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Divergent Synaptic Scaling of Miniature EPSCs following
Activity Blockade in Dissociated Neuronal Cultures
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Neurons can respond to decreased network activity with a homeostatic increase in the amplitudes of miniature EPSCs
(mEPSCs). The prevailing view is that mEPSC amplitudes are uniformly multiplied by a single factor, termed “synaptic scal-
ing.” Deviations from purely multiplicative scaling have been attributed to biological differences, or to a distortion imposed
by a detection threshold limit. Here, we demonstrate in neurons dissociated from cortices of male and female mice that the
shift in mEPSC amplitudes observed in the experimental data cannot be reproduced by simulation of uniform multiplicative
scaling, with or without the distortion caused by applying a detection threshold. Furthermore, we demonstrate explicitly that
the scaling factor is not uniform but is close to 1 for small mEPSCs, and increases with increasing mEPSC amplitude across
a substantial portion of the data. This pattern was also observed for previously published data from dissociated mouse hippo-
campal neurons and dissociated rat cortical neurons. The finding of “divergent scaling” shifts the current view of homeostatic
plasticity as a process that alters all synapses on a neuron equally to one that must accommodate the differential effect
observed for small versus large mEPSCs. Divergent scaling still accomplishes the essential homeostatic task of modifying syn-
aptic strengths in the opposite direction of the activity change, but the consequences are greatest for those synapses which
individually are more likely to bring a neuron to threshold.

(s )

In homeostatic plasticity, the responses to chronic increases or decreases in network activity act in the opposite direction to
restore normal activity levels. Homeostatic plasticity is likely to play a role in diseases associated with long-term changes in
brain function, such as epilepsy and neuropsychiatric illnesses. One homeostatic response is the increase in synaptic strength
following a chronic block of activity. Research is focused on finding a globally expressed signaling pathway, because it has
been proposed that the plasticity is uniformly expressed across all synapses. Here, we show that the plasticity is not uniform.

ignificance Statement
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Our work suggests that homeostatic signaling molecules are likely to be differentially expressed across synapses.
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Introduction

Synaptic plasticity occurs in multiple varieties, which have
opposing effects on synaptic physiology (Vitureira and Goda,
2013; Zenke and Gerstner, 2017). Hebbian plasticity, including
long-term potentiation (LTP) and long-term depression (LTD),
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involves a rapid induction and long-lasting change in synaptic
strength at individual synapses in the direction of the induction-
potentiation for strong stimulation; depression for weak stimula-
tion (Bliss and Lomo, 1973; Bliss and Collingridge, 1993;
Malenka and Bear, 2004; Collingridge et al., 2010). If Hebbian
plasticity is left unchecked, it could promote network instability
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due to runaway excitation or complete silencing. Homeostatic
synaptic plasticity of miniature EPSCs (mEPSCs) is a popula-
tion-level effect induced by chronic perturbations to network ac-
tivity and the resulting changes are in the opposite direction:
increases following activity blockade and reductions following
activity enhancement (O’Brien et al, 1998; Turrigiano et al,
1998; Turrigiano, 2012). Although initial studies of homeostatic
plasticity used a nonphysiological paradigm in which pre- and
postsynaptic action potentials are inhibited by tetrodotoxin
(TTX) in dissociated neuronal cultures, subsequent studies dem-
onstrated the phenomenon is also induced in visual cortex neu-
rons by monocular deprivation or dark rearing (Desai et al,
2002; Goel and Lee, 2007).

Turrigiano and colleagues proposed that in homeostatic plas-
ticity, mEPSCs are multiplied by a uniform factor following
chronic changes in activity, and termed the process “synaptic
scaling.” This conclusion was based on their finding that a rank-
ordering of mEPSC amplitude distributions from control and
chronically silenced cells plotted against each other produced a
straight line. The parameters from the linear regression model fit
to that line were used to scale the treated mEPSC distribution to-
ward the control distribution. That the scaled distribution was
statistically indistinguishable from the control distribution was
taken as evidence that the transformation was uniformly multi-
plicative (Turrigiano et al., 1998). This conclusion led to the hy-
pothesis that, because a single factor is applied to all synapses on
a neuron, there must be a global signal generated in the cell body
(Turrigiano, 2008, 2012; Keck et al., 2013; Vitureira and Goda,
2013). The impact of the multiplicative scaling hypothesis is
manifest in the adoption of the term synaptic scaling, which
appears in the title or abstract of over 250 articles since 2000.
Although approximately half of the articles since 2018 use the
term synaptic scaling without also employing the term “multipli-
cative,” the original concept of uniform multiplicative scaling
remains influential. If it turns out that homeostatic plasticity of
mEPSCs is non-uniform, it would have profound implications in
the field, redirecting the focus from globally expressed mecha-
nisms to developing an understanding of why the plasticity is
non-uniform.

It has been noted that the original study establishing synaptic
scaling (Turrigiano et al., 1998) included an intercept term in the
linear equation used for the scaling transformation, which sug-
gests that the transformation of mEPSCs might be more complex
than multiplication by a uniform factor (Kim et al., 2012). The
requirement for an intercept term in the linear regression fit has
been attributed to the need to account for mEPSCs in the control
distribution that fall below the detection threshold and disrupt
the alignment of mEPSCs from untreated and activity-altered
cultures (Turrigiano et al., 1998; Blackman et al., 2012). Kim and
colleagues attempted to account for these unseen mEPSCs by
using an iterative process to test potential scaling factors (Kim et
al.,, 2012). The iterative process applies a range of multiplicative
factors to downscale the distribution from activity-blocked cul-
tures. The potential mismatch due to undetected control
mEPSCs is addressed by discarding downscaled mEPSCS that
fall below the detection threshold.

We recorded AMPA mEPSCs from a large number of cells in
dissociated cultures of primary mouse cortical neurons, 13-14
days in vitro (DIV), chronically silenced with a 48-h treatment
of 500 nm TTX. Parameters from the rank-order process
(Turrigiano et al., 1998), or the iterative process (Kim et al,
2012), were unable to scale the data from activity-blocked cul-
tures to match the control data, based on a Kolmogorov—
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Smirnov (K-S) test. That led us to reexamine the idea that
homeostatic plasticity is a uniform multiplicative process.

Materials and Methods

Primary culture of mouse cortical neurons

Dissociated cultures of mixed neuronal and glial populations were
prepared from unsexed PO-P1 neonatal mice. These mice are wild-
type mice from a colony of Rab3A+/— mice housed at Wright State
University. The Rab3A+/— mice are derived from C57BL/6], 129
Sv-Rab3a?(tm1Sud) from The Jackson Laboratory, originally crossed
three times to C57BL/6] (IMSR catalog #JAX:002443, RRID:IMSR _
JAX:002443); we subsequently backcrossed the line 11 times to wild-
type mice from a Rab3A ™/ colony. Rab3A™¥* are mice with a
point mutation in Rab3A (Kapfhamer et al., 2002), identified in an
ENU-mutagenesis screen of C57BL/6], crossed once to C3H/He] for
mapping, and backcrossed three times to C57BL/6] (MGI catalog
#2388809, RRID:MGI:2388809). Pups were euthanized by rapid
decapitation with sharp scissors, as approved by the Wright State
University Institutional Animal Care and Use Committee. Brains
were removed, and cortices were collected after removal and discard-
ing of hippocampi. Tissue digestion was conducted by the addition
of papain (Worthington Biochemical) at 20 units/ml in Neurobasal-
A media (Invitrogen), osmolarity adjusted to 270 mOsm, and incubated
in a 37°C H,O bath for 20 min with gentle stirring. After digestion, corti-
ces were gently triturated with a fire-polished Pasteur pipette, filtered
through a 100-um cell strainer (Corning Falcon), and transferred to
a sterile 15-ml conical tube. The cell suspension was centrifuged at
1100rpm for 2 min, supernatant was removed, and the pellet re-sus-
pended in room temperature Neurobasal-A media (osmolarity adjusted
to 270 mOsm), supplemented with 5% fetal bovine serum (FBS; pro-
motes glial growth), 2% B-27 supplement to promote neuronal growth,
L-glutamine (2 mum), and gentamicin (0.01 mg/ml; all from Invitrogen).
Neurons were plated onto 12-mm coverslips pre-coated with poly-L-ly-
sine (Corning) at a density of 0.15x 10° cells/coverslip. The culture
media for the first day (0 DIV) was Neurobasal-A media supplemented
with FBS, B-27, L-glutamine, and gentamicin, and was switched at 24 h
(1 DIV) to media consisting of Neurobasal-A (270 mOsm), 2% B-27,
and L-glutamine, without FBS. FBS was excluded to avoid its toxic
effects on neuronal viability and health (Stellwagen and Malenka, 2006).
Cells were maintained in culture for 13-14 DIV in a humidified 5% CO,
incubator at 37°C. Culture media was changed twice weekly by replacing
half with freshly prepared media. Two days before experiments, culture
dishes containing four 12-mm coverslips were randomly chosen to
receive TTX (500 nm; Tocris) to chronically silence all network activity
and induce homeostatic synaptic plasticity mechanisms, while sister cul-
tures not receiving TTX treatment served as untreated controls.

