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Abstract

Suppose we have a binary treatment used to influence an outcome. Given data from an 

observational or controlled study, we wish to determine whether or not there exists some subset of 

observed covariates in which the treatment is more effective than the standard practice of no 

treatment. Furthermore, we wish to quantify the improvement in population mean outcome that 

will be seen if this subgroup receives treatment and the rest of the population remains untreated. 

We show that this problem is surprisingly challenging given how often it is an (at least implicit) 

study objective. Blindly applying standard techniques fails to yield any apparent asymptotic 

results, while using existing techniques to confront the non-regularity does not necessarily help at 

distributions where there is no treatment effect. Here, we describe an approach to estimate the 

impact of treating the subgroup which benefits from treatment that is valid in a nonparametric 

model and is able to deal with the case where there is no treatment effect. The approach is a slight 

modification of an approach that recently appeared in the individualized medicine literature.
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1 Introduction

Traditionally, statisticians have evaluated the efficacy of a new treatment using an average 

treatment effect which compares the population mean outcomes when everyone versus no 

one is treated. While analyses of marginal effect often successfully identify whether or not 

introducing a treatment into the population is beneficial, these analyses underestimate the 

overall benefit of introducing treatment into the population when treatment is on average 

harmful in some strata of covariates. A treatment need not have adverse physiological side 

effects for the treatment effect to be negative: it will be negative if the administration of an 

inferior treatment under study precludes the administration of a superior treatment. To avoid 

this problem, researchers often perform subgroup analyses to see if the treatment effect 
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varies between different strata of covariates.1,2 Many investigators consider subgroups 

defined by a single covariate at a time,3,4 though there is a growing trend toward defining 

these subgroups using multiple baseline covariates.5,6

Subgroup analyses have led to much disagreement between clinicians and statisticians. As 

has been highlighted elsewhere,2 A R Feinstein eloquently described this controversy as 

follows:

The essence of tragedy has been described as the destructive collision of two sets of 

protagonists, both of whom are correct. The statisticians are right in denouncing 

subgroups that are formed post hoc from exercises in pure data dredging. The 

clinicians are also right, however, in insisting that a subgroup is respectable and 

worthwhile when established a priori from pathophysiological principles.7

While learning about subgroup specific effects is clearly important when they exist, the 

concerns of statisticians are understandable. When the analysis is not prespecified, statistical 

significance procedures tend not to be reliable.2,3,8 To exemplify the concerns on this issue, 

P Sleight shows that the strong marginal effect of aspirin for preventing myocardial 

infarction changes to a negative effect in two subgroups when these subgroups are defined 

by astrological sign.9 While it is clearly unlikely in practice that astrological sign yields 

heterogeneous subgroups, one would hope that a statistical procedure would be sufficiently 

robust to inform the user that astrological sign is not in fact associated with efficacy. Some 

have argued that sample splitting methods would help robustify a procedure to “data 

dredging” by either humans or overfitting by an algorithm.10–12

In a related literature, optimal individualized treatment strategy has been developed to 

formalize the process of allowing treatment decisions to depend on baseline covariates in a 

rigorous manner.13 An individualized treatment strategy is a treatment strategy that makes a 

treatment decision based on a patient’s covariates. Often the objective for such treatments is 

to optimize the population mean outcome under the given treatment strategy.14,15 For binary 

treatment decisions in a single time point setting, an optimal individualized treatment 

strategy is any individualized treatment strategy which treats all individuals for which the 

average treatment effect is positive in their strata of covariates and does not treat anyone for 

whom the average treatment is negative in their strata of covariates. Estimating the 

population mean outcome under the optimal individualized treatment rule has been shown to 

be non-regular when the optimal treatment strategy is not unique.16,17 This non-regularity 

causes standard semiparametric estimation approaches to fail. Despite the complexity of this 

estimation problem, Chakraborty et al.18 show that one can develop a slower than root-n rate 

confidence interval for the mean outcome under the estimated optimal individualized 

