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Summary

When individuals learn from observing the behavior of others, they deploy at least two distinct 

strategies. Choice imitation involves repeating other agents’ previous actions, while emulation 

proceeds from inferring their goals and intentions. Despite the prevalence of observational 

learning in humans and other social animals, a fundamental question remains unaddressed: how 

does the brain decide which strategy to use in a given situation? In two fMRI studies (the second a 

pre-registered replication of the first), we identify a neuro-computational mechanism underlying 

arbitration between choice imitation and goal emulation. Computational modelling, combined 

with a behavioral task that dissociated the two strategies, revealed that control over behavior was 

adaptively and dynamically weighted toward the most reliable strategy. Emulation reliability, the 

model’s arbitration signal, was represented in the ventrolateral prefrontal cortex, temporoparietal 

junction and rostral cingulate cortex. Our replicated findings illuminate the computations by which 

the brain decides to imitate or emulate others.

eTOC Blurb

Charpentier et al. show in two independent studies that people learn from observing others by 

flexibly deploying one of two strategies, imitation or emulation, depending on the conditions of 

the environment. By tracking changes in the reliability of emulation, fronto-parietal brain regions 

assign control to the most reliable strategy.
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Introduction

Whether learning a new skill by observing an expert perform it, learning to seek rewards and 

avoid punishments, or making complex strategic decisions, observational learning (OL) is 

prevalent in our daily lives; and allows individuals to learn the consequences of actions 

without being exposed to the risks from directly sampling them.

Two distinct strategies for reward OL have been proposed (Heyes and Saggerson, 2002; 

Huang et al., 2006; Whiten et al., 2009): imitation and emulation. In imitation, individuals 

choose actions most frequently selected by another agent in the past; and in emulation, 

individuals infer the other agent’s goals, beliefs, intentions or hidden mental states 

(Charpentier and O’Doherty, 2018; Dunne and O’Doherty, 2013). Notably, the term 

“imitation” refers to a broad range of cognitive and behavioral phenomena: from wholesale 

mimicking of motor movements (Carcea and Froemke, 2019) to the more abstract process of 

copying another agent’s choices (Burke et al., 2010; Najar et al., 2019; Suzuki et al., 2012). 

Here we focus on the latter, “choice” imitation, in line with the economics, decision 

neuroscience and reinforcement learning literature (Abbeel and Ng, 2004; Eyster and Rabin, 

2014; Le et al., 2018; Mossel et al., 2018). Emulation can also describe an array of cognitive 

processes (Huang and Charman, 2005). Here we focus on inferences about another agent’s 

goal: “goal” emulation.

Computationally, choice imitation can be described in a reinforcement learning (RL) 

framework: the other agent’s chosen action is reinforced by an action prediction error (APE) 

– the difference between the other agent’s selected action and how expected this action was. 

APEs have been reported in dorsomedial and dorsolateral prefrontal cortex (dmPFC, dlPFC) 

and inferior parietal cortex (Burke et al., 2010; Suzuki et al., 2012). Although choice 

imitation is agnostic about specific motoric components of actions, the mirror neuron system 

– active when an action is observed and performed (Catmur et al., 2009; Cook et al., 2014; 

Lametti and Watkins, 2016; Rizzolatti and Craighero, 2004; Rizzolatti et al., 1996) – has 

been implicated. In contrast, goal emulation consists of a more complex and flexible 

inference process. Several computational accounts have been provided (Collette et al., 2017; 

Devaine et al., 2014; Diaconescu et al., 2014), often as a form of Bayesian inference: prior 

beliefs about the other agents are combined with the evidence received from observation to 

produce posterior updated beliefs. These inference processes recruit regions of the 

mentalizing network (Frith and Frith, 2006), specifically dmPFC, temporoparietal junction 

(TPJ) and posterior superior temporal sulcus (pSTS) (Behrens et al., 2008; Boorman et al., 

2013; Collette et al., 2017; Hampton et al., 2008; Hill et al., 2017; Yoshida et al., 2010).

If these two distinct OL strategies exist alongside each other, fundamental questions remain: 

how does the brain decide which strategy should be deployed in a given situation, and under 

what conditions does one or other strategy guide behavior? We hypothesized that the brain 
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deploys an arbitration process whereby the influence of these strategies is dynamically 

modulated depending on which strategy is most suitable to guide behavior at a given time. 

To understand this process, we developed a computational model of arbitration between 

choice imitation and goal emulation, and tested it with human behavioral and neural data.

In experiential learning, behavior is controlled by multiple competing systems, such as 

habits versus goal-directed actions (Balleine and Dickinson, 1998; Balleine and O’Doherty, 

2010) or model-free (MF) versus model-based (MB) learning (Daw et al., 2011; Glascher et 

al., 2010). To ensure that the control of these systems over behavior is adaptive, an 

arbitration mechanism has been proposed (Daw et al., 2005). In a specific implementation 

(Lee et al., 2014), the reliability of each system’s predictions is dynamically computed by 

leveraging their respective prediction errors. In the brain, the ventrolateral prefrontal cortex 

(vlPFC) and frontopolar cortex (FPC) were found to encode the output of a comparison 

between the reliability of the two systems. This suggests that the brain allocates control over 

behavior to the most reliable experiential learning strategy at a given time point.

Whether a similar arbitration mechanism exists in OL remains unknown. Using similar 

principles to those found in the experiential domain, we hypothesized that the allocation of 

control in OL between goal emulation and choice imitation is related to the relative 

uncertainty in each system’s predictions. Concretely, choice imitation tracks predictions 

about actions selected by an observed agent. Thus, if the agent’s choices become more 

stochastic, uncertainty in the imitation model predictions should increase, resulting in 

emulation being favored. Conversely, if choices based on goal inference become more 

uncertain (and more difficult), the predictions of the emulation system should also become 

more uncertain (and less reliable), thereby favoring the imitation system.

To test this hypothesis, we designed a novel OL task (Fig. 1), in which changing 

experimental conditions allowed us to distinguish engagement of the two strategies, as 

prescribed by our model. Two groups of 30 participants, referred to as Study 1 (initial 

sample) and Study 2 (replication sample) completed the task while undergoing fMRI. The 

methods, computational modelling, behavioral analyses, fMRI pipeline, and results of Study 

1 were pre-registered before Study 2 data collection. This allowed us to reduce both modeler 

and experimenter degrees of freedom markedly, thus reducing the risk of overfitting and 

improving generalizability and reproducibility.

We predicted that participants’ behavior would be best explained by a mix of goal emulation 

and choice imitation, and that engagement of one strategy over the other would depend on 

volatility and uncertainty. We also hypothesized distinct neural signatures for the two 

strategies. Choice imitation was expected to recruit fronto-parietal regions of the mirror-

neuron system, namely pre-motor cortex, inferior parietal cortex, and dlPFC (Catmur et al., 

2009; Cook et al., 2014; Gazzola and Keysers, 2009; Rizzolatti and Craighero, 2004); and 

emulation was predicted to recruit regions of the mentalizing system, involved in goal 

inference (Fletcher et al., 1995; Frith and Frith, 2006; Van Overwalle and Baetens, 2009). 

Finally, we hypothesized overlapping neural arbitration mechanisms to those in the 

experiential domain: vlPFC and FPC driving trial-by-trial variations in the arbitration 
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controller (Lee et al., 2014), with possible involvement of regions of the social brain, such as 

the TPJ.

Results

In the task (Fig. 1A), participants see another agent choose between slot machines. The color 

proportions on each machine explicitly represent the probability of obtaining one of three 

tokens (red, green, blue) if that machine is chosen. Participants were instructed that only one 

of the tokens is valuable at each moment in time and that the valuable token switches many 

times throughout the task, but were not told which token is valuable nor when the switches 

occurred. On 2/3 of trials (‘observe’ trials), they observed another agent play through video, 

knew that this other agent had full information about the valuable token and was performing 

optimally. On 1/3 of trials (‘play’ trials), participants played for themselves. On each trial, 

one slot machine was unavailable and could not be chosen. Crucially, participants can learn 

by inferring which token is currently valuable and compute the relative values of slot 

machines based on the observable color distributions (goal emulation). Alternatively, they 

can simply imitate the agent’s prior behavior by choosing the action most frequently 

selected by the agent on recent trials (choice imitation). By varying the position of the 

unavailable machine across trials, we could separate the two strategies.

Importantly, the outcome monetary value was not revealed. While participants observed the 

outcome tokens, they could not tell their value just from observing their color. This ensured 

that they had to utilize inference within their emulation system to work this out, and that 

they could not rely on vicarious reward-learning, a third potential OL strategy in which one 

learns from another agent’s rewards as if experiencing them directly (Burke et al., 2010; 

Charpentier and O’Doherty, 2018; Cooper et al., 2012; Dunne and O’Doherty, 2013).