Whole-cell voltage clamp to record mEPSCs

At 13-14 DIV, mEPSCs from TTX-treated and control sister cultures
were recorded via whole-cell voltage clamp. Recordings were taken from
pyramidal neurons, identified visually as those cells exhibiting a promi-
nent apical dendrite and a triangular cell body (Fig. 1A). Cells were con-
tinuously perfused with a solution consisting of the following: 115 mm
NaCl, 5 mm KCl, 2.5 mm CaCly, 1.3 mm MgCl,, 23 mum dextrose, 26 mm
sucrose, and 4.2 mm HEPES; pH 7.2 (Stellwagen and Malenka, 2006).
The osmolarity of the media from the cultures was measured (normally
285-295 mOsm) and the perfusate osmolarity was adjusted using man-
nitol to match the culture osmolarity to prevent osmotic shock to the
neurons. To isolate glutamatergic mEPSCs, TTX (500 nm) and picro-
toxin (50 um) were included in the perfusion solution to block action
potentials and GABAergic currents, respectively. APV was not included
in the perfusate because all mEPSCs were blocked with CNQX and pic-
rotoxin, leaving no APV-sensitive events (data not shown). Patch elec-
trodes were filled with an internal solution containing the following: 128
mM K-gluconate, 10 mm NaCl, 1 mm EGTA, 0.132 mm CaCl,, 2 mm
MgCl,, and 10 mm HEPES; pH 7.2. Pipette solution osmolarity was
adjusted with mannitol to 10 mOsm less than the perfusion solution
osmolarity. Neurons were voltage clamped at —60mV using an
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Increased amplitude of mEPSCs in dissociated cultures of mouse cortical neurons after inhibition of action potentials for 48 h by treatment with 500 nm TTX. A, Phase contrast

image of high-density cortical neuron culture with a pyramidal-shaped neuron chosen for recording. B, Representative example current traces of mEPSCs recorded in an untreated (CON) neuron
and a TTX-treated (TTX) neuron. C, Average mEPSC current traces from the same recordings shown in B. D, Box and whisker plot of amplitude means for 86 untreated (14.0 = 0.4 pA) and 77

TTX-treated neurons (17.5 = 0.5 pA), from 23 cultures. p=5.8 x 107, Kruskal—Wallis test. Box range, 25th—75th percentile; whisker, 10th—90th percentile; dot =

Axopatch 200B patch-clamp (Molecular Devices) and recorded with
Clampex 10.0 (Molecular Devices) for 2-5 min using a sampling rate
of 20kHz and filtering at 5kHz. All recordings were performed at
room temperature. Pipette resistances were 3.5-5 M{). Recordings
with holding currents >20 pA or unstable, rapidly fluctuating hold-
ing currents were discarded before analysis, as were recordings
requiring >20-M() series resistance compensation (values usually
between 6 and 12 M(}).

MiniAnalysis to detect mEPSCs

mEPSCs were manually selected using MiniAnalysis software (Synaptosoft).
A low-pass Butterworth filter of 2kHz was applied before analyzing
records; other parameters included using three points to average for
peak and using 10,000 us to average for baseline. Records were ana-
lyzed without reviewing the treatment group from which they came.
In the earliest recordings, the detection threshold was set to 5 pA, as
was done in previous studies (Turrigiano et al., 1998; Desai et al.,
2002). Because the program would not accept some of the smaller vis-
ually identified events, the detection threshold was ultimately set to
3pA. A separate analysis before and after the threshold change
showed only modest alterations in the rank-order parameters, likely
because mEPSCs below 5 pA were relatively rare. mEPSCs below 5 pA
were observed in only 50% of the recordings from untreated cells, and
43% of those from TTX-treated cells. Of the recordings that con-
tained 1 or more mEPSCs <5pA, the average percent of mEPSCs
below 5pA was 1.6% and 0.92% for untreated and TTX-treated cells,
respectively. Noise histograms were generated by saving 15 block seg-
ments of current traces displaying no mEPSCs, importing the traces
to Origin 8, subtracting off the holding current, and combining mul-
tiple traces; ultimately >50,000 points were analyzed for each noise
amplitude frequency histogram in Figure 2.

Sampling

Because the number of mEPSCs recorded varies by cell, the data must be
sampled to ensure that each cell contributes a representative subset of
equal size. Initially, a random subset of events with n=30 was chosen
without replacement from each cell; the events from untreated neurons
were pooled to form the control distribution, and events from TTX-
treated neurons were pooled to form the TTX distribution. A sampling
approach based on random selection has the potential for sampling
error—the generation of a non-representative sample due to random
chance. To eliminate this possibility, we also used a quantile-based
approach. Quantiles are values that describe a frequency distribution by
dividing it into equal groups, such that each value represents the same
fraction of the total data. For example, the median divides a distribution
into two halves and represents the midpoint, or 50th percentile. We per-
formed quantile-sampling by computing 30 evenly spaced quantile val-
ues from every cell, starting at the 1.67th percentile and ending at the
98.33rd percentile, with a step size of 3.33% (1/30). These sampling val-
ues were chosen to avoid including the maximum mEPSC amplitudes,
which were the most variable. The choice of 30 quantiles is somewhat ar-
bitrary, but is within the range of random samples that others have cho-
sen when examining the distribution of mEPSC amplitudes, from 20
(Echegoyen et al., 2007) to 100 (Kim et al., 2012). To avoid excessive

mean; line = median.

