, 1979). Then, we used the Shannon entropy formula to quantify the level 

of language dispersion in each cluster and on average (the lower the Entropy, the lower the 

dispersion; Shannon, 1948). Finally, we estimated the probability of sampling a lower mean 

dispersion from a chance-level distribution of 1000 mean dispersion values obtained by the 

random permutation of language labels across subjects. The resulting probability served us 

as a p-value to reject the hypothesis that the mean dispersion value obtained in first place 

was due to chance.

2.3.2 Cross-stimulus and temporal stability—To assess the stability of biometric 

profiles across different sounds, we trained each HMM (one per subject) with FFRs to the 

high-level tone. Then, we evaluated the model with novel FFRs to the high-level tone and 

the low-rising tone. We compared the AUROCs in each evaluation set (i.e., the high-level 

tone vs. the low-rising tone) with a linear mixed-effects model with set and subject as fixed 

and random effects, and the high-level tone as the reference level. To assess the temporal 

stability of biometric profiles, we trained each HMM (one per subject) with FFRs to the 

high-level tone in the first EEG session. Then, we evaluated the model with FFRs to the 

same tone in the first, second, and third sessions. To compare the AUROCs in the second 

and third EEG sessions with the AUROCs in the first session, we used a linear-mixed effects 

model with session and subject as fixed and random effects, and the first session as the 

reference level.

2.3.3 Averaging size and EEG bandwidth—To investigate the effects of FFR 

averaging size on subject decoding, we input each HMM (one per subject) with training and 

testing sets sub-averaged across different sizes (200, 50, 25, 10, 5, or 1 trial). We focused on 

small averaging sizes because small sizes require a lower number of stimulus repetitions 

and, therefore, they can be used to identify subjects faster, in the order of few seconds. We 
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assessed the effects of the averaging size on model performance with a linear-mixed effects 

model with size and subject as fixed and random effects, and the largest size (200 trials) as 

the reference level. To estimate the amount of biometric information encoded in each EEG 

bandwidth, the HMMs (one per subject) were input with DCT coefficients from a different 

frequency band at a time. Frequency bands below the FFR bandwidth were segmented as 

follows: delta (1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 30 Hz), low gamma 

(30 – 60 Hz) and high gamma (60 – 100). Frequency bands higher than 100 Hz, in the FFR 

bandwidth, were segmented in 10 steps of 100 Hz ranging from 100 Hz to 1 kHz (100 – 200 

Hz, 200 – 300 Hz, etc.). We used steps of 100 Hz because they captured the main 

modulations of the DCT spectral envelope of the FFR (see the DCT spectral envelopes 

shown in Fig. 3). To assess the effects of frequency band on model performance, we used a 

linear-mixed effects model with band and subject as fixed and random effects, and the band 

providing the largest AUROC as the reference level (60 – 100 Hz).

3 Results

3.1 Subject specificity and auditory experience

Within the same auditory context (i.e., same tone and session), the HMM decoded subject 

identity with a mean AUROC of 0.93, in the excellent range (> 0.9; dotted line in Fig. 4A). 

The two-sample t-test (see bar plot in Fig. 4A) revealed a statistically significant difference 

between language groups (t[10] = −2.53, p = 0.03). Here, native speakers of English (M = 

0.97, SD = 0.02) were decoded with higher AUROCs than native speakers of Chinese 

(Chinese: M = 0.89, SD = 0.09). This result indicates that model performance was 

modulated by language experience. Specifically, listeners that were more familiar with the 

target stimuli (i.e., Chinese listeners) were harder to decode.