treatment rule using a bootstrap procedure, and Luedtke and van der Laan17 show how to 

obtain a root-n rate confidence interval for the actual optimal individualized treatment 

strategy. Often one can use the same confidence interval for these two estimation problems 

because one can estimate the optimal treatment strategy consistently (in terms of the 

strategy’s mean outcome) at a faster than root-n rate.17

As the reader may have noticed, two literatures are analogous – if one defines the optimal 

subgroup as the subgroup of covariate strata in which the treatment effect is positive, then 
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the optimal subgroup is (up to covariate strata for which there is no treatment effect) equal to 

the group of individuals for which an optimal treatment rule suggests treatment. However, 

the subgroup literature has not confronted the problem of developing high powered 

inference when an arbitrary algorithm is used to develop the subgroup – while the sample 

splitting procedure described in Malani et al.12 is valid for a single sample split provided the 

optimal subgroup is not empty, subsequently averaging across sample splits will not yield 

valid inference (see the discussion of the use of cross-validation for individualized treatment 

rules in van der Laan and Luedtke19). Thus there is a significant loss of statistical power in 

such a procedure.

In this work, we aim to satisfy the desires of both statisticians and clinicians – we seek a 

statistically valid subgroup analysis procedure which allows the incorporation of both the 

subject matter knowledge of physicians and the agnostic flexibility of modern statistical 

learning techniques. Our subgroup analysis procedure will return an estimate of the 

population level effect of treating everyone in a stratum of covariates with positive treatment 

effect versus treating no one. This succinctly characterizes the effect of optimally 

introducing a given treatment into a population. To estimate this quantity, we modify an 

estimator from the individualized treatment literature which overcomes a statistical 

challenge that typically arises when trying to estimate quantities involving individualized 

treatment rules.17 We will show that an additional statistical challenge arises when trying to 

use a variant of this estimator in the subgroup setting. We will then show how to overcome 

this challenge.

2 Statistical formulation

Suppose we observe baseline covariates W, an indicator of binary treatment A, and an 

outcome Y occuring after treatment and covariates. Let P0 be some distribution for O ≡ (W, 

A, Y) in a nonparametric statistical model ℳ that at most places restrictions on the 

probability of treatment given covariates. We observe n independent individuals O1, …, On 

drawn from P0. Define b0(W ) = EP0[Y |A = 1, W ] − EP0[Y |A = 0, W ]. Under causal 

assumptions not elaborated here, b0(W) can be identified with the additive effect of 

treatment on outcome if everyone versus no one in a strata of covariates W receives 

treatment.20 We use sg to denote any (measurable) subset of the support of W. Define

Ψsg P0 ≡ ∫sgb0(w)dP0(w)

Under causal assumptions, Ψsg(P0) is identified with the difference (i)–(ii) between (i) the 

average outcome if the only individuals receiving treatment in the population are those 

whose covariates fall in sg and (ii) the average outcome if no one in the population receives 

treatment. Drawing parallels to optimal individualized treatment strategies, Ψsg(P0) is 

maximized at sg if and only if sg includes precisely those individuals with covariate w such 

that b(w) > 0 and does not include those with b(w) < 0.14,15 The maximizer is non-unique at 

so-called “exceptional laws”, i.e. distributions for which b(W) = 0 with positive P0 
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probability.15 Define Ψ(P0) ≡ maxsg Ψsg(P0).Throughout we define bP, Ψsg(P), and Ψ(P) 

atbitrary P ∈ ℳ analogously to b0, Ψsg(P0) and Ψ(P0).