25 25
.20 20
X X
= a5 = 15
3
2 10 g 10
3 =]
g s g s
[T [T
0 0
5 0 10 15 20 25 5 0 5 10 15 20 25
Amplitude (pA) Amplitude (pA)

P P\t AP |, I

<5pA > 5pA 10 ms <5pA >5pA

5 o~ & p—— 5 P e
ol s & ol 4
gol # gol| # g o
= ¥ W f} \oq—)
o & o H
-% ; # 10 quantiles -% ; f{r 30 quantiles % ; “ 100 quantiles
® I o i o
2 {} 2 1 g
331 3sid 33

o o o

0 40 80 0 40 80 40

Amplitude (pA) Amplitude (pA) Amplltude (pA)
Figure 2.  Analysis of noise, detection of mEPSCs <<5 pA, and demonstration of quantile
sampling. 4, Data from cell 0220000, mean amplitude 7.4 pA, 56 events. This cell had the
highest percent of mEPSCS under 5 pA (10/56, 17.9%). The frequency histogram for currents
in regions of the recording without mEPSCs (line and black circles) does not significantly
overlap with the frequency histogram of mEPSCs detected by MiniAnalysis (gray bars). Below,
current traces for three selected mEPSCs, two of which were below 5 pA and one which was
slightly above. The mEPSCs have the following characteristics, left to right: 4.40 pA, 1.6-ms
rise time, 5.5-ms decay; 4.15 pA, 1.5-ms rise time, 8.9-ms decay; 6.23 pA, 1.5-ms rise time,
41-ms decay. B, Data from cell D0512005, mean amplitude 9.7pA, 504 events.
Approximatley 1% of mEPSCs were below 5 pA (5/504). The noise histogram (line and black
circles) is very similar to that of 0220000, although the two recordings were made more
than a year apart; it does not overlap with the frequency histogram for mEPSCs detected by
MiniAnalysis. Below, three selected mEPSCs, two below 5 pA and one above, with the follow-
ing characteristics, left to right: 4.52 pA, 1.0-ms rise time, 2.4-ms decay; 4.88 pA, 2.3-ms rise
time, 2.9-ms decay; 6.29 pA, 1.5-ms rise time, 2.8-ms decay. C, The cumulative distribution
function (CDF) for amplitudes of mEPSCs recorded from cell E0324002 is shown as black circles,
overlaid with 10 quantiles, 30 quantiles, and 100 quantiles, shown as vermilion crosses.

interpolation, we discarded recordings that contained fewer mEPSCs
than the number of quantiles, so the choice of 30 quantiles meant that
only 1 recording was discarded (giving 86 instead of 87 recordings from
control cultures). Finally, the quantiles from untreated neurons were
pooled to form the control distribution, and the quantiles from TTX-
treated neurons were pooled to form the TTX distribution. Note that the
actual number of mEPSCs recorded in untreated cells ranged from 46 to
2500 (average 391) and from 37 to 5029 for TTX-treated cells (average
500); in some recordings, the MiniAnalysis detection process was
stopped when the number of mEPSCs reached 500, rather than after
analyzing the entire record.
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Simulated scaling

An empirical simulation of homeostatic plasticity was created based on
the prevailing hypothesis of uniform synaptic scaling. Two non-identical
samples of control data were generated by randomly sampling 30
mEPSCs from each control cell, pooling the data into a cumulative dis-
tribution function (CDF), and repeating that process until two CDFs
were obtained that were different enough to give a p < 0.05 with a K-S
test. One of the two datasets was multiplied by 1.25, to produce the
simulated TTX dataset. Detection thresholds of 5 and 7 pA were simu-
lated by discarding mEPSCs amplitudes below 5 or 7 pA from the CDFs
of simulated control and simulated TTX data.

Rank-order process

In the rank-order process (Turrigiano et al., 1998) the control and TTX
mEPSCs are ranked from smallest to largest and then plotted against
each other, requiring the sample sizes to be identical. When the pooled
samples have been created by randomly sampling an equal number of
mEPSCs from each cell, the only ways to accomplish this are to ran-
domly discard either mEPSCs or cells, from the distribution with the
larger number of cells. However, in quantile sampling, the number of
quantiles can be adjusted to make the quantity (number of quantiles
times the number of cells) equal for the two distributions. For example,
in the mouse cortical neuron data, 77 quantiles were sampled from each
of the 86 control cells, and 86 quantiles were sampled from each of the
77 TTX cells. After plotting TTX versus control mEPSCs, the resulting
relationship is fit with a linear regression model y = mx + b, using con-
trol as the predictor (x) and TTX as the response (y) to obtain slope
(m) and intercept (b). The original pooled sample of TTX mEPSCs (cre-
ated by sampling 30 quantiles per cell) is downscaled by the parameters
from the linear regression model using the equation (TTX-b)/m, and the
downscaled TTX data are compared with the original pooled sample of
control mEPSCs (30 quantiles per cell) with a K-S test for the equiva-
lence of distributions, and the test statistic and p value reported for com-
parison purposes (for details, see below, Experimental design and
statistical analysis).

Iterative process

The iterative process to determine the scaling factor was proposed by
Kim et al. (2012) as an alternative to the rank-order method for testing
whether homeostatic plasticity causes multiplicative scaling. This
method repeatedly downscales the pooled TTX data by an arbitrary fac-
tor, discards any downscaled amplitudes smaller than the smallest value
in the control data, and compares the fit of the downscaled TTX data to
the control data with a K-S test for equivalent distributions. The process
is repeated for different values of scaling factor, and the factor that pro-
duces the best fit, as judged by the largest p value, is chosen. We applied
the process both as described and without the removal of events that fell
below the detection threshold after downscaling.

Experimental design and statistical analysis

The new results reported for dissociated mouse cortical neurons were
obtained from 23 cultures, 86 recordings from untreated cells, and 77
recordings from TTX-treated cells. Data were included from a recording
day only if there was at least 1 cell from each treatment group. The num-
ber of cells per day ranged from 1 to 10 [average 3.5 * 2.1 (SD)]. Each
culture is prepared from combining the cortical tissue from two mouse
pups. We did not sex the pups so cannot address whether any of our
results are sex specific. While it is not statistically correct to use n as
the number of cells (Fig. 1) or number of mEPSCs (all other figures),
we have continued to do so to compare our results to previous stud-
ies. The question we are asking is not whether activity blockade has a
statistically significant effect, but whether activity blockade-induced
homeostatic plasticity involves uniform multiplication of the control
mEPSC distribution.

All analyses, including statistical tests, empirical modeling, and
implementation of the rank-order and iterative tests, were performed
using the R system for statistical computation (www.R-project.org). The
K-S test for the equality of distributions has previously been used to ana-
lyze the similarity of two groups of mEPSC amplitudes. However,
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because multiple mEPSC samples are included per cell, such data are not
independent and identically distributed (iid), which is an assumption of
the K-S test (Mood et al., 1973; Raghavachari, 1973; Tygert, 2010). The
K-S test expects every value in the sample to be independent, but here,
any mEPSC is related to the other mEPSCs from the same recording;
these are more likely to be similar to each other than mEPSCs from
another recording. Violation of a statistical test’s assumptions means
that the distribution of the test statistic, and thus the critical value, is
unknown, and the p values are therefore unreliable. Furthermore, the
power of the K-S test increases with sample size, meaning that larger
samples will, on average, yield smaller p values than smaller samples.
When we include 30 values from each cell, the N that the K-S test sees is
30 x the number of independent samples, an inflated value. For these
reasons, we cannot conclude that the true probability of obtaining a
result in a K-S test is the p value we report. We believe the magnitude of
the test statistic (which quantitates the difference between the two
CDFs) and accompanying p value (which takes into account the sample
size) indicate whether a comparison between two CDFs is a better or
worse match than a comparison between two other CDFs if (1) the sam-
pling has been performed in the same way, e.g., multiple samples
included per cell; and (2) the sample sizes are comparable. Unless other-
wise indicated, means are presented *SEM.

Results

To characterize homeostatic plasticity of mEPSCs, we chose the
well-studied paradigm of treating dissociated neurons with TTX.
Cortical neurons were obtained from newborn mice and cul-
tured for 13-14 DIV. Recordings of mEPSCs were performed af-
ter blocking firing activity with 500 nm TTX for 48 h. As has
been shown in other studies, mEPSC amplitudes were signifi-
cantly increased in neurons treated with TTX compared with
untreated control neurons. Figure 1A shows a typical pyramidal-
shaped neuron that was chosen for recording. Individual current
traces recorded from an untreated and a TTX-treated cell are
shown in Figure 1B, and the average mEPSCs waveforms from
these recordings are shown in Figure 1C. The mean mEPSC
amplitudes from 86 control and 77 TTX-treated cells were not
normally distributed (Fig. 1D), and were significantly different
based on a non-parametric Kruskal-Wallis test (control, 14.0 =
0.4pA; TTX, 175 + 0.5pA, p=5.8 x 107).