Since Mandarin-Chinese tones are more faithfully represented in Chinese FFRs, relative to 

English FFRs (Xie et al., 2017), it is possible that the Chinese targets were more likely to be 

confused with one another by the model because their FFRs exhibited greater convergence 

to stimulus F0 than the English targets. To examine this possibility, we used 

multidimensional scaling analysis to project Chinese and English FFRs into the same space 

as a function of their relative Euclidean distances. Since FFR properties often require 

thousands of repetitions to consolidate in the averaged response, we maximized the 

averaging size to 1000 trials, rather than using the testing size (250 trials). Then, we 

calculated the level of dispersion around each language group mean (SD) in the 

multidimensional scaling space. Our results revealed that the Chinese FFRs were more 

concentrated around their language group mean (SD = 2.1) in the multidimensional scaling 

space than the English FFRs (SD=3). This result brings support to the hypothesis that 

Chinese FFRs were more similar to one another than English FFRs.

The analysis of language dispersion in the HMM biometric space (see Fig. 4B) revealed a 

quite small level of language dispersion across biometric clusters (mean Shannon entropy = 

0.18, from 0 to 1). This result indicates that most of the subjects within the same cluster 

happened to be native speakers of the same language. Furthermore, the results of the 

permutation analysis indicated that this level of language dispersion was not likely due to 

chance (p < 0.01), as more than the 99% of the mean dispersion levels sampled from the 
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chance-level distribution were higher than 0.18. In the HMM biometric space, the Chinese 

group was also more concentrated around its language group mean (SD = 2.8) than the 

English group (SD = 3.2). In addition, while seven out of ten English subjects were spread 

around the left margin of the HMM biometric space, away from the scope of a considerably 

number of subjects, seven out of ten Chinese subjects were concentrated in the middle area 

of the biometric space, flanked by a higher density of proximal biometric profiles. 

Hypothetically, these Chinese subjects in the middle of the biometric space may have 

penalized the performance of the model with a lower true-positive rate. Indeed, their mean 

AUROC (M = 0.83) was smaller than the mean AUROC of the Chinese subjects located in 

the right margin of the biometric space (M = 0.98). Altogether, these factors may have 

contributed to impair recognition in the Chinese group.

In addition to the analysis of ROC curves, we also examined the performance of the HMM 

in a multi-subject classification design. Here, the HMM classifier classified subjects with a 

mean accuracy of 0.74 (SD = 0.22), way above the level of chance (= 0.05). This level of 

classification accuracy is consistent with prior EEG biometric work (Del-Pozo-Banos et al., 

2015; Singhal & RamKumar, 2007; Yeom, Suk, & Lee, 2013), although it is still smaller 

than the 0.9 level of accuracy achieved in other EEG biometric studies (e.g., Palaniappan & 

Raveendran, 2002). Mean classification accuracy was higher for the English models (M = 

0.8), relative to the Chinese models (M = 0.67), consistently with the results of the ROC 

analyses. Altogether, these results indicate that the FFR contains information that is relevant 

for the classification of multiple subjects.

3.2 Cross-stimulus and temporal stability

Model performance decreased when the HMM was trained and tested across different 

Mandarin tones (see Fig. 4C). Here, model performance declined from excellent AUROCs 

(>0.9) to good AUROCs (>0.8) when the HMM was trained and tested with FFRs to 

different tones (M = 0.83; SD = 0.16) rather than with FFRs to the same tone (M = 0.93, SD 

= 0.08) (t [38] = −3.07, p = 0.003). Model performance also declined when the HMM was 

trained and tested across different EEG sessions (see Fig. 4D). Here, model performance 

decreased from excellent to fair AUROCs when the HMM was trained and tested with FFRs 

from different EEG session (second session: M = 76, SD = 0.24; third session: M = 0.77, SD 

= 0.24) rather than the same session (first session: M = 0.93, SD = 0.08; −2.95 < t [57] < 

−2.86, ps < 0.005).