3 Breakdown of “standard” estimators

We now describe the way in which the standard semiparametric estimation roadmap 

suggests we estimate Ψ(P0) function known as the efficient influence function (EIF) often 

plays a key role in this estimation procedure. While we avoid a formal presentation of the 

derivation of EIFs here, the key result about EIFs is that they typically yield the expansion

n1/2 Ψ Pn − Ψ P0 = − n1/2∫ IFPn(o)dP0(o) + n1/2Rem Pn, P0 (1)

where Pn is an estimate of P0, IFPn is the EIF of Ψ at Pn, and Rem Pn, P0  is a remainder that 

plausibly converges to zero faster than n−1/2. We will present an explicit expression for IFPn
at the end of this section, but for now we state that the corresponding remainder term is 

given by

Rem Pn, P0 = ∑
a = 0

1
(2a − 1)∫ I w ∈ sgn 1 −

P0(ã |w)
Pn(a |w)

EPn[Y a, w] − EP0[Y a, w] dP0(o) + Ψsgn P0

− Ψsg0 P0

where sgn is the optimal subgroup under Pn. The first term on the right is a double robust 

term21 that shrinks to zero faster than n−1/2 if the outcome regression and treatment 

mechanism are estimated well. The second term requires that the optimal subgroup can be 

estimated well and is plausible if the stratum specific treatment effect function does not 

concentrate too much mass near zero (mass at zero is not problematic since any subgroup 

decision for these strata is optimal). See Theorem 8 of Luedtke and van der Laan17 for 

precise conditions under which this term is small. In principle, sgn need not be an optimal 

subgroup under Pn, i.e. one can replace Ψ Pn  on the left-hand side of (1) with Ψsgn Pn

without changing the expansion. We ignore such considerations here for brevity, though the 

discussion in a closely related problem is given in van der Laan and Luedtke.19

A one-step estimator of the form ψn ≡ Ψ Pn + 1
n ∑i = 1

n IFPn Oi  aims to correct the bias on 

the right-hand side of by adding an estimate of that expectation, yielding

n ψn − Ψ P0 ≈ 1
n ∑

i = 1

n
IFPn Oi − ∫ IFPn(o)dP0(o) (2)

where the above approximation is valid provided n1/2Rem Pn, P0  converges to zero in 

probability. For a general parameter Ψ, targeted minimum loss-based estimators (TMLEs) 

can be seen to follow the above prescribed formula, with the estimate Pn carefully chosen so 
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that the empirical mean of IFPn is zero, and thus the final estimator is the plug-in estimator 

ψn ≡ Ψ Pn .22 A detailed exposition of efficiency theory is given in Bickel et al.23

We cannot apply the central limit theorem to the right-hand side of equation (2) without 

further conditions because the right-hand side is a root-n empirical mean over functions 

which depend on the data. We now give sufficient conditions. Suppose that IFPn has a limit 

IF∞ in the sense that

IFPn − IF∞
2has P0 expectation converging to zero (Lim)

Typically IF∞ = IFP0. If Pn is not allowed to heavily overfit the data, the instances of IFPn on 

the right-hand side of equation (2) can be replaced with IF∞. The conditions on Pn which 

prevent overfitting are given by the empirical process conditions presented in Part 2 of van 

der Vaart and Wellner.24 If

VarP0 IF∞(O) > 0 (V+)

then the central limit theorem can be used to see that n1/2[ψn – Ψ(P0)] converges to a normal 

distribution with mean zero and variance VarP0 IF∞(O) . Under these conditions, Ψ(P0) falls 

in ψn ± 1.96
σn

n  with probability approaching 0.95, where σn2 is the empirical variance of IFPn

applied to the data. If VarP0 IF∞(O)  is zero, then n1/2[ψn−Ψ(P0)] converges to zero in 

probability, but there is no guarantee that ψn ± 1.96
σn

n  contains Ψ(P0) with probability 

approaching 0.95: both n ψn − Ψ P0  and σn are converging to zero, but the coverage 

depends on the relative rate of convergence of the two quantities.