Our dataset differs from those of previous studies. First, we
put our cutoff for accepting mEPSCs at 3 pA instead of 5pA
(Turrigiano et al., 1998; Desai et al., 2002), because we noticed
there were events that resembled mEPSCs in every way, but
which could not be manually selected with a 5-pA cutoff.
Examples of such events for two cells with small mean mEPSC
amplitudes are shown in Figure 2, below graphs of the frequency
histograms for noise amplitudes (Fig. 24,B, line and symbol) and
detected mEPSC amplitudes (Fig. 2A,B, gray bars) in these cells.
The two traces on the left show mEPSCs with amplitudes <5 pA,
and the one on the right shows an mEPSC with amplitude
>5pA. It is clear from these traces that mEPSCs below 5pA
occur and are similar to mEPSCs above 5pA. The root mean
square (RMS) noise was 1.44 * 0.18 (SD) for the untreated cells
(N=86) and 1.43 = 0.18 (SD) for TTX-treated cells (N =77), jus-
tifying a cutoff of 4.32 (3 x RMS). We set the threshold below
this calculated value, but manually selected mEPSCs, avoiding
large fluctuations in noise or glitches that might be selected with
the automated setting.

The second difference in our dataset concerns the way we
generated the CDFs of mEPSC amplitudes. CDFs have been gen-
erated in previous studies by randomly selecting mEPSCs to
keep the number of mEPSCs per cell the same. To avoid the ran-
dom variability of this approach, we generated CDFs of mEPSC
amplitudes by computing 30 quantiles per cell. Quantiles divide
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the distribution into equally spaced pieces;
the median divides it into two halves; 30
quantiles divides it into 30 segments. We set-
tled on 30 quantiles to be within the range of
samples per cell used in previous studies and
to not over- or under-sample the distribu-
tions (Fig. 2C; see Materials and Methods).
Another characteristic of quantile sampling
is that it provides a deterministic representa-
tion of each cell, whereas multiple random
samples from the same cell will necessarily
differ from each other. As expected, quantile
sampling produced a pooled distribution
with less variability than the distribution
obtained by random sampling, but did not
alter the overall appearance of the CDFs
(Fig. 3, compare A, random sampling, B,
quantile sampling).

The prevailing view of homeostatic plas-
ticity is that it transforms amplitudes of
mEPSCs via a uniform multiplicative factor
(Turrigiano et al., 1998; Kim et al, 2012;
Turrigiano, 2012). The rank-order process
was introduced in the Turrigiano et al., study
and continues to be a commonly used
method for analyzing homeostatic plasticity
data. In this process, the control and TTX
amplitude data are ranked, plotted against
each other, and fit with a linear regression
model, yielding a slope and an intercept
coefficient that are used to quantify the math-
ematical transformation induced by homeo-
static plasticity on the mEPSC amplitudes in
TTX-treated neurons. If these coefficients
accurately describe the effects of homeostatic
plasticity, then using them to mathematically
downscale the TTX distribution should
reverse those effects and produce a scaled dis-
tribution almost identical to the control dis-
tribution. Figure 3C shows our rank-order
data, which were fit with a linear regression
model with a slope of 1.28 and an intercept of
—0.28. We found that using the parameters
from the regression model produced a scaled
TTX distribution that had a different shape
from the control distribution and gave a
p < 0.05 (Fig. 3D, dashed vermilion curve;
test statistic = 0.070, p=1.3 x 10>, K-S test).
Note that we cannot conclude significance or
non-significance in these analyses, because
the inclusion of multiple samples per cell vio-
lates the requirement of the K-S test for iid
samples.

It has been suggested previously (Kim et
al, 2012) that the existence of control
mEPSCs that fall below the detection thresh-
old could produce a mismatch in the rank-
order data, since this population may be
shifted into the detectable range after

chronic silencing but would not have corresponding mEPSCs
from the untreated dataset. Such a mismatch could distort the
rank-order relationship, leading to parameters that do not accu-
rately scale the TTX CDF to the control CDF. This issue has
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Figure 3. Homeostatic plasticity in dissociated mouse cortical neurons is not well-described by the parameters

obtained from the rank-order process, nor the single multiplication factor obtained by an iterative process. A, CDFs pro-
duced by randomly sampling 30 mEPSCs from each untreated (CON, black) and TTX-treated cell (TTX, vermilion). B, CDFs
produced by computing 30 quantiles from the mEPSC distributions of each control (black) and TTX-treated cell (vermil-
ion). ¢, Rank-order plot. To create identical size datasets as required, 77 quantiles were computed from each control cell,
and 86 quantiles were computed from each TTX cell; the rank-order plot was obtained by sorting from smallest to larg-
est amplitude in control and TTX data and plotting them against each other. A linear regression fit is shown in long ver-
milion dashes. D, Control (DF compared with TTX CDF after scaling (short dashes) using the parameters obtained from
the linear regression fit of the rank-order plot in C; n, control = 2580; TTX = 2310; test statistic = 0.070, p=13 x 10>,
K-S test. E, Scaling factors were chosen iteratively, used to downscale the TTX distribution, followed by discarding sub-
threshold amplitudes below 4.01 pA (smallest control mEPSC quantile), and the scaled distribution was compared with
control with a K-S test to produce the corresponding p value. Crosses, Below-threshold events were discarded. Circles,
Below threshold events were not discarded. Test statistic = 0.053, p=3.0 x 10>, K-S test. F, The scaling factor that
produced the largest p value in E, 1.19, was used to downscale the TTX distribution (dashed vermilion curve) to the con-
trol (black curve); two events were discarded. Insets in 4, B, D, F, Blow up of the low end of the data. Inset in C, Full
range of the data. Line of identity is indicated in gray. Blue lines in C, D indicate the 25th, 50th, and 75th percentiles of
the data.

been addressed by Kim et al. (2012), who have developed an
approach distinct from that of the rank-order process. They use
a series of multiplicative factors to downscale the mEPSC ampli-
tudes from TTX-treated cells, and discard any downscaled
amplitudes that fall below the detection threshold (defined as the
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1.25, to simulate uniform multiplicative
scaling in data with realistic variability
(simTTX; Fig. 4A, vermilion curve). Note
that, because of the variability we intro-
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duced between the two random control
samples, the second randomly sampled
control dataset is larger than the first by a
factor of 1.06. Therefore, the actual scal-

& & & ing factor between ranCON1 and
= P simTTX is 1.31 instead of 1.25. We were
© ° © surprised, based on the experimental data

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 . . .
Amplitude (pA) Amplitude (pA) Amplitude (pA) in Figure 3, our own previous work
(Altimimi and Stellwagen, 2013; Garcia-
Figure 4.  Empirical simulations of uniform multiplicative scaling show that mEPSCs of TTX-treated cells are larger than Bereguiain et al., 2013; Fong et al.,, 2015),

those of control cells from the lowest percentiles of the distributions; application of a detection threshold causes a small over-
lap. A, Two distinct control distributions (ranCON1, black curve; and ranCON2, dashed vermilion curve) were obtained by ran-
dom sampling and differed on a K-S test with a test statistic=0.039, p=0.04. The second control distribution was
multiplied by 1.25 to simulate uniform multiplicative scaling (simTTX, solid vermilion curve). B, A detection threshold of 5 pA
was applied to the ranCON1 and simTTX data, meaning that all mEPSCs below 5 pA were removed from both distributions.
C, A detection threshold of 7 pA was applied to the ranCONT and simTTX data; all data below 7 pA were removed from both
distributions. Insets, Blow up of the low end of the distribution. Dashed blue lines indicate the location of 5- and 7-pA cut-

offs, which represent ~2% and 10% of the control dataset, respectively.

smallest observed mEPSC amplitude in the control data). If the
deviation from multiplicative scaling is solely due to a mismatch
caused by undetectable control mEPSCs, this process should be
able to find a scaling factor that downscales the TTX data to a
close match to the untreated data (small test statistic, large p
value). We applied the iterative process to the quantile-sampled
experimental data, obtaining a scaling factor of 1.19 (Fig. 3E,
circles), and found it produced a downscaled TTX distribution
(Fig. 3F, dashed vermilion curve) that gave a very small p value
(Fig. 3F, black curve; test statistic= 0.053, p=3.0 x 10", K-S
test). This result suggests the data are not undergoing a uniform
multiplicative transformation following chronic silencing. The fit
was not noticeably changed by leaving out the correction that is
supposed to address loss of mEPSCs due to the detection thresh-
old (Fig. 3E, crosses). This lack of effect may be because of the
low detection threshold we set, at 3 pA.