3.3 Averaging size and frequency band

Model performance decreased with averaging size (see Fig. 5A), but here the decline was 

quite small, going from excellent to less excellent or good AUROCs. In particular, the 

AUROC decreased from 0.93 (200 trials, SD = 0.08) to 0.92 (50 trials, SD = 0.06), 0.91 (25 

trials, SD = 0.06), 0.89 (10 trials, SD = 0.07), 0.88 (5 trials, SD = 0.08), and 0.85 (1 trial, SD 

= 0.07). The linear mixed-effects model revealed that only averaging sizes lower than 25 

trials (10, 5 and 1 trial) were statistically different than the reference level (200 trials; −6.8 < 

tStat[114] < −4.16, ps < 0.002). The analysis of model performance by frequency band (see 

Fig. 5B–C) revealed two frequency bands with AUROCs as large as the reference level 

(reference-level band: 60 – 100 Hz). These bandwidths were: 400 – 500 Hz and 100 – 200 
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Hz. The other bands provided AUROCs that were statistically smaller than the reference 

level (−4.2 < tStat[285] < −2.3, ps < 0.01), although some of these AUROCs were still close 

to the reference level (e.g., the AUROCs of 800 – 900 Hz and 500 – 600 Hz).

4 Discussion

We trained the HMM to decode subject identity from FFRs to Mandarin tones recorded from 

native speakers of Mandarin Chinese and native speakers of English naïve to lexical tones. 

We used the performance of the HMM as a metric to characterize the biometric specificity of 

the FFR for the same auditory context (i.e., same Mandarin tone and EEG session) and 

across different auditory contexts (i.e., across different EEG sessions or Mandarin tones). 

Since the FFR is modulated by long-term auditory experiences, we also investigated the 

effects of stimulus familiarity on subject identification. Here, we aimed to determine if 

native Chinese listeners are better decoded than native English listeners, and if native 

speakers of the same language are biometrically more similar than native speakers of 

different languages. We also aimed to identify the smallest FFR averaging needed to decode 

subject identity and the EEG frequency bands providing the best biometric information.

4.1 Subject specificity

In the same auditory context, listeners were decoded with excellent and good AUROCs and 

classified with accuracy scores way above chance. This result indicates that, in addition to 

the high fidelity to stimulus characteristics, the FFR also contains patterns that are subject 

specific. How these subject-specific patterns relate to subtle individual differences in 

auditory processing is a question that goes beyond the scope of the present study, as we only 

manipulated the degree of auditory experience with the evoking stimuli. Our results suggest 

that at least part of these patterns might not be directly related to the neural encoding of 

stimulus properties (e.g., F0 contours). This claim is supported by the following findings. 

First, while the FFR typically requires a large averaging size to reflect stimulus-related 

properties (typically more than 1000 trials; Skoe & Kraus, 2010), our models performed 

well for averaging sizes as small as one single trial. Second, our results revealed important 

contributions to subject decoding performance from frequency bands that were above and 

below the stimulus F0 range. Finally, while the FFR reflects a more robust neural encoding 

of pitch in native Chinese-speakers, relative to native English-speakers (Krishnan et al., 

2005), our results yielded better identification scores for the group of native English 

speakers. These findings could be a consequence of the type of features that we used to train 

and evaluate the HMM. Instead of using pitch-relevant properties, such as F0 contours, we 

input the HMM with linguistically-blind spectral coefficients. A visual inspection of our 

DCT envelopes in the time domain (see Fig. 6) shows that our models were more informed 

by signal properties related to amplitude modulation (e.g., the analytic signal) than 

frequency modulation (e.g., F0 contours).

4.2 Auditory experience

Listeners unfamiliar with the evoking stimuli (i.e., native English speakers) were better 
decoded than listeners familiar with the evoking stimuli (i.e., native Chinese speakers). This 

result shows that subject identification can be affected by sound familiarity. Our results also 
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suggest that subject-dependent neural plasticity is permeable to language experience. While 

native speakers of the same native language (either English or Chinese) were grouped into 

more than one cluster in the biometric space, they were not mixed with the native speakers 

of the other language (with the exception of one listener, out of 20). The fact that native 

speakers of different languages were almost never mixed in the same cluster suggests that 

the distribution of biometric profiles was modulated by language experience at some extent. 

Otherwise, our results should have revealed a greater level of language mixture across 

clusters; instead, the results of the permutation analysis showed that the amount of language 

dispersion across clusters was statistically smaller than would be expected if language did 

not play a role.