Study 1

Behavioral signatures of imitation and emulation—A logistic regression was run to 

test for the two strategies. Choice of left versus right slot machine on each ‘play’ trial was 

predicted by an action learning regressor (signature of imitation: past left versus right 

actions performed by the partner) and a token learning regressor (signature of emulation: 

probability to choose left over right slot machine given inferred token information; see 

Methods – Behavioral analysis for details). Both regressors significantly predicted choice 

(action learning β=0.865 ±0.80 (SD), T29=5.94; token learning β=1.174 ±1.00, T29=6.42; all 

Ps<0.0001; Fig. 2A), suggesting that behavior on the task is a combination of the two 

strategies.

Computational model of arbitration between choice imitation and goal 
emulation—To test for an arbitration mechanism, we compared 9 computational models, 

split into 5 classes (see Methods – Computational models of behavior for details). 

Emulation-only models (Models 1–2) rely on multiplicative inference over token values. 

Imitation-only models (Models 3–4) use RL to learn about the other agent’s past actions. 

Emulation RL models (Models 5–6) implement an RL mechanism rather than multiplicative 

inference. In arbitration models (Models 7–8), the likelihood of relying on one strategy over 

the other varies as a function of their relative reliabilities. An outcome RL model (Model 9) 
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tests whether participants mistakenly learn from the token presented at the end of the trial. 

Model comparison was implemented via between subjects out-of-sample predictive accuracy 

and group-level integrated Bayesian Information Criteria (iBIC) (Huys et al., 2011; Iigaya et 

al., 2016). Arbitration models were found to perform best (Table 1), with Model 7 exhibiting 

the highest out-of-sample accuracy and lowest iBIC, suggesting that an arbitration 

mechanism between imitation and emulation explained behavior better than each strategy 

individually. Finally, we tested whether the arbitration model could reliably recover 

behavioral signatures of imitation and emulation (Fig. 2A). To do so, we generated 

behavioral data for each subject using the winning model (Model 7), emulation Model 2 and 

imitation Model 3. Running the same logistic regression on the model-generated data, we 

found that the arbitration model reliably predicted both learning effects (Fig. 2C left). In 

contrast, the emulation model only predicted token learning (Fig. 2C middle) and the 

imitation model only predicted action learning (Fig. 2C right). Showing that the winning 

model is able to generate the behavioral effects of interest (Palminteri et al., 2017) confirms 

its validity and specificity.

Arbitration is influenced by uncertainty and volatility—Two factors were 

manipulated: volatility (frequency of switches in valuable token; Fig. 1B) and uncertainty 

(token color distribution associated with the slot machines; Fig. 1C). In volatile blocks, the 

partner’s actions become less consistent, predominantly taxing choice imitation and 

indirectly favoring emulation. Uncertainty in the token color distribution makes it more 

difficult to infer the best decision given the valuable token, while having no effect on the 

consistency of the partner’s actions. This should tax the emulation system and indirectly 

favor choice imitation. To test this, we extracted the model’s arbitration weight ω(t) values 

for each subject and each condition, representing the probability of emulation (over 

imitation). These are computed as a softmax of the reliability difference between the two 

strategies, added to a bias parameter δ (Eq. 14), characterizing each individual’s propensity 

to emulate (δ>0) or imitate (δ<0). As predicted, the arbitration weight was higher in volatile, 

low uncertainty (VL) trials (ω=0.604 ±0.26) than on stable, high uncertainty (SH) trials 

(ω=0.474 ±0.25; T29=15.22, P<0.0001; Fig. 3A). Across all 4 conditions (2-by-2 repeated-

measures ANOVA), there was a main effect of volatility (F1,29=61.2, P<0.0001) and a main 

effect of uncertainty (F1,29=267.3, P<0.0001), suggesting a moderating effect of both 

manipulations. Second, we compared the performance of imitation Model 3 and emulation 

Model 2, by calculating the mean likelihood (LL) of each model separately for each 

condition (Fig. 3C). Participants favor emulation when uncertainty in the token color 

distribution is low (emulation LL – imitation LL for SL trials = 0.051 ±0.047, T29=5.88; for 

VL trials = 0.059 ±0.061, T29=5.27; all Ps<0.0001). Choice imitation is favored when the 

partner’s actions are stable and uncertainty in the token color distribution is high (emulation 

LL - imitation LL for SL trials = −0.053 ±0.053, T29=−5.49, P<0.0001). There was no 

difference between strategies in volatile, high uncertainty trials (LL difference = 0.007 

±0.048, T29=0.74, P=0.46).

fMRI analyses of Study 1—Two fMRI models were used for Study 1 fMRI analysis: 

SPM GLM1 and GLM2 (see Methods – fMRI data modelling - preregistered). We tested for 

emulation-related (emulation reliability, update of token values, entropy over token values), 
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imitation-related (imitation reliability, imitation action value difference), and arbitration-

related signals (emulation – imitation reliability difference, chosen action value). A region of 

interest (ROI) analysis was performed (see Methods – Regions of interest) to generate 

hypotheses for Study 2 (Table S1). Whole-brain group-level T-maps were also evaluated, 

and uploaded on NeuroVault, before Study 2 data collection. Significant activation clusters 

for Study 1 (Table S2), were identified and saved as functional regions of interest for Study 

2. Results from both analyses are presented in Fig. 4 (arbitration signals), Fig. 5 (emulation 

and imitation signals).

The difference in reliability between choice imitation and goal emulation, predictive of trial-

by-trial arbitration, was tracked in four ROIs (Fig. 4A): dmPFC (β=0.383 ±0.89, T29= 2.37, 

P=0.012), bilateral TPJ (left: β=0.201 ±0.53, T29=2.10, P=0.022; right: β=0.277 ±0.59, 

T29=2.56, P=0.008) and right vlPFC (β=0.250 ±0.48, T29=2.86, P=0.004). Using whole-

brain group analyses, four significant clusters were found (all PFWE<0.05; Fig. 4C): right 

anterior insula, dorsal ACC, (partially overlapping with the dmPFC ROI), right IFG, and 

right angular gyrus (Table S2). At the time of choice, the chosen slot machine expected 

value was coded positively in the mOFC (β=0.110 ±0.28, T29=2.16, P=0.019) and negatively 

in the pre-supplementary motor area (preSMA; β=−0.144 ±0.29, T29=−2.74, P=0.005; Fig. 

4E). There was no cluster surviving correction for chosen action value in the whole-brain 

analysis.

Emulation reliability was represented in bilateral TPJ (left: β=0.172 ±0.55, T29=1.72, 

P=0.048; right: β=0.299 ±0.66, T29=2.46, P=0.010) and right vlPFC (β=0.320 ±0.50, 

T29=3.50, P=0.0008; Fig. 5A). In the whole-brain analysis, an additional cluster was 

identified encoding emulation reliability in the right anterior insula (Fig. 5C; Table S2). The 

KL divergence between prior and posterior token values, a key signature of emulation 

learning, was found during observation of the partner’s action in three regions (Fig. 5E): 

dmPFC (β=0.201 ±0.39, T29=2.84, P=0.004), preSMA (β=0.170 ±0.26, T29=3.62, 

P=0.0006) and dorsal striatum (β=0.043 ±0.12, T29=1.99, P=0.028). Whole-brain analyses 

revealed KL divergence of token values in the bilateral anterior insula, bilateral IFG, right 

supramarginal and inferior parietal cortex and preSMA extending into the dorsal ACC (Fig. 

5G; Table S2). Finally, imitation reliability was tracked in the mOFC ROI (β=0.387 ±0.58, 

T29=3.67, P=0.0005, Fig. 5I) and in a significant cluster spanning mOFC and vmPFC (Fig. 

5K; Table S2). Imitation reliability negatively correlated with a right inferior parietal cluster 

(Fig. 5K; Table S2).

For completeness, all pre-registered ROI results are reported in Table S1 and Figure S1, and 

whole-brain analyses in Table S2. The statistical significance of all ROI results for both 

Study 1 and Study 2 remained unchanged when using non-parametric permutation tests. Pre-

registration of computational models, model-fitting procedures, fMRI pre-processing 

pipeline and fMRI statistical models was conducted in advance of Study 2 data collection 

(https://osf.io/37xyq). We focused specifically on testing the replicability of Study 1 findings 

in both the behavioral and neuroimaging data.
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Study 2

Replication of behavioral and computational modelling results—Logistic 

regression testing for token learning and action learning strategies yielded the same results 

as in Study 1. Both regressors were found to significantly predict choice (action learning 

β=0.857 ±0.60, T29=7.78; token learning β=0.843 ±0.85, T29=5.42; both Ps<0.0001; Fig. 

2B).