The differences between the scaled and control CDFs for both
the rank-order and the iterative processes applied to the experi-
mental data are extremely important. If the scaling process repre-
sents the true transformation conferred by homeostatic
plasticity, it should by definition exactly match the downscaled
treated distribution to the control distribution. That we do not
get an exact match means that our assumption of a uniform mul-
tiplicative transformation must be incorrect. Because our data
fail to support uniform multiplicative scaling, we wanted to sim-
ulate an example of uniform multiplicative scaling and observe
how the resulting data behave when subjected to the rank-order
and iterative processes. In particular, we wanted to observe what
happens when data that we know are scaled uniformly by a mul-
tiplicative factor are subjected to an arbitrary detection threshold,
and whether the existence of undetected control mEPSCs affect
the ability of the rank-order and iterative processes to scale the
data from TTX-treated cultures. Our idea was to simply multiply
the distribution of control events (CON) by 1.25. To simulate
expected biological variability, we did not quantile sample but
created two non-identical samples of control data by randomly
sampling 30 mEPSCs from each cell, repeatedly producing
pooled datasets until we obtained two control CDFs that gave a
p < 0.05 with a K-S test (Fig. 44, black curve, ranCON]1, vs ver-
milion dashed curve, ranCON2, p=0.04). We then multiplied
the second randomly sampled control dataset (ranCON2) by

and others” previous studies (Turrigiano
et al,, 1998; Desai et al., 2002; Thiagarajan
et al,, 2005; Ibata et al., 2008; Blackman et
al,, 2012; Gerkin et al., 2013), that the
CDF produced by multiplication with a
single factor is larger than the control
CDF from the smallest mEPSCs in the
distribution (Fig. 44, inset). For all of the
studies cited here, and for our experimen-
tal data, the TTX CDF runs very close to the control CDF in the
small amplitude ranges, and separates only as amplitude
increases.

To address whether the deviation of the experimental data
from simulated uniform multiplicative scaling could be caused
by the existence of an undetected population of control mEPSCs,
we used the data shown in Figure 4A to simulate detection
thresholds of 5 and 7 pA (Fig. 4B,C, respectively). To simulate
these thresholds, we discarded all mEPSC amplitudes below 5 pA
or 7 pA from both the ranCON1 and simTTX distributions. The
detection thresholds are shown with the resulting truncated dis-
tributions on an expanded scale in Figure 4B,C, insets, and can
be compared with the original distributions in Figure 4A. Both
detection thresholds eliminate a greater proportion of events
from ranCONI1 than simTTX, just as we imagine occurs in an
electrophysiological experiment, although fewer events are
removed by the 5-pA detection threshold. Following application
of a 7-pA detection threshold, ranCON1 and simTTX CDFs are
no longer separated at the beginning of the distributions, sup-
porting the possibility that a mismatch caused by a detection
threshold could lead to the appearance of non-uniform scaling
such as we observe in the experimental data. However, the simu-
lation of a 7-pA threshold only causes an overlap of the first pair
of data points, whereas the CDFs from the experimental data
overlap for multiple points, and in addition, run closely together
for >10% of the distributions.

Once we had successfully simulated the mismatch caused by
a detection threshold, we examined the datasets with the simu-
lated 5- and 7-pA detection thresholds using the rank-order pro-
cess, and compared their behaviors to that of the untruncated
data from the original simulation. A linear regression model
applied to the rank-order data from the original simulation pro-
duced a slope coefficient close to the expected value (Fig. 5A4;
slope =1.316, expected value 1.31), and an intercept close to zero
(—0.27). The simTTX distribution scaled by these parameters
closely matched the ranCON1 CDF (Fig. 5B; test statistic = 0.018,
p=0.77). The 5-pA detection threshold simulation data were fit
with a slope coefficient close to the expected value of 1.31 (Fig.
5C; slope =1.320), and an intercept only slightly larger than that
of the original untruncated data (—0.37). These parameters again
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were able to scale simTTX to be a close
match of the ranCON1 CDF (Fig. 5D;
test statistic=0.018, p=0.63). Finally,
the 7-pA detection threshold data were
fit with a slope coefficient of 1.320 and
an intercept of —1.24 (Fig. 5E), parame-
ters which scaled the simTTX to closely
match the upper 75% of ranCON1, but
the lower 25% were misaligned (Fig.
5F), the test statistic was 0.047 and p =
0.012. This result suggests that the mis-
match caused by a detection threshold
can lead to a nonzero intercept term
and a p < 0.05. However, the intercept
term did not increase in proportion with
the cutoff value, and larger intercepts
have been observed for previously pub-
lished experimental data (—12.2, —2.6,
and —4.9 for Turrigiano et al, 1998;
Blackman et al., 2012; Kim et al.,, 2012,
respectively). In summary, these results
show that the rank-order process is capa-
ble of finding a nearly perfect fit in uni-
formly scaled data, and is only modestly
disrupted by a large detection threshold.
Although the p values cannot be used to
conclude statistical significance, the simu-
lated dataset has the identical sampling
issues as the experimental dataset, yet the
p values are much larger for the simulated
dataset. Therefore, the inability of the
rank-order process to scale the experi-
mental TTX CDF to the control CDF
reflects a true deviation from uniform
multiplicative scaling.

We next applied the iterative process
of Kim et al. (2012) to the simulation
data with the 7-pA threshold, since this
process should be able to take even this
large threshold into account. As
expected, the iterative process produced
an almost perfect fit between the scaled
simTTX and ranCON1 distributions
with a factor of 1.335 (Fig. 6A,B; test
statistic =0.016, p=0.97, K-S test). The
iterative process consists of two distinct
steps. The first is to move through a
range of factors to downscale the TTX
dataset, this is an unbiased optimization
process. The second is to discard scaled
TTX data that fall below the detection
threshold, this step addresses the poten-
tial mismatch caused by a detection
threshold. To verify that the goodness of
the fit was not simply due to using an
unbiased optimization process, we
repeated the iterative process but did not
discard subthreshold events from the
downscaled simTTX data. This version
of the process selected a factor of 1.165,
no longer close to the expected value of
1.31, and gave a much smaller p value
(Fig. 6C,D; test statistic = 0.056, p = 2.4
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Figure 5.  The scaling transformation computed by the rank-order process detects the correct scaling factor and produces a