We now argue that it is unlikely that both (Lim) and (V+) hold. When Pn is non-exceptional

IFPn(o) = I bPn(w) > 0 2a − 1
Pn(a |w)

Y − EPn[Y A = a, W = w] + bPn(w) − Ψ Pn

If Pn is exceptional, the above definition of IFPn can still be used and the same central limit 

theorem result about equation (2) holds under (Lim) and (V+), though in truth Ψ is not 

smooth enough at Pn for an efficient influence function to be well defined.16,17 In light of 

the above expression, the validity of (Lim) will typically require I bPn(W ) > 0  to have a 

mean-square limit. Suppose the data are drawn from an exceptional law where the treatment 

effect is zero on some set S0. In that case, we do not expect I bPn(W ) > 0  to converge to 

anything on S0 since likely bPn(w) does not converge to 0 strictly from above or below at any 

given w for which b0(w) = 0.
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Now consider the case where treatment is always harmful, i.e. b0 (W) < 0 with probability 1. 

In this case b0(W) ≥ 0 with probability 0, and so we would expect the indicator that bPn(w) is 

positive converges to zero if Pn is a good estimate of P0. But in this case, the subgroup that 

should be treated is empty so that if the limit IF∞ exists, then it is zero almost surely and (V

+) does not hold.

Finally, consider the intermediate case where there is no additive treatment effect within any 

strata of covariates, i.e. b0(w) = 0 for all w. If on any positive probability set convergence 

occurs from both above and below, then we do not expect (Lim) to hold. If bPn(w) converges 

to zero from below for all w, then we expect (Lim) to hold with IF∞ equal to the constant 

function zero and (V+) not to hold. If, for each w, bPn(w) converges to zero from either 

strictly above or strictly below and the set of covariates for which the convergence occurs 

from above happens with positive probability, then we expect (Lim) and (V+) to hold.

4 Avoiding the need for (Lim) and (V+)

In this section, we present an estimator which overcomes both (Lim) and (V+). We first 

present an estimator which does not require (Lim), and then argue that a simple extension of 

this estimator also does not require (V+).

This estimation strategy is similar to the one-step estimator presented in the previous 

section, but designed to estimate the parameter in an online fashion which eliminates the 

need for convergence. The online one-step estimator was originally presented in van der 

Laan and Lendle,25 and was refined in Luedtke and van der Laan17 to deal with cases where 

the convergence of the sort required by (Lim) fails to hold. The method will be presented in 

full generality in a forthcoming paper.

Let Pn
i  represent an estimate of P0 based on observations O1, …, Oi. The stabilized online 

one-step estimator for Ψ(P0) is given by

ψnst ≡ σn
n − ln

∑
i = ln

n − 1 Ψ Pn
i + IFpn

i Oi + 1
σi

(3)

where ℓn is some user-defined quantity that may or may not grow to infinity but must satisfy 

n − ln ∞, σi
2 represents an estimate of the variance of IFPn

l
di (O) based on observations O1, 

…, Oi and σn is the harmonic mean 1/ 1
n − ln

∑i = ln
n − 1 σi

−1  of σln, …, σn − 1. We now wish to 

apply the martingale central limit theorem26 to understand the behavior of 

n − lnσn−1 ψnst − Ψ P0 . As each term in the sum defining ψn has variance converging to 1 

due to the stabilization by σi, the validity of our central limit theorem argument does not rely 

on an analogue of (Lim). It does, however, rely on an analogue of (V+). The primary 

condition we would use to establish the validity of the central limit theorem argument is that 
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the set of σi
2 is consistent for VarP0 IFPn Oi + 1  as i gets large and that there exists some δ > 

0 such that

VarP0 IFpn
i Oi + 1 > δ2 > 0 for all i with probability approaching  1 (V+′)

The former condition holds under a Glivenko–Cantelli condition which is discussed in 