Computational modelling revealed that the arbitration Model 7 also had the highest out-of-

sample accuracy of all pre-registered models (Table 1). While Model 7 had the lowest iBIC 

in Study 1, Model 8 had the lowest iBIC in Study 2. Models 7 and 8 are very similar; the 

only difference is the presence of a free parameter λ in Model 8, which represents trust in 

current token values and captures a tendency to overestimate volatility in the environment 

(see Methods). Given that Model 7 is a more parsimonious model, we kept it as our winning 

model in both studies to maintain consistency. Data generated using arbitration Model 7 in 

Study 2 can, similarly to Study 1, reliably predict both action learning and token learning 

effects (Fig. 2D). We also find a very similar pattern of results when using arbitration Model 

8 to generate data (Fig. S2A–B).

Finally, arbitration was influenced by uncertainty and volatility in the same way as in Study 

1. Action volatility increased the arbitration weight, while uncertainty in the token color 

distribution decreased it (high volatility & low uncertainty: ω=0.550 ±0.29; low volatility & 

high uncertainty: ω=0.434 ±0.29; difference: T29=10.97, P<0.0001; Fig. 3B). Across all 4 

conditions, there was a main effect of volatility (F1,29=47.3, P<0.0001) and a main effect of 

uncertainty (F1,29=124.8, P<0.0001), confirming the combined effect of both manipulations. 

Emulation was also favored when uncertainty was low, as shown by significantly positive 

emulation-imitation likelihood difference (SL condition = 0.050 ±0.043, T29=6.31; VL 

condition = 0.061 ±0.061, T29=5.49; all Ps<0.0001; Fig. 3D). Choice imitation was favored 

when uncertainty was high and partner’s actions stable, as shown by significantly negative 

emulation-imitation likelihood difference (mean = −0.045 ±0.081, T29=−3.04, P=0.0025). 

There was also no difference between imitation and emulation in volatile, high uncertainty 

trials (mean = 0.009 ±0.059, T29=0.90, P=0.37). These findings confirm that behavior is best 

explained by an arbitration model in which observers flexibly allocate control between two 

learning strategies depending on the environment.

Replication of emulation and decision value signals, but not imitation signals
—BOLD responses related to emulation were largely replicated in Study 2. Specifically, 

emulation reliability was significant in two of the three ROIs identified in Study 1 (Fig. 5B) 

– the left TPJ (β=0.195 ±0.55, T29=1.96, P=0.030) and the right vlPFC (β=0.186 ±0.39, 

T29=2.62, P=0.0069), but not in the right TPJ (β=0.137 ±0.78, T29=0.96, P=0.17). 

Emulation reliability was also significant in the right anterior insula functional ROI saved 

from Study 1’s whole-brain map (Fig. 5D; Table S2). KL divergence over token values was 

tracked in the same three ROIs (Fig. 5F): dmPFC (β=0.098 ±0.21, T29= 2.52, P=0.0087), 

preSMA (β=0.123 ±0.17, T29=3.91, P=0.00025) and dorsal striatum (β=0.033 ±0.085, 

T29=2.15, P=0.020). Examining functional clusters saved from Study 1, all six regions 

showed significant emulation update signals in Study 2 (Fig. 5H; Table S2): bilateral 
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anterior insula, bilateral IFG, right inferior parietal extending into supramarginal cortex, and 

preSMA/dorsal ACC. Entropy over token values, at the time of initial slot machine 

presentation on observe trials, was negatively represented in the mOFC (Study 1: β=−0.080 

±0.25, T29=−1.73, P=0.047; Study 2: β=−0.107 ±0.19, T29=−3.08, P=0.0023; Fig. S1A–B), 

suggesting the mOFC is more active when token values are more certain.

Decision values signals (expected value of the chosen slot machine on play trials) recruited 

the same ROIs in Study 2 (Fig. 4F), with positive value coding in mOFC (β=0.109 ±0.22, 

T29=2.70, P=0.0057) and negative value coding in preSMA (β=−0.135 ±0.22, T29=−3.38, 

P=0.0011). The reliability difference between the two strategies was found to replicate in 

two of the four ROIs identified in Study 1 (Fig. 4B) – left TPJ (β=0.182 ±0.38, T29=2.63, 

P=0.0068) and dmPFC (β=0.228 ±0.54, T29=2.31, P=0.014) – as well as in functional 

clusters in the dorsal ACC, right anterior insula, IFG and angular gyrus (Fig. 4D; Table S2).

However, when examining whether this signal was a true difference signal, by separately 

extracting emulation and imitation reliabilities from the ROIs, we did not find evidence for 

negative tracking of imitation reliability or representation of the two reliability signals in 

opposite directions in either study (Fig. S3). Instead, reliability difference signals were 

mainly driven by positive encoding of emulation reliability, suggesting that arbitration in the 

brain might rely more on emulation reliability than on imitation reliability. In addition, all 

signals pertaining to choice imitation did not replicate well in Study 2 – imitation reliability 

(all T29<1.49, all Ps>0.15; Fig. 5J and 5L) and the difference in imitation action values (Fig. 

S1D; Table S2).

Exploratory analyses: arbitration between emulation and simpler (1-step) choice imitation

Behavioral evidence—The lack of replicability of neural imitation signals led us to 

revise our model of arbitration and choice imitation. Specifically, our pre-registered 

imitation model did not account well for the experimental data, necessitating an alternative 

framework. Similarly, arbitration may rely less on imitation reliability than originally 

hypothesized and instead be exclusively driven by variations in emulation reliability. We 

tested these possibilities in a revised model. A simpler form of choice imitation (“1-step 

imitation”) was defined, such that out of the two available options on a given play trial, the 

slot machine most recently selected by the partner is chosen. Furthermore, arbitration was 

assumed to be driven solely by emulation reliability, such that if emulation reliability is high, 

participants will more likely rely on emulation, whereas if it is low, they will more likely 

default to choice imitation. While exploratory, we tested our new model on both independent 

datasets to confirm the robustness of our findings.

In both studies, this new arbitration model (Model 10) performed better than the pre-

registered winning model (Model 7), with higher out-of-sample accuracy (Study 1: 76.5%, 

Study 2: 76.2%) and lower iBIC (Table 1). Given that this simpler imitation strategy does 

not require a learning rate parameter, Model 10 is more parsimonious than Model 7, in part 

accounting for lower iBIC values. However, the improved accuracy suggests better out-of-

sample generalization in Model 10 than Model 7, possibly because Model 7 was overfitting, 

or Model 10 offers a more accurate account of the OL mechanism. Using data generated by 

this more parsimonious model, we recovered both action learning and token learning from a 
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simple logistic regression analysis (Fig. S2C–F), confirming the model validity. This 

suggests an arbitration process between inferring the valuable token and repeating the 

partner’s most recent choice, rather than integrating over recent choice history. In both 

studies, the bias parameter δ was not different from 0 (Study 1: mean δ=0.267 ±1.78, 

T29=0.82; Study 2: mean δ =0.0004 ±2.15, T29=0.001; P>0.4), suggesting that both 

strategies were overall equally relied upon.

Neuroimaging evidence—This revised arbitration process predicts trial-by-trial 

emulation reliability signals in the brain, as a driver of arbitration. Learning signals specific 

to each strategy should be observed at feedback, when the partner’s action is shown. For 

goal emulation, update was defined as the KL divergence over token values. For choice 

imitation, an update should occur when the most recently selected action is available on the 

current trial, but the partner chooses a different option. To test these predictions, we defined 

an additional fMRI model, SPM GLM3 (see Methods – fMRI data modelling - exploratory). 

Using Bayesian model selection (BMS), we confirmed that this new model performed better 

than the pre-registered model testing for neural signatures of imitation as an RL mechanism 

(SPM GLM2). In both studies, GLM3 was associated with the highest exceedance 

probability averaged across all grey matter voxels (Study 1: 0.861; Study 2: 0.946; Fig. S4), 

and in all but one of the pre-registered ROIs (Table S3). Thus, this new SPM GLM, based on 

the best performing model of behavior, also explained variations in BOLD signal best.

Variations in emulation reliability, calculated as in the pre-registered models, were 

represented in the same three ROIs: the right vlPFC (Study 1: β=0.253 ±0.48, T29=2.90, 

P=0.0035; Study 2: β=0.232 ±0.45, T29=2.84, P=0.0041), the left TPJ (Study 1: β=0.154 

±0.47, T29=1.80, P=0.041; Study 2: β=0.252 ±0.62, T29=2.23, P=0.017), and the right TPJ, 

albeit only at trend level in Study 2 (Study 1: β=0.284 ±0.62, T29=2.52, P=0.0088; Study 2: 

β=0.234 ±0.78, T29=1.65, P=0.055; Fig. 6A–B). Exploratory conjunction analysis also 

revealed significant clusters in the ACC, bilateral insula, and supramarginal gyrus (Fig. 6C; 

Table S4).