nearly perfect fit of data simulated with multiplication by a uniform factor, and is only slightly disrupted when data have been
truncated with a large detection threshold. A, RanCON1 and simTTX mEPSC amplitudes were sorted from smallest to largest
and plotted against each other, and fit with a linear regression model (dashed vermilion line). B, The parameters from the lin-
ear regression fit shown in A were used to downscale the data from the TTX simulation, and produced a close match between
the scaled distribution (dashed vermilion curve) and the ranCON1 data (black curve; ranCON1, n = 2610; simTTX, n = 2610; test
statistic = 0.018, p=0.77, K-S test). , Rank-ordered mEPSCs of ranCON1 and simulated TTX cells with a detection threshold
set at 5pA, plotted against each other and fit with a linear regression model (dashed vermilion line). After removing mEPSC
amplitudes << 5 pA from ranCONT and simTTX, the samples sizes had to be rematched to be identical for the rank-order pro-
cess, which was accomplished by randomly discarding mEPSCs from the now larger simTTX dataset (new n= 2594 for hoth
control and TTX). D, The parameters from the linear regression fit shown in € were used to downscale simTTX (test
statistic = 0.018, p = 0.63, K-S test). E, Rank-ordered mEPSCs of ranCON1 and simulated TTX data with a detection threshold
of 7 pA, plotted against each other and fit with a linear regression model (dashed vermilion line). After removing mEPSC ampli-
tudes << 7 pA, the sample sizes were rematched by randomly discarding from the now larger simTTX dataset (new n=2321
for both control and TTX). F, The parameters from the linear regression fit in F were used to scale the simulated TTX data
down to the ranCON1 data (test statistic = 0.047, p=0.012, K-S test). Gray lines in 4, (, E indicate the line of identity. Blue
lines indicate the 25th, 50th, and 75th percentiles of the data. Insets in A, C, E, View of the entire data range. Insets in B, D,
F, Blow up of the initial part of the distribution.
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manifest as a reduced ratio at the smallest
amplitudes, and the extent of the threshold’s
effect on the data will be visible as the magni-
tude and range of this reduction. We plotted the
data from the simulation with no detection
threshold, which confirmed our expectation
that the ratio plot yields an approximately con-
stant value very close to the expected multiplica-
tion factor of 1.31 (Fig. 7A). The fluctuations of
data in this plot are attributable to the variability
introduced by random sampling (Fig. 4A). The
ratio plot of the simulation data with a 5-pA
detection threshold also exhibited a near con-

stant ratio close to the expected multiplication
factor, but the ratio was underestimated for
approximately the smallest 10% of the data (Fig.
7B). In the simulation of the 7-pA detection
threshold, the ratio was underestimated for the
bottom 25% of the data, then approached the
expected multiplication factor, but ultimately
was systematically slightly smaller than the
expected value (Fig. 7C). In dramatic contrast to
the behaviors exhibited by data from all three
simulations, the ratio calculated for the experi-
mental data increased gradually over >60% of
the data before reaching an apparent plateau at
a value which was substantially greater than the
other estimates we have of the factor from the
rank-order and iterative processes (Fig. 7D).
These results clearly demonstrate that the scal-
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Figure 6. Iterative selection of the scaling factor detects the expected factor with an almost perfect fit in data

simulated with multiplication by a single factor and truncated by a large detection threshold. A, Each scaling factor
was used to downscale the simulated TTX distribution, subthreshold events (<7 pA) were discarded from the down-
scaled data, and the scaled distribution was compared with simulated control with a K-S test to produce the corre-
sponding p value. A factor of 1.335 produced a nearly perfect fit (test statistic=0.016, p =0.967, K-S test). B,
Cumulative distributions of ranCON1 data (black curve) and scaled simTTX (downscaled by 1.335, 13 subthreshold
simTTX mEPSCs removed, 5.6% of the data; dashed vermilion curve). C, When subthreshold mEPSCs were not
removed, the scaling factor that produced the best fit of scaled simTTX to ranCON1 was 1.165, but the p value was
much smaller than when subthreshold values were removed (test statistic = 0.056, p= 2.4 x 107>, K-S test). D,
Cumulative distributions of ranCONT (black curve) and scaled simTTX (downscaled by 1.165, no events discarded;

dashed vermilion curve).

x 107, K-S test), confirming that the removal of subthreshold
events is essential when there is a detection threshold truncating the
dataset. These results strongly demonstrate that the iterative process
should be able to produce an almost perfect fit if the only issue is the
inability to detect below threshold mEPSCs. Therefore, the large test
statistic and small p value obtained when the iterative process is
applied to our experimental data cannot be attributed to a mismatch
caused by undetected, subthreshold control mEPSCs.

Thus far, we have shown that simulation of uniform multipli-
cative scaling, even with a large detection threshold imposed,
does not reproduce the behavior of our experimental data. In
order to more directly observe the magnitude of the homeostati-
cally-induced scaling factor across mEPSC amplitudes, we plot-
ted the ranked mEPSC data as the ratio of TTX/control against
control amplitudes for each pair of ranked amplitudes. In data
transformed by uniform multiplication, the ratio should be con-
stant across amplitudes. Because a detection threshold causes the
smallest TTX mEPSC amplitudes to overlap with control
mEPSC amplitudes, we predict that a detection threshold will

ing induced in our data by homeostatic plastic-
ity is not the result of multiplication by a
uniform factor. Since the scaling factor is small-
est for small amplitude mEPSCs, and increases
with increasing amplitude, we propose a new
name for this type of homeostatic plasticity, “di-
vergent scaling,” to distinguish it from uniform
multiplicative scaling. To illustrate the effect of
divergent scaling, a 10 pA mEPSC will be 11 pA
after scaling (10% increase); a 20 pA mEPSC
will be 26 pA after scaling (30% increase).

To determine whether the presence of diver-
gent scaling is unique to the current experimen-
tal conditions, relatively mature (13-14 DIV)
dissociated mouse cortical cultures, we exam-
ined previously published data from our laboratories: 12-15 DIV
dissociated mouse hippocampal cultures treated with TTX for
48 h (Altimimi and Stellwagen, 2013) and 10-12 DIV dissociated
rat cortical cultures treated with TTX for 24 h (Fong et al., 2015).
We applied a linear regression model to the rank-order data for
both preparations (Fig. 8Ai,Bi), then used the parameters of the
fits to scale the CDFs from TTX-treated cells to the CDFs of con-
trol cells (Fig. 8Aii,Bii). Note that the CDFs were created from
quantile sampling whereas previously, random sampling was
used, and the new plots differ slightly from the previously pub-
lished plots (Altimimi and Stellwagen, 2013, their Fig. 3, compare
A, B and D, E; Fong et al., 2015, their Supplementary Fig. 3A).
Scaling of the TTX-treated data produced a CDF that closely
matched the control CDF in the mouse hippocampal and rat
cortical data (Fig. 8Aii,Bii, dashed vermilion curves), but the
intercepts were far from zero (—4.49 and —10.52, respectively),
and the K-S test returned small p values (7.7 x 107> and 2.9 -
x 1077, respectively). Although the scaled data from mouse
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Figure 7.

After rank-ordering the control and TTX data, a plot of TTX mEPSC/control mEPSC as a function of control mEPSC shows a roughly constant ratio for simulated uniform multiplica-

tive scaling, a predictable deviation over the initial portion of the data for simulation of a detection threshold, but a non-constant ratio over a large portion of the data range for the experimen-
tal data. A, For simTTX/ranCON1, the ratio is close to the expected value of 1.31 (dashed vermilion line). B, For data truncated by a 5-pA detection threshold, the ratio simTTX/ranCON1 is
underestimated for a small range of data in the range of the 5-pA threshold, but is otherwise close to the expected value (dashed vermilion line). C, For data truncated by a 7-pA detection
threshold, the ratio is underestimated for the bottom 25% of the data, then reaches a plateau; the plateau systematically underestimates the expected value thereafter (dashed vermilion line).
D, For experimental data the ratio increases smoothly until reaching a plateau halfway between the 50th and 75th percentiles; the ratio is first under and then surpasses the slope factor esti-
mated from linear regression of the rank-ordered data (dashed vermilion line). Solid blue lines indicate 25th, 50th, and 75th percentiles. Dashed blue lines indicate the simulated 5-pA (B) and

7-pA (€) thresholds, and the 3-pA detection threshold used for experimental data (D).

hippocampal neurons deviate to the left of control (Fig. 8Aii,
inset) while the scaled data from rat cortical neurons deviate to
the right (Fig. 8Bii, inset), these differences may not reflect bio-
logical differences but only that the linear regression model is
not an accurate representation of the data (Fig. 84i,Bi). Going
back to the results of the rank-order process on our simulation
data, we expect an intercept close to zero and a nearly perfect
match of scaled data to control data, if the scaling relationship is
truly uniformly multiplicative (Fig. 5). The results of the rank-
order process call into question whether these data are uniformly
scaled.