In the study where we collected the FFR dataset used here (Xie et al., 2017), Mandarin-

Chinese listeners showed a more faithful neural encoding of Mandarin tones than native 

speakers of English. Specifically, the F0 contours of the FFRs in the Mandarin-Chinese 

group were more similar to the F0 contour of the evoking stimulus than in the English 

group. This result was consistent with prior FFR work showing a language-dependent 

enhancement of neural pitch encoding (e.g., Krishnan et al., 2005). While our results 

indicate that subject-related plasticity is not uniquely driven by the neural encoding of pitch, 

it is possible that Chinese listeners were more difficult to decode because their FFRs were 

more similar. However, the fact that Chinese and English clusters were interspersed in the 

biometric space suggests that the distribution of biometric profiles was also driven by 

variables unrelated to language experience; otherwise, our results should have shown two 

clearly differentiated clusters (one for each language group).

4.3 Cross-stimulus and temporal stability

The HMM decoded listener identity across different sounds and days. This finding indicates 

that the FFR contains biometric features that are stable over time and across sounds. Since 

we decoded listener identity across Mandarin tones, they demonstrate that the FFR contains 

biometric information that is not directly related to the encoding of stimulus F0. However, 

the performance of the HMM across days and tones was not as good as for the same 

auditory context. This result is consistent with the literature for cortical EEGs (e.g., Del 

Pozo-Banos et al., 2015), and suggests that the FFR must also contain biometric patterns that 

are not stable across stimuli and over time.

4.4 Averaging size and frequency band

The impact of the FFR averaging size on the HMM was quite small. Here, the HMM 

decoded subject identity with good scores for averaging sizes as small as one single trial. 

This result indicates that the biometric specificity of the FFR is quite robust against poor 

SNR levels, as the SNR of the FFR decreases with averaging size (Skoe & Kraus, 2010). 

Subject identification was also modulated by the EEG bandwidth. Here, our results revealed 

contributions from frequency bands above and below the phase-locking limitations of 

neurons in the auditory cortex (approximately at 200 Hz). This finding demonstrates the 

presence of EEG biometric patterns in the subcortical range. We also found biometric 

contributions from frequency bands in the (high) gamma range (<100 Hz). This finding is 
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consistent with the results of a previous EEG biometric identification study reporting a 

subject discrimination plateau starting at mid gamma (Del Pozo-Banos et al., 2015).

4.5 Biometric identification systems

Our results suggest that EEG biometric identification systems could benefit from including 

the FFR in their metrics. As we noted above, the FFR can be collected with a simple EEG 

montage of three electrodes. Furthermore, our results for the averaging size suggest that 

subjects could be identified very quickly with very few stimulus repetitions. A quick 

simulation of this hypothetical situation using only the first 10 testing trials of each HMM 

(single-trial averaging size) yielded a mean AUROC (M = 0.86) that was quite similar to the 

mean AUROC obtained with a testing set of 1000 FFRs (M = 0.85). Another property that 

could be attractive for an EEG biometric identification system is that FFRs can be 

simultaneously collected with cortical ERPs (e.g., auditory evoked potentials: Bidelman et 

al. 2015b). Thus, FFRs and cortical ERPs could be integrated into the same system to 

increase the number of markers used to authenticate subjects.

If the goal is to improve the authentication of subjects across different days, we recommend 

training a full-bandwidth model (1 – 1000 Hz) with FFRs from different days. A quick 

simulation of this setting revealed an improvement from 0.77 (trained with the first session, 

tested with the third session) to 0.82 (trained with the first two sessions, tested with the third 

session). Based on our results, we also recommend training and testing the model with the 

same evoking stimuli. Since stimulus familiarization has a negative impact on model 

performance, we suggest using unfamiliar stimuli to boost decoding accuracy. Here, the 

evoking stimuli could be replaced after a while to avoid the negative effects of ongoing 

stimulus familiarization after several identification sessions.