We found neural signatures of emulation update similar to the pre-registered results (Fig. 

7A–B), with significant effects in the dmPFC (Study 1: β=0.164 ±0.34, T29=2.63, P=0.0067; 

Study 2: β=0.112 ±0.23, T29=2.72, P=0.0054), preSMA (Study 1: β=0.135 ±0.24, T29=3.09, 

P=0.0022; Study 2: β=0.093 ±0.17, T29=2.96, P=0.0031), right TPJ, albeit only at trend in 

Study 2 (Study 1: β=0.062 ±0.18, T29=1.84, P=0.038; Study 2: β=0.073 ±0.24, T29=1.66, 

P=0.054), and dorsal striatum (Study 1: β=0.043 ±0.12, T29=2.00, P=0.027; Study 2: 

β=0.028 ±0.075, T29=2.07, P=0.024). Exploratory conjunction analysis confirmed this, and 

showed additional clusters in the bilateral insula, inferior frontal gyrus, and other 

frontoparietal regions (Fig. 7C; Table S4), overlapping with Neurosynth “mentalizing” map 

(Fig. 7D).

However, contrary to the pre-registered findings in which imitation signals were not 

replicated, here we find robust responses to when the partner’s current action marks a 

change from the previous action, consistent with the 1-step imitation strategy. This signal 

was found in the preSMA ROI (Study 1: β=0.083 ±0.16, T29=2.78, P=0.0047; Study 2: 

β=0.057 ±0.15, T29=2.14, P=0.021; Fig. 7E–F), consistent with a motor component of 
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action imitation. The conjunction analysis revealed regions involved in action observation 

and action preparation, preSMA, SMA, bilateral inferior parietal lobule (IPL), left motor 

cortex, and left dlPFC (Fig. 7G; see Table S4 for details), overlapping substantially with the 

Neurosynth “mirror” map (Fig. 7H).

Despite some overlap between the two update signals (preSMA ROI, bilateral IPL, left 

precentral gyrus), follow-up analyses (Fig. S5) suggest that activity in these regions uniquely 

contributes to each update process, consistent with a functional dissociation between the two 

strategies. Finally, other signals in this new SPM GLM3 were also significant across studies, 

such as responses to the partner’s last action being no longer available, representation of the 

propensity to choose according to emulation or to imitation during play trials, and token 

value coding (Fig. S6; Table S4).

Individual bias towards emulation is reflected in the strength of the emulation 
update signal—Examining individual brain-behavior differences revealed that the strength 

of the emulation update signal in four brain regions (dmPFC, bilateral IFG and right anterior 

insula) correlated with the value of the bias parameter (Fig. S7), suggesting those individuals 

with stronger emulation update signals are more biased towards emulation. There was no 

correlation between the bias parameter and imitation update signals, indicating that choice 

imitation in this task may be more of a default strategy that individuals rely on when they 

fail to engage emulation learning.

Discussion

Across two independent fMRI studies, we provide evidence for an arbitration process 

between two observational learning strategies: choice imitation and goal emulation. 

Behavior was best explained by a computational model in which choice is a hybrid of the 

two strategies, weighted by a controller driven by the reliability of emulation. Using model 

comparison, we show that this arbitration model performed better than models solely 

implementing one strategy. Despite imitation and emulation often making similar behavioral 

predictions, the present computational framework allowed us to adequately separate the two 

strategies. Nonetheless, we note that future optimizations of the task design could make the 

two strategies more distinguishable by increasing the proportion of trials in which behavior 

is consistent with one strategy, but not the other.

Our fMRI results show that learning signals associated with each strategy are represented in 

the brain during action observation. When the selected action differed from the previous 

trial, activity in premotor and inferior parietal cortex increased, possibly reflecting an update 

in the now-preferred action according to choice imitation. This activity substantially 

overlaps with regions of the human mirror neuron system (Catmur et al., 2009; Cook et al., 

2014; Rizzolatti and Craighero, 2004; see Fig. 7H), implying that imitation learning relies 

on observing an action and repeating that same action in the future. Emulation learning 

related to updating in token values was represented in a network of regions including the 

dmPFC, bilateral insula, right TPJ, IFG and dorsal striatum. The dmPFC and right TPJ 

likely implement mentalizing, by representing the agent’s goal (Frith and Frith, 2006; see 

Fig. 7D). Additional regions such as the dorsal striatum and IFG are implicated during social 
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learning, namely inverse RL (Collette et al., 2017), expertise learning (Boorman et al., 

2013), or tracking vicarious reward prediction errors (Cooper et al., 2012). The IFG and 

anterior insula play a role in attentional and executive control (Cieslik et al., 2015; 

Hampshire et al., 2010), possibly reflecting that emulation requires increased cognitive and 

attentional resources. These distinct signals suggest that the brain tracks decision values 

associated with each strategy in parallel, allowing individuals to deploy either strategy when 

needed.

We found that arbitration depends on trial-by-trial variations emulation reliability, monitored 

in a continuous fashion, leading to increased engagement of emulation when it is most 

reliable, rather than when the two strategies are difficult to distinguish. This could suggest 

that imitation is a default strategy, deployed when emulation becomes too difficult or 

uncertain. Arbitration regions may act as hubs whereby information relevant to imitation 

(e.g. from premotor or inferior parietal cortex) and emulation (e.g. from dmPFC or IFG) are 

dynamically integrated. While anatomical connectivity exists between these regions (Fan et 

al., 2016; Fig. S8), functional connectivity analyses may add insight into how the arbitration 

process is implemented at the network level. Furthermore, brain stimulation methods could 

help establish causal effects on behavioral markers of emulation and imitation. Notably, the 

right vlPFC region was also found to track reliability signals related to arbitration between 

MB and MF RL (Lee et al., 2014). However, here we found evidence for additional brain 

regions associated with OL arbitration not implicated in experiential arbitration, including 

the bilateral TPJ.

The finding that vlPFC tracks emulation reliability in the present study and MB/MF 

reliability in a past study (Lee et al., 2014), suggests partial overlap in the neural 

mechanisms of arbitration between OL and experiential learning. This could indicate a 

general role for the vlPFC in arbitrating between strategies, both across and within cognitive 

domains. An interesting question is whether the addition of outcome information, enabling 

vicarious RL, would shift the balance between other strategies. At the neural level, such 

three-way interactions may be mediated by the same arbitration circuitry.

It could be argued that emulation and imitation are mere implementations of MB and MF 

RL in an OL situation. However, by design, we excluded the possibility that a simple 

extension of MF RL into the observational domain – vicarious RL (Burke et al., 2010; 

Cooper et al., 2012) – can explain the findings. The tokens’ reward values are not revealed, 

thus a vicarious RL strategy, learning from rewards experienced by another agent, cannot 

succeed. Instead, choice imitation involves copying the choice last selected by the agent. 

Distinct to MF RL, it involves learning about actions rather than rewards, and does not 

include value computation. Second, MB RL does not typically involve the capacity for 

reverse inference – inferring the hidden goals of an agent based on observing that agent’s 

behavior (Collette et al., 2017). Instead, this type of inference, described as “inverse” RL 

(Ng and Russell, 2000), constitutes a distinct class of algorithms to that of MB RL. Third, at 

the neural level, mentalizing regions, such as the TPJ (Boorman et al., 2013; Collette et al., 

2017; Hampton et al., 2008; Hill et al., 2017), tracked both emulation and arbitration. These 

regions are not typically recruited in MB RL, suggesting a distinction between underlying 

neural circuits. Finally, brain regions implicated in choice imitation (premotor and inferior 
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parietal cortex) also do not cleanly map onto the areas involved in previous studies of MF or 

MB RL.

Our study focuses on specific forms of imitation and emulation. Imitation is concerned with 

copying another agent’s choice, rather than implementing the exact same sequence of finger 

movements. Our imitation framework is thus applied to the study of decision-making (Burke 

et al., 2010; Najar et al., 2019; Suzuki et al., 2012), and does not address the 

operationalization of imitation in which specific motor actions are reproduced from a 

demonstrator and relevant movement features are learned (Carcea and Froemke, 2019). 

Similarly, emulation in our task involves inferring which of three possible goals is pursued 

by another agent. While they may all rely on similar mechanisms, other implementations of 

emulation have focused on different types of social inference, such as inverse RL, trust 

learning, recursive belief inference, or strategic behavior (Collette et al., 2017; Devaine et 

al., 2014; Lee and Seo, 2016; Xiang et al., 2012). Several open questions remain for future 

work: How do specific implementations of imitation or emulation differ mechanistically? 

How adaptable is the proposed arbitration framework to these various operationalizations? 