To further examine whether the previously published data
show uniform multiplicative scaling, we applied the iterative pro-
cess of Kim et al. (2012). The iterative process applied to the
mouse hippocampal culture data selected a multiplicative factor
that scaled the TTX CDF to the control CDF with a large p value
(Fig. 8Aiii,iv; test statistic=0.037, p=0.755), suggesting these
data may be uniformly scaled. However, the large magnitude of
the scaling factors applied resulted in a substantial portion of the
data (>40%) being discarded as subthreshold following down-
scaling. The large fraction of data being discarded may also con-
tribute to the ability of a wide range of factors to fit the data with
large p values (scaling factors from 2.0 to 3.0), as a smaller sample
size leads to larger p values in the K-S test. For cultures of rat
cortical neurons, the iterative process selected a multiplicative
factor that gave a small p value when the scaled TTX CDF was
compared with the control CDF (Fig. 8Biii,iv; test statistic=
0.079, p=2.4 x 10~ *). For these data, as well as the mouse corti-
cal neurons, <2% of the mEPSC amplitudes were discarded in
the downscaling step. The differences in amount of data dis-
carded are difficult to interpret, but these results clearly show
that in rat and mouse cortical cultures, scaling is non-uniform.

We generated plots of the ratio of TTX/CON amplitudes as a
function of control amplitudes for the mouse hippocampal and
rat cortical neurons, to see whether the ratios were uniform.
Because the iterative process gave a large p value when compar-
ing scaled TTX data to control data for mouse hippocampal cul-
tures, we expected the ratio to exhibit a constant value, with
minor deviations due to the detection threshold. Surprisingly,
the ratios from the mouse hippocampal neurons show the diver-
gent scaling pattern, with the ratio increasing across roughly 75%
of the data, a larger proportion than for the data from mouse
cortical neurons (compare Figs. 9A, 7D). Despite being most

closely related to the canonical preparation (Turrigiano et al.,
1998), rat cortical neurons show the most divergent scaling of all,
with the scaling ratio continuing to increase far past the 75th per-
centile (Fig. 9B). Whether a plateau is reached is inconclusive
due to the presence of very few mEPSC amplitudes in that range.
In contrast to the mouse cortical neurons, where the difference
between the smallest and largest scaling factor is a modest 25%,
for mouse hippocampal and rat cortical neurons, the differences
are 80% and 125%, respectively. To illustrate the impact of this
effect, in a rat cortical neuron, a 10 pA mEPSC will be 11.8 pA af-
ter divergent scaling (18%) but a 20 pA mEPSC will be 33 pA
(65%). From these findings, we conclude that (1) divergent scal-
ing cannot be detected by the rank-order or iterative processes;
(2) the quantitative difference between uniform multiplicative
scaling and divergent scaling can be substantial; and (3) diver-
gent scaling is not limited to particular experimental conditions
but may be a common outcome of homeostatic plasticity.

Discussion

Synaptic scaling is not uniformly multiplicative

In a large dataset from mature mouse cortical cultures (13-14
DIV), blocking network activity with TTX resulted in an increase
of mEPSC amplitudes, as shown in many previous studies in
multiple preparations. However, we were surprised to find that
our data were not well fit by the parameters from the linear fit to
the rank-ordered data, nor by a factor chosen by an iterative pro-
cess that takes the detection threshold into account. While the
scaled distributions are close to the control distribution, the devi-
ations are important, since we have already applied a scaling pro-
cess to make the two distributions the same. The differences that
remain after this scaling reveal that the scaling process does not
fully capture the transformation due to homeostatic plasticity.
We simulated uniform multiplicative scaling by multiplying a
random sample of control data by a uniform factor, and found it
did not reproduce the behavior of the experimental data: the
rank-order and iterative processes almost perfectly scaled the
simulation data, even when a detection threshold was applied.
These findings make it highly unlikely that a population of
unseen small control mEPSCs caused the failure of our data to
show uniform multiplicative scaling. Finally, we found that the
ratio of TTX/control amplitudes plotted as a function of control
mEPSC amplitude is not uniform, but increases with control
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amplitudes over a large proportion of the
data. We named this phenomenon diver-
gent scaling, and show that it is not unique
to dissociated mouse cortical neurons but
extends to dissociated mouse hippocampal
and rat cortical neurons.

While we are not the first to suggest that
activity blockade can produce non-uniform
homeostatic increases in mEPSC amplitudes
(Thiagarajan et al., 2005; Echegoyen et al.,
2007; Goel and Lee, 2007; Cingolani and
Goda, 2008; Pozo and Goda, 2010), uniform
multiplicative scaling has remained the
dominant idea in the field (for review, see
Watt and Desai, 2010; Turrigiano, 2012;
Keck et al., 2013; Chen et al., 2014; Lee et al.,
2014). Our point is not that we are reporting
yet another example that does not follow
the norm of uniform multiplicative scaling,
but that uniform multiplicative scaling is not
the norm. This conclusion is based on (1) our
finding that simulated uniform multiplicative
scaling is different from experimental data for
three preparations; (2) that the CDFs for the
control and scaled TTX data in simulated uni-
form multiplicative scaling are separated from

«—

cell (=360 for both groups). Aii, Cumulative distributions of
mEPSC amplitudes from control (black curve) and TTX-treated
mouse hippocampal neurons (vermilion curve). Slope and inter-
cept parameters from the linear regression fit in Ai were used to
downscale the TTX data (dashed vermilion curve; control, 30
quantiles for 18 cells, n=540; TTX, 30 quantiles for 20 cells,
1n=600; test statistic=0.099, p=7.7 x 10>, K-S test). Aiii,
For the mouse hippocampal neuron data, the scaling factor that
produced the best fit of scaled TTX to control data after discard-
ing downscaled mEPSCs below 7pA is 225 (test
statistic = 0.037, p = 0.755, K-S test), but > 40% of the data
were discarded after downscaling (n after downscaling = 318;
original n=600). Aiv, Cumulative distributions of scaled TTX
(dashed vermilion curve) downscaled by 2.25 and subthreshold
mEPSCs removed, and control mEPSCs from mouse hippocampal
neurons (black curve). Bi, Rank-order plot of rat cortical neuron
data, with linear regression fit (dashed vermilion line). To match
the sample sizes, 58 quantiles were computed for each control
cell and 47 quantiles were computed for each TTX cell, n=2726
for both groups. Bii, Cumulative distributions of mEPSC ampli-
tudes for control (black curve) and TTX-treated rat cortical neu-
rons (vermilion curve). Slope and intercept parameters from the
linear regression fit in Bi were used to downscale the TTX data
(dashed vermilion curve; control, 30 quantiles for 47 cells,
n=1410; TTX, 30 quantiles for 58 cells, n=1740; test
statistic=0.101, p=2.9 x 1077, K=S test). Biii, For the rat
cortical neuron data, the scaling factor that produced the best
fit of scaled TTX to control data after discarding downscaled
mEPSCs below 5pA is 133 (test statistic=0.079, p=2.4-
% 107, K=S test); only 25 mEPSCs were discarded after down-
scaling. Biv, Cumulative distributions of scaled TTX (dashed
vermilion curve), downscaled by 1.33 and subthreshold mEPSCs
removed, and control data from rat cortical neurons (black
curve). Gray lines indicate the line of identity. Blue lines indicate
the 25th, 50th, and 75th percentiles. Insets in Ai, Bi, View of
the entire data range. Insets in Aii, Aiv, Bii, Biv, Blow up of the
initial part of the distribution.
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Figure 9. Ratio plots show divergent scaling in dissociated mouse hippocampal and rat

cortical neurons. A, For mouse hippocampal data, the ratio of TTX mEPSC/control mEPSC as a
function of control mEPSC increases smoothly until reaching an approximately constant value
above the 75th percentile. B, For rat cortical data, the ratio increases continuously over most
of the data range. Solid blue lines indicate 25th, 50th, and 75th percentiles. Dashed blue
lines show thresholds used in acquisition: 7 pA for mouse hippocampal data and 5 pA for rat
cortical data. Dashed horizontal vermilion lines indicate the expected scaling factor deter-
mined from the slope of linear regression of the rank-order data.