Theorem 7 of Luedtke and van der Laan.17 Under these conditions, Section 7 of Luedtke and 

van der Laan17 (especially Lemma 6) shows that

n − ln ψnst − Ψ P0
σn

≈ 1
n − ln

∑
i = ln

n − 1 IFPn
i Oi + 1 − ∫ IFPn

i (o)dP0(o)
σi

provided the same conditions needed for equation (2) hold. The above approximation is 

accurate up to a term that goes to zero in probability. The martingale central limit theorem 

can now be applied to establish the validity of the 95% confidence interval 

CIst ≡ ψnst ± 1.96
σn

n − ln
. We refer the reader to Theorem 2 in Luedtke and van der Laan17 or 

a sense of the formal conditions needed to prove this result. If the treatment effect is negative 

for all strata of covariates, then (V+′) will not hold if Pn
i  is a reasonable estimate of P0 in the 

sense that the estimated optimal subgroup converges to the empty set. Similarly, we have no 

guarantee that (V+′) will hold if b0(W) is zero almost surely.

Suppose that we are not willing to assume that (V+′) holds. A natural approach is to 

redefine the inverse weights to equal σi(δ) ≡ σi ∨ δ for some fixed δ > 0. We then define σn(δ)

to be equal to the harmonic mean of σln(δ), …, σn − 1(δ) and ψnst(δ) as in equation (3) but with 

σi and σn replaced by σi(δ) and σn(δ). Clearly σn(δ) ≥ σn, and thus the confidence interval 

CIst(δ) ≡ ψnst(δ) ± 1.96
σn(δ)
n − ln

 is wider than that CIst, though it may have a different 

midpoint. We conjecture that this confidence interval is conservative when the truncation 

scheme is active so that σn(δ) > σn, though proving this result has proven challenging.

To give the reader a sense of why we have hope that this conjecture will hold, we show in 

Appendix 1 that adding normal noise (with random variance depending on the sample) to 

ψn(δ) can yield a valid 95% confidence interval for Ψ(P0). It then seems reasonable that 

removing the noise can only improve coverage. Readers whose primary concern is the 

theoretical soundness of an inferential procedure can apply the estimator in Appendix 1 and 

rest assured that their confidence interval will be valid provided the optimal subgroup is 

estimated sufficiently well and a double robust term is small. Nonetheless, the type I error 

gains by not using this noised estimator, which we will see provided the conjecture holds, 

would seem to imply that our original unnoised confidence interval performs better than the 

noised interval.
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5 Simulation study

5.1 Methods

We now present a simulation study conducted in R.27 Our simulation uses a four-

dimensional covariate W drawn from a mean zero normal distribution with identity 

covariance matrix. Treatment A is drawn according to a Bernoulli random with probability 

of success 1/2, independent of baseline covariates. The outcome Y is Bernoulli, and the 

outcome regressions considered in our primary analysis are displayed in Table 1.

We compare two estimators of Ψ(P0). The first is the stabilized one-step estimator. We 

truncate the inverse weights at 0.1, 0.001, and 10−20. The results were essentially identical 

for truncations of 10−3 and 10−20, and thus we only display the results for the truncation of 

10−3. We ℓn = n/10, and to speed up the computation time, we estimated the subgroup and 

outcome regression using observations O1, …, Ok(i)n/10 for all i ≥ ℓn, where k(i) is the largest 

integer such that k(i)n/10 < i (see Section 6.1 of Luedtke and van der Laan17 for more 

details). The second estimator is a 10-fold cross-validated TMLE (CV-TMLE). This 

estimator is analogous the CV-TMLE for the mean outcome under an optimal treatment rule 

as presented in van der Laan and Luedtke,19 but is modified to account for the fact that 

Ψ(P0) is equal to this quantity minus the mean outcome when no one in the population is 

treated. We truncate the variance estimates for this estimator at the same values as 

considered for the stabilized one-step estimator. Following the theoretical results in van der 

Laan and Luedtke,28 we can formally show that this estimator is asymptotically valid when 

cross-validated analogues of (Lim) and (V+) hold.