Can it be generalized to explain complex, real-world learning situations?

Beyond shedding light on arbitration in OL, the present study is noteworthy for 

methodological reasons. Although replication is often recognized as the bed-rock for 

validation of scientific claims (Open Science Collaboration, 2012, 2015; Poldrack et al., 

2017), within-paper replications of fMRI studies are rare. Furthermore, in both 

computational modelling and fMRI, large datasets combined with high flexibility in analysis 

pipelines increase the risk that reported findings are invalidated by modeler and/or 

experimenter degrees of freedom (Carp, 2012; Daw, 2011; Simmons et al., 2011). We 

addressed this by implementing a replication study in which we pre-registered analysis 

pipelines for both behavioral and fMRI data, before obtaining a fully independent out-of-

sample test of our findings. Our computational model results and a substantial subset of our 

fMRI results were closely replicated even when analytical flexibility was virtually 

eliminated. Our MRI scanner was also upgraded from a Siemens Trio to Prisma between 

studies. Despite this, brain activity patterns for most contrasts were highly similar. Once 

flexibility in analyses is minimized, the replicability of fMRI studies can be established, 

even across platforms.

Those results that did not replicate pertained to the choice imitation system, as implemented 

via a choice history RL model. This motivated us to revisit our imitation model for a much 

simpler implementation, tracking which option the agent chose when that option was last 

available. Our fMRI results also suggested a modified arbitration process as imitation 

reliability did not feature in the arbitration signal. Thus, we implemented a new arbitration 

scheme that assigns control to emulation or imitation based on emulation reliability only. 

This revised model was found to clearly outperform the original in terms of fits to both 

behavior and BOLD responses; and neural signals pertaining to imitation and arbitration 

were well replicated across studies. Using knowledge about the quality of fMRI evidence to 

revisit our original hypotheses, we demonstrate how evidence from neural data can be used 

to inform computational and psychological theory. While exploratory, we suspect these 

additional analyses reveal robust mechanisms. Not only do they generalize across two 
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separate datasets, but there is also a direct link between the robustness of the behavioral 

model fits and of the fMRI results.

Imitation and emulation have been studied at length in psychology (Horner and Whiten, 

2005; Nielsen, 2006; Thompson and Russell, 2004; Whiten et al., 2009) and are of 

significance for many fields, from education to evolutionary psychology. Here we developed 

a novel paradigm and associated neuro-computational modelling approach to separate the 

mechanisms of imitation and emulation as OL strategies. We illuminate how these two 

strategies compete for control over behavior in a reliability-driven arbitration process.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Caroline Charpentier (ccharpen@caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty healthy participants (12 females, 18 males, mean age = 31.67 ± 4.94 (SD)) took part 

in Study 1 between November 2017 and January 2018. For the replication study (Study 2), 

33 healthy participants were recruited between October 2018 and January 2019. Three 

participants were excluded for excessive head motion in the scanner (N=1), incidental 

finding (N=1) and missing more than 20% of responses on the task (N=1). As preregistered, 

our final sample for Study 2 included 30 participants (12 females, 18 males, mean age = 

31.2 ± 8.15 (SD)). There was no age (t58=0.27, p=0.79) or gender difference across studies. 

All participants met MRI safety criteria, had normal or corrected-to-normal vision, no 

psychiatric/neurological conditions, and were free of drugs for 7 days prior to the scan that 

might potentially interfere with the BOLD response (cannabis, hallucinogenic drugs). They 

were paid $20 per hour, in addition to bonus money earned during the task ($5 to $8) 

depending on their performance. The research was approved by the Caltech Institutional 

Review Board, and all participants provided informed consent prior to their participation.

METHOD DETAILS

Experimental design.—Participants performed a task in which they have to choose 

between slot machines in order to maximize their chances of winning a valuable token 

(worth $0.10). They were instructed that there are 3 tokens available in the game (green, red, 

or blue) and that at any given time, only one token is valuable and the other two are worth 

nothing. When arriving to the lab, participants first completed an experiential version of the 

task (~5 minutes) in which the computer told them at the beginning of each trials which 

token is valuable. They were then presented with the 3 slot machines and instructed that the 

proportion of green, blue and red colors on each slot machine corresponds to the probability 

of obtaining each token upon choosing that slot machine. In addition, on each trial one of the 

slot machines was greyed out an unavailable; therefore, participants had to choose between 

the remaining two active slot machines.

Charpentier et al. Page 13

Neuron. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



During the main task (observational learning, Fig. 1A), participants were instructed that the 

valuable token would switch many times during the task, but they would not be told when 

the switches occur anymore. Instead, they would have to rely on observing the performance 

of another agent playing the task. On 2/3 of trials (‘observe’ trials), participants observed 

that other agent play and knew that this agent had full information about the valuable token 

and was therefore performing 100% correctly. On 1/3 of trials (‘play’ trials), participants 

played for themselves and the sum of all play trial outcomes was added to their final bonus 

payment.

Participants completed a practice of the observational learning task before scanning (2 

blocks of 30 trials), followed by 8 blocks of 30 trials of the task while undergoing fMRI 

scanning. Each block of 30 trials contained 20 observe trials and 10 play trials. The 

sequence of trials within each block was pre-determined with simulation in order to 

maximize learning. Block order was counterbalanced across subjects.

Four conditions were implemented in a 2 (stable vs volatile) by 2 (low vs high slot machine 

uncertainty) design across blocks. Volatility was manipulated by changing the frequency of 

token switches (Fig. 1B): there was one switch in the valuable token during stable blocks, 

and 5 switches during volatile blocks. Uncertainty associated with the slot machines was 

experimentally manipulated by changing the token probability distribution associated with 

each slot machine (Fig. 1C): [0.75, 0.2, 0.05] in low uncertainty blocks and [0.5, 0.3, 0.2] in 

high uncertainty blocks.

Trial timings are depicted in Fig. 1A. Trial type (“Observe” or “Play” printed on the screen) 

was displayed for 1s, immediately followed by the presentation of the slot machine for 2s. 

On observe trials, there was then a jittered fixation cross (1–4s), followed by the video 

showing the choice of the partner (around 2s). After another jittered fixation cross (1–4s), 

the token obtained by the partner was shown on screen for 1s. On play trials, the slot 

machine presentation was immediately followed by the onset of the word “CHOOSE” 

indicating participants they had 2s to make their choice. The chosen slot machine was 

highlighted for 0.5s, followed by a jittered fixation cross (1–4s) and the presentation of the 

token obtained by the participant. Finally, there was a jittered inter-trial interval of 1–5s. The 

procedure and task were exactly the same between Study 1 and Study 2.

Software.—The task was coded and presented using PsychoPy (Peirce, 2007) version 1.85 

under Windows. Behavioral analyses, including computational models, were run on Matlab 

(R2018a). MRI data was analyzed using FSL, ANTs and SPM12).

fMRI data acquisition.—For Study 1, fMRI data was acquired on a Siemens Magneto 

TrioTim 3T scanner at the Caltech Brain Imaging Center (Pasadena, CA), which was later 

upgraded to a Siemens Prisma 3T scanner before Study 2. The same 32-channel radio 

frequency coil was used for both studies. MRI acquisition protocols and sequences were also 

kept as similar as possible. For functional runs, 8 scans of 410 volumes each were collected 

using a multi-band echo-planar imaging (EPI) sequence with the following parameters: 56 

axial slices (whole-brain), A-P phase encoding, −30 degrees slice orientation from AC-PC 

line, echo time (TE) of 30ms, multi-band acceleration of 4, repetition time (TR) of 1000ms, 

Charpentier et al. Page 14

Neuron. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



60-degree flip angle, 2.5mm isotropic resolution, 200mm × 200mm field of view, EPI factor 

of 80, echo spacing of 0.54ms. Positive and negative polarity EPI-based fieldmaps were 

collected before each block with very similar factors as the functional sequence described 

above (same acquisition box, number of slices, resolution, echo spacing, bandwidtch and 

EPI factor), single band, TE of 50ms, TR of 4800ms (Study 1)/4810ms (Study 2), 90-degree 

flip angle. T1-weighted and T2-weighted scans were also acquired either at the end of the 

session or halfway through, both with sagittal orientation, field of view of 256mm × 256mm, 

and 1mm (Study 1)/0.9mm (Study 2) isotropic resolution.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis.—To test for the presence of the two learning strategies (choice 

imitation, based on learning from previous partner’s actions, versus emulation, based on 

learning from previous evidence about valuable token), a general linear model (GLM) was 

run using the glmfit function on Matlab. Specifically, the dependent variable was choice of 

left (coded as 1) or right (coded as 0) slot machine, and the two independent variables 

(regressors) were constructed as follows:

• Effect of past actions: for each previous observe trial between last switch in 

valuable token and current play trial, the other agent’s action was coded as +1 if 

the current left-most slot machine was chosen, −1 if it was unchosen or 0 if it 

was unavailable. The value of the regressor at each play trial was calculated as 

the sum of these past actions scores, which represents the accumulated evidence 

for the left slot machine given past actions chosen by the other agent.