each other starting with the smallest mEPSCs, in contrast to the
CDFs of mEPSCs from control and activity-blocked rat cortical
neurons in Turrigiano et al. (1998); (3) that the linear regression
model applied to the rank-order data in Turrigiano et al. (1998)
requires a large intercept term (—12.3); and finally (4) that we show
simulation of a detection threshold does not produce deviations
from uniform multiplicative scaling. We cannot rule out that there
may be a set of conditions under which homeostatic plasticity
causes a uniform multiplicative shift. It will be important to identify
such cases using rigorous criteria (close to zero intercept in the
rank-order process, flat ratio of treated/control amplitude across the
range of control mEPSC amplitudes), because they are likely to
employ a unique repertoire of biological mechanisms.

It must be acknowledged that simultaneously blocking action
potentials of excitatory and inhibitory neurons in a network has
no correlate in vivo. Homeostatic plasticity is also induced by
more realistic visual and auditory deprivation paradigms (Desai
et al., 2002; Goel and Lee, 2007; Teichert et al., 2017), but down-
regulation of synaptic strength during sleep is the only non-path-
ologic example that has been proposed (Diering et al., 2017).
While the culture model is imperfect, we show for the first time a
way to distinguish non-uniform from uniform homeostatic plas-
ticity. The role of divergent and uniform homeostatic plasticity
in normal nervous system function will be revealed once genetic
models are identified that selectively lack one or the other.

Additional evidence for non-uniform scaling

There have been a few reports that directly demonstrate homeo-
static plasticity leads to non-uniform scaling. In dissociated rat
hippocampal neurons cultured for 21 d, homeostatic plasticity in
response to increased or decreased network activity was re-
stricted to the largest and most proximal synapses, from which
arise the largest amplitude mEPSCs (Lee et al., 2013). In another
study, GluA1 fluorescence increased significantly for large synap-
ses but not for small synapses after blocking activity in dissoci-
ated mouse hippocampal cultures with NBQX (Thiagarajan et
al., 2005). When changes in spine size in layer 5 cortical den-
drites were followed for 48 h after monocular deprivation, spine
size increased, but not in every dendrite; ~50% showed no
change (Barnes et al,, 2017). The authors applied the iterative
process of Kim et al. (2012) to scale the distribution of control
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mEPSC amplitudes to that of the monocularly-deprived neurons,
and found that the fit was much improved when, based on their
morphologic data, the authors selected a random subset of 50%
of the mEPSCs to remain unscaled.

The increase in glutamate receptors following activity block-
ade is the most well-established molecular mechanism accompa-
nying homeostatic plasticity of mEPSCs (O’Brien et al., 1998; Ju
et al,, 2004; Thiagarajan et al, 2005; Wierenga et al, 2005;
Shepherd et al.,, 2006; Stellwagen and Malenka, 2006; Aoto et al.,
2008; Hou et al., 2008; Ibata et al., 2008; Corréa et al., 2012;
Garcia-Bereguiain et al., 2013). However, only a few studies have
examined how activity blockade affects the cumulative distribu-
tion of fluorescence intensity values (Wierenga et al., 2005; Hou
et al., 2008; Ibata et al., 2008; Corréa et al., 2012). In three out of
four of these (Wierenga et al., 2005; Hou et al., 2008; Corréa et
al,, 2012), a smaller effect of activity blockade on low intensity
puncta, compared with high intensity puncta, can be discerned,
consistent with our description of divergent scaling. For the
fourth study, newly inserted receptor clusters with the lowest in-
tensity values did not show an increase in intensity following ac-
tivity blockade, but these insensitive clusters were excluded from
the CDF analysis (Ibata et al., 2008). Together, these results sug-
gest that postsynaptic receptor expression is differentially regu-
lated at synapses with low versus high levels of receptors.

Biological implications
The power of the uniform multiplicative scaling hypothesis first
proposed by Turrigiano and colleagues in 1998 is its mathemati-
cal simplicity, and its ability to explain how the rankings and the
proportional relationships between synaptic strengths, estab-
lished by other forms of activity-dependent plasticity, will be
exactly as they were before (Turrigiano et al., 1998; Turrigiano
and Nelson, 2004; Pozo and Goda, 2010; Watt and Desai, 2010;
Turrigiano, 2012, 2017; Vitureira and Goda, 2013; Keck et al.,
2017a,b; Yee et al., 2017). These characteristics of uniform multi-
plicative synaptic scaling have been readily incorporated into
computational models of network behavior to stabilize synaptic
weights in the face of Hebbian plasticity (Frohlich et al., 2008;
Tetzlaff et al., 2012; Zenke et al., 2013; Toyoizumi et al., 2014;
Chistiakova et al., 2015; Effenberger et al., 2015; Gonzalez et al.,
2015; Zenke et al., 2017). It might seem that divergent scaling, in
which weak synapses show the least increase in strength and
strong synapses show the greatest increase, will lead to runaway
growth of synaptic weights. However, the changes are still in the
opposite direction of the overall network activity level, so
addressing the strongest synapses may be the most efficient way
to bring network activity back into balance. If such a mechanism
holds true for the homeostatic response to excessive network ac-
tivity (mimicked experimentally by treatment with bicuculline),
the strongest synapses would have the most dramatic reduction,
again, an efficient way to rapidly restore normal network behav-
ior. Multiple studies suggest the effects of bicuculline are diver-
gent: in the low range of mepscs, rank-order plots follow the line
of identity (Qiu et al., 2012), and cumulative plots run close to-
gether (Turrigiano et al., 1998; Shepherd et al., 2006; Qiu et al.,
2012; Xu and Pozzo-Miller, 2017). Furthermore, Turrigiano et
al. (1998) report a non-zero intercept term (2.0) in the linear fit
of rank-ordered bicuculline data. In future, computational mod-
els will need to examine the impact of divergent homeostatic
plasticity on synaptic weights.

To our knowledge, no one has yet recorded mEPSCs at single
synapses before and following activity blockade, and therefore the
physiological behavior at this microscopic level eludes us. For
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example, we cannot determine whether high-activity synapses
react differently than low activity synapses. Recently, fluorescently
labeled receptors were imaged following a short period (4 h) of ac-
tivity blockade; the majority of clusters showed an increase in fluo-
rescence, but a small group showed a decrease (Wang et al., 2019).
The smallest clusters showed larger increases, not smaller, than
the overall average, but when all the data were pooled, the popula-
tion behavior was identical to what we observe—the CDFs of re-
ceptor amount before and after treatment run closely together in
the smallest values. Any computational model of homeostatic plas-
ticity must explain how stochastic increases and decreases produce
divergent (or uniform) plasticity at the population level (Statman
et al., 2014; Shomar et al., 2017).
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