We estimate the blip function using the super-learner methodology as described in Luedtke 

and van der Laan.29 Super-learner is an ensemble algorithm with an oracle guarantee 

ensuring that the resulting blip function estimate will perform at least as well as the best 

candidate in the library up to a small error term. We use a squared error loss to estimate the 

blip function, and use as candidate algorithms SL.gam, SL.glm, SL.glm.interaction, 

SL.mean, and SL.rpart in the R package SuperLearner.30 The outcome regression E[Y|A, 

W], is estimated using this same super-learner library but with the log-likelihood loss to 

respect the bounds on the outcome. The probability of treatment given covariates was treated 

as known and the known value was used by all of the estimators.

We also compare our estimators to the oracle estimator which a priori knows the optimal 

subgroup. In particular, we use a CV-TMLE for Ψsg0 P0  in which we treat sg0 as known. 

The estimation problem is regular in this case so that we expect the corresponding 

confidence intervals to have proper coverage at exceptional laws. We truncate the variance 

estimate at the same values as for the other methods.

5.2 Results

Figure 1 displays the coverage of the confidence interval lower bounds of the various 

estimation strategies. All methods appear to achieve proper 97.5% lower bound coverage, 

with the stabilized one-step and the non-oracle CV-TMLE estimators generally being 

conservative. This conservative behavior is to be expected given that both of these sample 
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splitting procedures need to estimate the optimal subgroup, and thus in any finite sample are 

expected to be negatively biased due to the resulting suboptimal subgroup used from the 

estimate. The oracle CV-TMLE attains the nominal coverage rate for alternative 

distributions, and for non-alternatives is also conservative.

We now verify the tightness of the lower bounds for the alternative distributions A1, A2, and 

A3. Figure 2 shows the power for the test H0: Ψ(P0) = 0 againts H1 : Ψ(P0) > 0, where the 

test was conducted using the duality between hypothesis tests and confidence intervals. We 

see that the stabilized one-step is slightly less powerful than the non-oracle CV-TMLE. This 

is likely due to the online nature of the stabilized one-step estimator relative to the CV-

TMLE. Nonetheless, the power loss is not large and the fact that we have actual theoretical 

results for this estimator even at exceptional laws should make up for this slight loss of 

power.

Figure 3 displays the two-sided coverage of the 95% confidence intervals. One could argue 

that upper bound coverage is not interesting for the null distributions, given that any failure 

of the upper bound of the confidence interval to cover Ψ(P0) = 0 requires this upper bound 

to be negative. Hence, we can always obtain proper upper bound coverage at null 

distributions by ensuring that the upper bound of our confidence interval respects the 

parameter space of Ψ, i.e. is non-negative. Nonetheless, the coverage of the uncorrected 

two-sided confidence intervals (upper bound may be negative) is useful for detecting a lack 

of asymptotic normality of the estimator sequence. While the stabilized one-step has two-

sided coverage above 0.95 for all distributions at all sample sizes of at least 500, the 

coverage for the unadjusted non-oracle CV-TMLE confidence interval falls at or below 0.90 

for N1 and N2 at all sample sizes. This is in line with our lack of asymptotic results for the 

non-oracle CV-TMLE at exceptional laws.

We now consider the two-sided coverage for the alternative distributions A1, A2, and A3. 

The stabilized one-step confidence intervals have coverage that improves with sample size, 

though the improvement appears slow. The coverage is near nominal at a sample size of 

4000 for all three simulations. In light of Figure 1, essentially all of the coverage deficiency 

is a result of a failure of the upper bound. This makes sense given that our estimator relies on 

a second-order term measuring a linear combination of the difference in impact of treating 

the estimated subgroups (estimated on increasing chunks of data) versus treating the optimal 

subgroup. While this term often reasonably shrinks to zero faster than n−1/2, in finite 

samples this term can hurt the upper bound coverage. The non-oracle CV-TMLE confidence 

intervals, on the other hand, attain near nominal coverage at large sample sizes. This is to be 

expected at the non-exceptional laws A1 and A3 given that we can prove asymptotic 

normality in this case. We do not have an asymptotic result supporting the method’s proper 

coverage for exceptional law A2, though this is an interesting area for future work.

6 Discussion

We have studied the statistical challenges associated with estimating the additive effect of 

treating the subgroup of individuals with positive stratum-specific additive treatment effect. 