• Effect of past tokens: for each previous observe trial between last switch in 

valuable token and current play trial, token information can be inferred (e.g. 

“green is the valuable token for sure”, or “the valuable token could be green or 

blue”). From this, the probability that the left (vs right) slot machine results in 

the valuable token was calculated based on token color distribution associated 

with each slot machine. The value of the regressor at each play trial was 

calculated as the sum of these probability differences, which represents 

accumulated evidence for the left slot machine given past token information.

We ran this GLM for each participant, averaged the resulting beta values across all 

participants and tested their significance with permutation tests (10,000 permutations), since 

data were usually not normally distributed across the sample.

Computational models of behavior.—As reported in the preregistration, a total of 9 

computational models of behavior were tested, split into 5 classes of models.

1) Approximate Bayesian Emulation Models:  In these models, emulation learning is 

based on a multiplicative update of the probability of each token being valuable, Vg, Vr, and 

Vb, for green, red, and blue tokens respectively. At t=0, all values are initialized at 1/3. The 

update occurs after observing the partner’s action (example for green token):

V g(t) = V g
prior(t) × PPA g(t) (Eq. 1)
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where PPA|g (t) is the probability of observing the partner’s action given that green is the 

valuable token on trial t. Given that the partner is always correct, PPA|g (t) equals either 1 or 

0.

The prior value is calculated as follows:

V g
prior(t) = λ × V g(t − 1) + (1 − λ) × V r(t − 1) + V b(t − 1)

2 (Eq. 2)

The parameter λ represents trust in current estimates of token values and allows for switches 

to happen by resetting reward probability of each token to a non-zero value on each trial. 

Our simulations showed that the value of this parameter that maximizes model’s inference 

performance changes when volatility is high (token switch frequency higher than 0.2, i.e. 

more than one switch every 5 trials). However, in our task, token switch frequency is 0.067 

per trial for stable blocks and 0.167 per trial for volatile blocks. In these conditions, the 

value of λ that maximizes performance is as close as possible to 1, but with a small leak to 

allow the values to be updated on the next trials. Therefore, we used λ=0.99. However, if 

participants overestimate volatility in the environment, a model with a smaller λ could 

capture behavior of such participants better. We thus tested two models: one with a fixed λ 
of 0.99 (Model 1) and one allowing the λ parameter to vary for each participant (Model 2).

Token values Vg, Vr, and Vb are then normalized so that they sum to 1 (Louie et al., 2013). 

Then the value of choosing each slot machine i (AV i
EM) is computed through a linear 

combination of token values and token probabilities (pg, pr, pb) given by the slot machine:

AV i
EM(t) = pg × V g(t) + pr × V r(t) + pb × V b(t) (Eq. 3)

Finally, decision value is calculated as a soft-max function of the difference in value 

between the two available slot machines on the current play trial.

Pleft(t) = 1
1 + e−β AV left

EM(t) − AV rigℎt
EM (t) (Eq. 4)

where β is an inverse temperature parameter, estimated for each subject.

2) Choice Imitation RL Models:  These models were implemented as reinforcement 

learning (RL) models in which the value of each action (left, middle or right) is updated 

after every observation depending on whether it was chosen by the partner or not. On the 

first trial, action values (AV) are initialized at 0. Actions chosen by the other agent are 

updated positively, while unchosen actions are updated negatively, both according to a 

learning rate α:

AV cℎosen
IM (t) = AV cℎosen

IM (t − 1) + α × 1 − AV cℎosen
IM (t − 1) (Eq. 5)

AV uncℎosen
IM (t) = AV uncℎosen

IM (t − 1) + α × −1 − AV uncℎosen
IM (t − 1) (Eq. 6)
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The learning rate α was either estimated as a fixed parameter for each subject (Model 3) or 

varied over time depending on recency-weighted accumulation of unsigned prediction errors 

with weight parameter η and initial learning rate α0 (Model 4) (Li et al., 2011; Pearce and 

Hall, 1980):

α(t) = η × 1 − AV cℎosen
IM (t − 1) + (1 − η) × α(t − 1) (Eq. 7)

Decision rule is implemented using Eq. 4.

3) Emulation RL Models:  Two additional models were defined to test the possibility that 

emulation is implemented as an RL process, rather than as a multiplicative update as 

described in Models 1 and 2. The value of each token (example below for the green token g) 

is initialized as 0, and updated based on a token prediction error (TPE) and a learning rate α:

V g(t) = V g(t − 1) + α × TPE (Eq. 8)

TPE =
1 − V g t − 1 if partner's action is consistent witℎ g being valuable

−1 − V g t − 1 if partner's action is inconsistent witℎ g being valuable

(Eq. 9)

Similarly to the imitation models above, the learning rate α was either estimated as a fixed 

parameter for each subject (Model 5) or varied over time depending on recency-weighted 

accumulation of unsigned prediction errors (|TPE|) with weight parameter η and initial 

learning rate α0 (Model 6).

Action values are then calculated from token values using Eq. 3, and decision rule is 

implemented using Eq. 4.

4) Arbitration Models:  Arbitration was governed by the relative reliability of emulation 

(REM) and imitation (RIM) strategies. REM is driven by the min-max normalized Shannon 

entropy of emulation action values (i.e. the slot machines action values AVi predicted by the 

Approximate Bayesian Emulation Models described above):

entropy(t) = − ∑i AV i
EM(t) × log2 AV i

EM(t) (Eq. 10)

REM(t) = 1 − entropy(t)−min entropy
max entropy − min entropy (Eq. 11)

RIM is driven by the min-max normalized unsigned action prediction error (APE):

APE(t) = 1 − AV cℎosen
IM (t) (Eq. 12)
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RIM(t) = 1 − APE(t) − min( APE )
max( APE ) − min( APE ) (Eq. 13)

Minimum and maximum entropy and |APE| values were obtained from practice trial data, by 

fitting the emulation-only and imitation-only model to that practice data and extracting the 

minimum and maximum values from the two variables.

This definition of reliability suggests that when entropy between slot machines is high 

(driven both by uncertainty about which token is valuable and by the uncertainty 

manipulation depicted in Fig. 1C), emulation becomes unreliable. When action prediction 

errors are high (driven by unexpected partner’s actions), imitation becomes unreliable.

Arbitration is then governed by an arbitration weight ω, implemented as a soft-max function 

of the reliability difference, with the addition of a bias parameter δ (δ>0 reflects a bias 

towards emulation, δ<0 reflects a bias towards imitation):

ω(t) = 1
1 + e− REM(t) − RIM(t) + δ (Eq. 14)

The probability of choosing the slot machine on the left is computed separately for each 

strategy:

• using Eqs. 1–4 for emulation (Pleft
EM), with either an optimal λ of 0.99 (Model 7) 

or an estimated λ parameter for each subject (Model 8), and with inverse 

temperature parameter βEM

• using Eqs. 5, 6 and 4 for imitation Plef
IM), with fixed learning rate α and with 

inverse temperature parameter βIM

Then the two decision values Pleft
EM and Plef

IM are combined using the arbitration weight ω:

Pleft(t) = ω(t) ⋅ Pleft
EM(t) + (1 − ω(t)) ⋅ Pleft

IM(t) (Eq. 15)

5) Outcome RL Model:  One last model we tested (Model 9) is the possibility that 

participants mistakenly learn from the token that is presented as an outcome at the end of the 

trial, instead of learning from the partner’s actions. This was implemented similarly to other 

RL models. The value of each token was updated positively every time that token was 

obtained as an outcome, either by the partner or by the participant, and negatively if that 

token was not obtained. Action values and decision value were then calculated using Eqs. 3 

and 4.

6) Exploratory Arbitration Model:  This model (Model 10) was defined to test the 

possibility that imitation is implemented as a simpler 1-step learning strategy in which the 

most recent partner’s action is repeated on the current trial. Specifically, the probability of 

choosing the left slot machine on each play trials according to imitation is calculated as 

follows:
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Pleft
IM(t) = 1

1 + e−βIM* AV L > R(t)  where AV L > R(t) =
1 if left action was last cℎosen by partner 

−1 if rigℎt action was last cℎosen by partner 
0 if no available action previously cℎosen 

The probability of choosing left according to emulation Pleft
EM(t) was defined as above (Eqs. 