With our results, we expect to set a preliminary basis for future studies using data driven 

metrics to retrieve complex FFR makers of individual differences in neurotypical and 

clinical populations. The FFR contains markers of concussion occurrence and severity in 

mild traumatic injury populations; e.g., children with a concussion elicit smaller and slower 

neural responses than neurotypical children (Kraus et al., 2016). Since machine learning 

models can pick up on a wider and more complex selection of signal properties than 

hypothesis-driven models (e.g., models in which the features of interest are selected ad hoc), 

data-driven approaches to EEG biometrics could contribute to refine the subject specificity 

of the current EEG models of traumatic brain injury. One research question that we could 

not address in our study, but that may be worthwhile to investigate, is how individual 

differences in subject decoding accuracy trade off with individual differences in auditory 

processing; e.g., do individuals with hearing impairment exhibit a more differential EEG 

biometric profile? Another question that remains open is how our results would scale with 

increasing sample size. Our sample size (N = 20) could be considered a standard sample size 

in the FFR literature. This sample size is similar, or larger, than the ones reported in a 

substantial number of EEG biometric identification studies (e.g., Sadanao, Miyamoto, & 

Nakanishi, 2008, Palaniappan, 2005; Poulos, Rangoussi, & Kafetzopoulos, 1998), but 

smaller than the 48 subjects reported in Campisi et al., (2011) or the 82 subjects reported in 

Stassen (1989). While the FFR has received increased attention in the last decade, the 
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number of FFR datasets currently available is still significantly smaller than the number of 

cortical EEG datasets. We hope that, as the field progresses, we will count with larger 

datasets to test our systems.
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Figure 1. 
Waveforms (A, B) and spectrograms (C, D) of a rising Mandarin tone (A, C) and the evoked 

FFR (B,D) from a participant included in our study. The FFR was averaged across 1000 

stimulus repetitions to leverage the signal-to-noise ratio.
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Figure 2. 
(A) Spectrograms and F0 contours of the waveforms of four prototypical Mandarin Chinese 

tones (from Reetzke et al., 2018). (B) Spectrograms and F0 contours of the two Mandarin 

tone waveforms used in our study.
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Figure 3. 
Schematic representation of the steps followed to generate the input of a generic HMM with 

no frequency band constraints. From top to bottom: FFRs within the same training or testing 

set were sub-averaged with a moving average window, and averaged responses were 

processed with the short-term Fourier transform. Fourier spectral frames were scaled in 

decibels and encoded into the first 13th coefficients of the discrete cosine transform (DCT). 

Each sequence of DCT frames (one for each averaged response) was quantized into a 

sequence of discrete HMM emissions. The HMM was trained and tested with the emission 

sequences obtained from the corresponding training and testing sets.
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Figure 4. 
(A) Mean AUROC for each language group (English and Chinese) for the same tone and 

EEG session (left panel), and English and Chinese averaged FFRs (N=1000) arranged by 

their relative Euclidean distance (right panel); in the left panel, the mean AUROC across all 

subjects is dotted in black. (B) English and Chinese biometric profiles clustered as a 

function of their relative biometric similarity. The small diagram in the top-right area of the 

panel shows the proportion of mean language dispersion values in the chance-level 

distribution that were larger than the mean dispersion value (Z) of the clusters shown below. 

(C) AUROCs of the HMMs trained with the high-level tone and tested with the low-rising 

and high-level tones. (D) AUROCs of the HMMs trained with the first EEG session and 

tested with the first, second and third sessions. Error bars are expressed in standard deviation 

units.
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Figure 5. 
AUROCs as a function of the FFR averaging size (A) and the EEG frequency band (B, C). 

Error bars are expressed in standard deviation units.

Llanos et al. Page 24

J Neural Eng. Author manuscript; available in PMC 2020 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
FFR waveforms (waveform) from two listeners in the first and last EEG sessions. The figure 

also shows the FFR waveforms reconstructed from the first 13 coefficients of the discrete 

cosine transform of each spectrum slice provided by the short-term Fourier transform (DCT 

envelope). DCT spectral envelopes were projected back in the time domain using the inverse 

discrete Fourier transform.
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