We showed that these challenges are similar to those arising when estimating the mean 
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outcome under an optimal individualized treatment strategy. Indeed, the individuals treated 

by the strategy which maximizes the population mean outcome are the same individuals who 

belong to the optimal subgroup. An additional challenge arises when one wishes to consider 

the relative measure giving the additive effect of treating only those individuals in the 

optimal subgroup versus treating no one in the population. In this case, the parameter of 

interest is estimable at a faster than root-n rate for some data generating distributions. 

Procedures which yield root-n rate confidence intervals tend to fail in this setting due to the 

need to estimate both the (in truth empty) optimal subgroup and the variance of the estimate 

of the impact of treating this subgroup: generally the subgroup estimate will converge to the 

empty set and the variance estimate will converge to zero, but there is no guarantee that the 

relative rate of convergence of the two will yield valid inference.

Despite this added inferential challenge, we argue that obtaining a confidence interval for 

the impact of treating the optimal subgroup requires only minor modification to the 

confidence interval for the mean outcome when only the optimal subgroup is treated. In 

particular, we propose truncating the estimated variance in the martingale sum used in 

Luedtke and van der Laan17 at some constant δ > 0. If the truncation is not active, which will 

typically be true for alternative distributions under which there exists a subgroup for which 

the treatment effect is positive and is arguably true for many null distributions as well, then, 

under standard regularity conditions, we obtain root-n rate inference with coverage 

approaching 0.95. If the data are generated according to an alternative distribution for which 

there is a non-null (positive or negative) treatment effect within all strata of covariates, then 

our estimator is asymptotically efficient and, provided the truncation is not active, our 

confidence interval is asymptotically equivalent to a standard Wald-type confidence interval 

(see Corollary 3 in Luedtke and van der Laan17). We expect our confidence interval to be 

conservative when the truncation is active, though we leave this as a conjecture. We have 

instead shown that adding noise to our estimator yields a confidence interval with proper 

95% coverage, though we suggest using the unnoised estimator in practice.

One could imagine several alternative solutions to the described inferential challenge. One 

such solution is to ensure that the variance of our estimator minus the truth, scaled by root-n, 

is positive as the sample size grows. This can be accomplished by changing the definition of 

the optimal subgroup to ensure that this subgroup is not too small, e.g. it contains at least 

10% of the population. One can show via a change of variables that estimating the mean 

outcome under such a constrained subgroup is equivalent to estimating the mean outcome 

under an optimal rule which can treat at most 90% of the population, see Luedtke and van 

der Laan.31 Estimating this alternative constrained parameter is still difficult when the 

optimal subgroup is non-unique, though there is little risk of degenerating the first-order 

behavior in this case. To construct confidence intervals despite the non-uniqueness of the 

optimal subgroup, one can combine the results in Luedtke and van der Laan31 with the 

stabilized one-step estimator presented in Luedtke and van der Laan.17

A cross-validated TMLE, closely related to that presented in van der Laan and Luedtke,28 

outperformed the method proposed in this paper in many simulation settings. Nonetheless, 

we do not have any asymptotic results about the CV-TMLE at exceptional laws, in contrast 

to the estimator presented in this paper for which we do have such results. This estimator’s 
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lack of asymptotic normality at such laws was evident in our simulation. We view a careful 

study of this estimator’s behavior at exceptional laws to be an important area for future 

research. In a forthcoming work, we will present a stabilized TMLE that has the same 

desirable asymptotic properties of the stabilized one-step estimator but, like the CV-TMLE, 

is a substitution estimator (thereby forcing the estimate to respect the parameter space).