1–4). Arbitration in this model was driven exclusively by the reliability of the emulation 

strategy (Eq. 11), with the arbitration weight ω calculated as a soft-max function of the 

emulation reliability, with the addition of a bias parameter δ. Then the two decision values 

Pleft
EM and Pleft

IM are then combined with arbitration weight ω like above (Eq. 15).

Model fitting and comparison.—As preregistered, model fitting and comparison were 

performed in two different ways to assess robustness of model-fitting results:

1) Using maximum likelihood estimation in Matlab with the fminunc function to estimate 

parameter estimated for each subject, followed by an out-of-sample predictive accuracy 

calculation to compare models. Specifically, for the accuracy calculation, subjects were split 

into 5 groups of 6 subjects, mean parameters were estimated for 4 groups (24 subjects) and 

tested on the remaining group (6 subjects). This was repeated for all groups, as well as for 

100 different groupings of subjects. Mean predictive accuracy (proportion of subjects’ 

choices correctly predicted by the model) for each model is reported in Table 1.

2) Using hierarchical Bayesian random effects analysis. Following (Huys et al., 2011; Iigaya 

et al., 2016), the (suitably transformed) parameters of each participant are treated as a 

random sample from a Gaussian distribution characterizing the population. We estimated the 

mean and variance of the distribution by an Expectation-Maximization method with a 

Laplace approximation. We estimated each model’s parameters using this procedure, and 

then compared the goodness of fit for the different models according to their group-level 

integrated Bayesian Information Criteria (iBIC, see Table 1). The iBIC was computed by 

integrating out individual subjects’ parameters through sampling. The full method is 

described in e.g. (Huys et al., 2011; Iigaya et al., 2016).

Posterior predictive analysis.—We tested that the winning model could reliably predict 

the behavioral effects obtained by simple GLM (see “Behavioral analysis” paragraph above), 

namely the effects of past actions and past tokens on current choice. To do so, we used 

individual subject’s parameters from the winning model (Model 7), as well as individual 

subject’s parameters from the simple emulation (Model 2) and imitation (Model 3) models, 

to generate hypothetical choice data for each participant using that participant’s trial 

sequence. We then ran the same GLM on the model-generated data for each participant, 

calculated the mean GLM betas across participants and repeated the process (data generation 

+ GLM fitting) 1000 times. The GLM betas from these 1000 iterations are plotted as 

histograms on Fig. 2C–D, together with the true effect on participants’ actual behavioral data 

(red point ± standard error).

We also examined our prediction that the use of imitation versus emulation strategies is 

modulated by volatility and uncertainty. To do so, we extracted the arbitration weight ω(t) 
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from Model 7 for each trial and each participant, and averaged it for each of the 4 conditions 

(Fig. 3A–B): stable/low uncertainty, volatile/low uncertainty, stable/high uncertainty, 

volatile/high uncertainty. Differences in arbitration weight across conditions were tested in a 

2-by-2 repeated-measures ANOVA. In a separate analysis, we compared the mean likelihood 

per trial of imitation (Model 3) and emulation (Model 2) for each of the 4 conditions (Fig. 

3C–D).

fMRI data preprocessing.—The same preprocessing pipeline was used in both studies. 

First, reorientation and rough brain extraction of all scans were performed using 

fslreorient2std and bet FSL commands, respectively. Fieldmaps were extracted using FSL 

topup. Following alignment of the T2 to the T1 (FSL flirt command), T1 and T2 were co-

registered into standard space using ANTs (CIT168 high resolution T1 and T2 

templates(Tyszka and Pauli, 2016)). Then an independent component analysis (ICA) was 

performed on all functional scans using FSL MELODIC; components were classified as 

signal or noise using a classifier that was trained on previous datasets from the lab; and noise 

components were removed from the signal using FSL fix. De-noised functional scans were 

then unwarped with fieldmaps using FSL fugue, co-registered into standard space using 

ANTs and skull-stripped using SPM imcalc. Finally, 6mm full-width at half maximum 

Gaussian smoothing was performed using SPM.

fMRI data modelling - preregistered.—Two separate GLMs were used to model the 

BOLD signal, incorporating an AR(1) model of serial correlations and a high-pass filter at 

128Hz. Regressors were derived from each subject’s best fitting parameters from the 

winning arbitration Model 7.

SPM GLM1: The first GLM was built to examine the neural correlates of arbitration and 

included the following regressors:

• Slot machine onset – observe trials (1), parametrically modulated by (2) the 

difference in reliability (REM − RIM), (3) the difference in available action values 

as predicted by the imitation strategy (AV left
IM − AV rigℎt

IM ), and (4) the entropy over 

the 3 token values as predicted by the emulation strategy (−∑token V · log2 V).

• Slot machine onset – play trials (5), parametrically modulated by (6) the 

difference in reliability (REM − RIM), and (7) the chosen action value (expected 

reward probability) as predicted by the arbitration model.

• Partner’s action onset – observe trials (8), parametrically modulated by (9) the 

difference in reliability (REM − RIM), and (10) the reduction in entropy over 

token values calculated as the KL divergence between prior and posterior token 

values predicted by the arbitration model.

• Token onset – observe trials (11), parametrically modulated by (12) the 

difference in reliability (REM − RIM), and (13) an observational reward 

prediction error (oRPE), calculated as the difference between the initial expected 

reward value given the chosen slot machine, and the posterior value of the token 

shown on screen (as predicted by the model).
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• Token onset – play trials (14), parametrically modulated by (15) an experiential 

reward prediction error (eRPE), calculated as described above. We hypothesized 

that the difference in reliability would not occur at this onset given that it is not 

associated with any learning (occurring only during observe trials) or choice 

(occurring earlier during play trials).

SPM GLM2: The second GLM was identical to the first except that each arbitration-related 

regressor was separated into its emulation (REM) and imitation (RIM) components. In 

addition, the chosen action value regressor used during play trials slot machine onset was 

replaced by two action value difference (chosen vs unchosen) regressors predicted by the 

imitation and emulation strategy separately. This model allowed looking for a neural 

signature of each strategy.

For both GLMs, trials from all 8 blocks were collapsed into one session in the design matrix. 

Regressors of no interest included missed choice onsets (if any) as well as 7 regressors 

modelling the transitions between blocks. All onsets were modeled as stick functions 

(duration = 0 s). All parametric modulators associated with the same onset regressors were 

allowed to compete for variance (no serial orthogonalization). GLMs were estimated using 

SPM’s canonical HRF only (no derivatives) and SPM’s classical method (restricted 

maximum likelihood).

First-level contrast images were created through a linear combination of the resulting beta 

images. For the reliability difference signal (SPM GLM1) and for individual reliability 

signals (SPM GLM2), first-level contrasts were defined as the sum of the corresponding beta 

images across all onsets where the parametric modulator was added. A global RPE signal 

was also examined by summing over the oRPE and eRPE contrasts.

fMRI data modelling - exploratory.—A third fMRI model, SPM GLM3, was defined to 

test the neural implementation of the behavioral arbitration Model 10, in which imitation is 

implemented as a simpler 1-step learning strategy of repeating the partner’s most recent 

action. The regressors were as follows:

• Slot machine onset – observe trials (1), parametrically modulated by (2) the 

reliability of emulation (REM), and (3) whether the partner’s previous action is 

available or not.

• Slot machine onset – play trials (4), parametrically modulated by (5) the 

reliability of emulation (REM), (6) whether the partner’s previous action is 

available or not, and the propensity to choose according to imitation (7) or 

according to emulation (8), as predicted by the arbitration model.

• Partner’s action onset – observe trials (9), parametrically modulated by (10) the 

reliability of emulation (REM), (11) the KL divergence between prior and 

posterior token values predicted by the arbitration model, and (12) whether the 

partner’s most recent action is repeated, not repeated or unavailable on the 

current trial, coded as 1, −1 and 0 respectively. Note that the two update 

regressors (KL divergence (11) and action change (12)) were only moderately 

correlated (mean R=0.348, corresponding to a shared variance R2=0.121), thus 
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making the dissociation between emulation and imitation update signals 

possible.

• Token onset – observe trials (13), parametrically modulated by (14) the 

reliability of emulation (REM), and (15) the value of the token shown on screen 

(as predicted by the model).

• Token onset – play trials (16), parametrically modulated by (17) the value of the 

token shown on screen (as predicted by the model).

Regions of interest.—Based on previous literature on observational learning (Collette et 

al., 2017) and arbitration processes between learning strategies (Lee et al., 2014), as well as 

the Neurosynth (http://neurosynth.org/) “Theory of Mind” meta-analysis map, the following 

8 ROIs were defined and pre-registered:

• Left and right TPJ/pSTS: two 8-mm radius spheres around peaks of the 

Neurosynth map: (−54,−53,22) and (58, −58,20) for left and right, respectively.

• Medial OFC: 8-mm radius sphere around peak of the Neurosynth map (2,49, 

−20).