One could imagine considering other parameters relating to the optimal subgroup that we 

have presented in this paper. For example, investigators may be interested in estimating the 

impact of treating everyone in the optimal subgroup on some secondary outcome Y . Each 

such parameter yields a new estimation problem and, in our experience, many of these 

problems still face at least one of the two primary challenges that we faced in this paper. In 

particular, these problems are often non-regular when the optimal subgroup is non-unique, 

and may have degenerated the first-order behavior when the optimal subgroup is empty.
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Appendix 1

Let {Zi : i = 1, …, ∞} be a sequence of i.i.d. normal random variable independent of all 

other sources of randomness under consideration. Let

ψnst(δ) =
σn

n − ln ∑
i = ln

n − 1 Ψ Pn
i + IFPn

i Oi + 1 + δ2 − σi2
+Zi

σi(δ)

where x+ is the positive part of a real number x. Observe that each term in the sum on the 

right-hand side above has variance of approximately 1 (approximately because σi is only an 

estimate of VarP0[IFPn
i (O)]). It will then follow that, under regularity conditions, we can 

apply the martingale central limit theorem appearing in Brown26 to show that 

ψn
st(δ) ± 1.96

σn(δ)
n − ln

 has coverage approaching 95% for Ψ(P0). These regularity conditions 

are the same as those used to establish the validity of CIst, except that they do not require (V

+′) to hold. Note the similarity to CIst(δ), though the above confidence interval is centered 

about ψn(δ) rather than ψn(δ).

We now relate the noised ψn
st to the unnoised ψnst. Conditional on the data, ψn

st(δ) is equal in 

distribution to ψnst(δ) +
σn(δ)
n − ln

Z1, where σn
2(δ) ≡ 1

n − ln
∑i = ln

n − 1 δ2 − σi2
+

σi2 ∨ δ2 . That is, ψn
st(δ) is 

equal to ψn(δ) plus normal noise, where the variance of the normal noise depends on the 
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data. If the truncation is not active, then the variance of this noise is zero. Otherwise, the 

variance is positive, but the sign of the noise is independent of the data. Thus, it seems 

reasonable to expect that the unnoised ψnst provides a better estimate of Ψ(P0) than ψn
st. It is 

for this reason that we expect the unnoised confidence interval CIst(δ) have a coverage of at 

least 0.95 in large samples.
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Figure 1. 
Coverage of 97.5% lower confidence intervals for the impact of treating the optimal 

subgroup versus sample size. Horizontal axis on a log scale. All methods (approximately) 

achieve nominal coverage, with the stabilized one-step and non-oracle CV-TMLE generally 

being conservative.
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Figure 2. 
Power for rejecting a test of H0 : Ψ(P0) = 0 versus H1 : Ψ(P0) > 0 at the 0.025 level at 

different sample sizes. Horizontal axis on a log scale. All methods have power increasing to 

1. The stabilized one-step has lower power than the non-oracle CV-TMLE, though its power 

is typically more comparable to the stabilized one-step relative than the oracle CV-TMLE 

which knew the optimal subgroup from the outset.
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Figure 3. 
Coverage of 95% two-sided confidence intervals for the impact of treating the optimal 

subgroup versus the average confidence interval width (standardized so that the maximum 

width in a given sample size-data generating distribution pair is 1). The stabilized one-step 

confidence intervals have nominal coverage for all null distributions, and have coverage 

approaching nominal for all alternative distributions. The non-oracle CV-TMLE achieves 

near nominal coverage for all alternative distributions, though it has below nominal coverage 

of approximately 90% for all of the null distributions.
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Table 1.

Data generating distributions for simulation.

Simulation logit E[Y|A, W] Ψ (P0) P0(b0(W) = 0) P0(b0(W) < 0)

N1 W1 + W2 0 l 0

N2 −0.2A[(W1 – z0.8)+]2 0 0.80 0.20

N3 −0.25A 0 0 l

A1 0.8A 0.19 0 0

A2 AW 1
+ − AW 2

+ 0.06 0.25 0.38

A3 AW1 0.09 0 0.50

Note: Decimals rounded to the nearest hundredth. For N2, z0.8 ≈ 0.84 is the 80th percentile of a standard normal distribution. We use x+ to denote 

the positive part of a real number x.
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