• dmPFC: 8-mm radius sphere around peak activation tracking expected value in 

other-referential space(Collette et al., 2017): (0,40,40).

• Pre-SMA/dACC: 8-mm radius sphere around peak activation tracking entropy 

reduction (KL divergence(Collette et al., 2017): (−6,18,44).

• Left and right vlPFC: two 8-mm radius spheres around peak activations tracking 

maximum reliability of model-free and model-based learning(Lee et al., 2014): 

(−54,38,3) and (48,35, −2) for left and right, respectively.

• Dorsal striatum: anatomical bilateral caudate mask from AAL atlas(Tzourio-

Mazoyer et al., 2002).

Parameter estimates from the different contrasts in each ROI by extracting the mean signal 

across all voxels in the ROI for each subject, then averaging across subjects (Table S1). T-

tests were performed to establish significance, and were confirmed with non-parametric 

permutation tests (with 10,000 permutations) in all ROI analyses, since data were not always 

normally distributed across the samples. Because the goal of the ROI analysis in Study 1 

was to generate hypotheses prior to Study 2 data collection, we did not correct for multiple 

comparisons across the different ROIs. Instead, in our subsequent pre-registration for Study 

2, we selected significant ROIs in Study 1 to restrict the space of regions to examine in 

Study 2.

fMRI model comparison.—Model comparison and selection between SPM GLMs was 

performed using the MACS (Model Assessment, Comparison and Selection) toolbox for 

SPM (Soch and Allefeld, 2018) and included the following steps. For each subject and each 

model, cross-validated log model evidence (cvLME) maps were estimated. cvLME maps 

rely on Bayesian estimations of the models and Bayesian marginal likelihood to calculate, 

for each voxel, a voxel-wise cross-validated log model evidence for that model. Then, cross-
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validated Bayesian model selection(Soch et al., 2016) (cvBMS) was performed to compare 

GLMs. In cvBMS, second-level model inference is performed using random-effects 

Bayesian model selection, leading to voxel-wise model selection via exceedance probability 

maps. For each voxel in a grey matter mask, the exceedance probability was calculated as 

the posterior probability that a model is more frequent than any other model in the model 

space (Fig. S4). Exceedance probability was also averaged across voxels in the different 

ROIs (Table S3).

Group-level inference and conjunction analysis.—Second-level T-maps were 

constructed separately for each study by combining each subject’s first level contrasts with 

the standard summary statistics approach to random-effects analysis implemented in SPM. 

To assess the evidence for consistent effects across studies, conjunction maps were 

calculated with the minimum T-statistic approach (Friston et al., 2005) for each contrast of 

interest in the winning SPM GLM (Table S4), combining the second-level T-maps of each 

study. We thresholded conjunction maps at a conjunction P-value of Pconjunction<0.0001 

uncorrected, and minimum cluster size of 30 voxels, corresponding to a whole-brain cluster-

level family-wise error corrected P-value of PFWE<0.05. To examine the overlap of 

emulation and imitation signals with mentalizing and mirror-neuron networks, respectively, 

we used Neurosynth (Yarkoni et al., 2011) to extract uniformity test maps associated with 

the term ‘mentalizing’ (meta-analysis of 151 studies) and with the term ‘mirror’ (meta-

analysis of 240 studies). These maps reflect the degree to which each voxel is consistently 

activated in the corresponding studies. We then overlapped the emulation update map with 

the ‘mentalizing’ map (Fig. 7D) and the imitation update map with the ‘mirror’ map (Fig. 

7H).

Individual brain-behavior difference analysis.—Two second-level models were 

defined in SPM to examine whether individual variability in the bias parameter δ is 

correlated with emulation update or imitation update signals. The models combined data 

from both studies (N=60), included values of δ as a covariate of either the emulation update 

signal or the imitation update signal, and controlled for study group. Two maps were then 

examined, thresholded at P<0.001 uncorrected and minimum cluster size of 10 voxels: 

positive correlation between emulation update signal and δ (masked by the emulation update 

conjunction map; Fig. S7); negative correlation between imitation update signal and δ 
(masked by the imitation update conjunction map).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Replicable evidence for arbitration between choice imitation and goal 

emulation

• Control over behavior is adaptively weighted towards the most reliable 

strategy

• Distinct brain networks implement each strategy’s learning signals in parallel

• Arbitration is driven by variations in emulation reliability in rvlPFC, ACC and 

TPJ
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Figure 1. Task design.
(A) In observe trials (top), participants see the agent’s slot machine choices. The colors on 

each machine indicate the relative probability that a particular token will be delivered to the 

agent if that machine is chosen. One of the three slot machines is unavailable (greyed out) on 

each trial but the associated token probabilities remain visible. Participants know that one 

token is valuable (but not which one) and that the agent has full information and is 

performing optimally. The agent’s choice is indicated by a video and by the arm of the 

chosen slot machine being depressed. (B) The task contained 8 blocks of 30 trials, in a 2 

(stable/volatile) by 2 (low/high uncertainty) design. The background color in the table 

depicts which token (green, red or blue) is currently valuable (unknown to the participant). 

Block order was counterbalanced across subjects. Stable blocks had one switch in the 

valuable token occurred; volatile blocks had 5 switches. (C) In low uncertainty blocks, the 

token probability distribution was [0.75, 0.2, 0.05], making slot machine value computation 

less difficult than for high uncertainty slot machines, for which the distribution was [0.5, 0.3, 

0.2].
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Figure 2. Behavioral signatures of OL strategies.
(A–B) Choice predicted by regressors capturing past actions and of past token inference. In 

Study 1 (A) and Study 2 (B), both effects were significant, suggesting hybrid behavior 

between imitation and emulation. Dots represent individual subjects; the red bar represents 

the mean β value. T-test: * P<0.0001. (C–D) Test of how well the winning model 

(Arbitration Model 7), as well as simple emulation (Model 2) and choice imitation (Model 

3), capture the action learning (top) and token learning effects (bottom). Red data points 

depict the true effect from the data; histograms show the distribution of recovered effects 

from the model-generated data. Effects well recovered are shown in light blue; effects not 

well recovered in grey. In Study 1 (C) and Study 2 (D), the arbitration model (left) 

effectively captured both learning effects. Data generated by the emulation model (middle) 

only captured token-based learning; data generated by the imitation model (right) only 

captured action-based learning.
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Figure 3. Modulation of arbitration by volatility and uncertainty.
(A–B) Arbitration weight values ω (probability of relying on emulation over imitation), 

were extracted from the winning arbitration model for each trial and averaged for each 

subject and condition. The plots show, for Study 1 (A) and Study 2 (B), mean and 

distribution of ω for two conditions of interest: volatile/low uncertainty trials (green), and 

stable/high uncertainty trials (yellow). Dots represent individual subjects; the black bar the 

mean. T-test: *P<0.0001. (C-D) Mean per-trial emulation (Model 2) and imitation (Model 3) 

likelihood, plotted against each other separately for the 4 task conditions. In both Study 1 

(C) and Study 2 (D), most participants favor emulation (dots above the diagonal) when 

uncertainty is low (green & pink plots) but favor choice imitation (dots below the diagonal) 

when the environment is stable and uncertainty is high (yellow plot).
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Figure 4. Arbitration signals, pre-registered analyses.
Reliability difference (A–D) and chosen action value (E–F) signals were extracted from 

each pre-registered ROI. (A, E) Regions with significant signals in Study 1 (grey) were 

selected as hypotheses for Study 2. (C) Whole-brain map for the reliability difference signal 

was also examined in Study 1, with a cluster-forming threshold of P<0.001 uncorrected, 

followed by cluster-level FWE correction at P<0.05. Significant clusters were saved as 

functional ROIs to be examined in Study 2. No cluster survived correction for chosen value. 

(B, D, F) Green plots represent significant effects in Study 2, confirming a priori hypothesis 

from Study 1. White plots represent hypotheses not confirmed in Study 2. Dots represent 

individual subjects; the black bar the mean beta estimate. T-tests: * P<0.05, † P=0.052.
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Figure 5. Emulation and imitation signals, pre-registered analyses.
Emulation reliability (A–D), update in token values (E–H), and choice imitation reliability 

(I–L) signals extracted from each pre-registered ROI. (A, E, I) Regions with significant 

signals in Study 1 (grey) were selected as hypotheses and a priori ROIs for Study 2. (C, G, 
K) Whole-brain maps were examined in Study 1, with a cluster-forming threshold of 

P<0.001 uncorrected, followed by cluster-level FWE correction at P<0.05. Significant 

clusters were saved as functional ROIs to be examined in Study 2. (B, D, F, H, J, L) Green 

plots represent significant effects in Study 2, confirming the a priori hypothesis from Study 

1. White plots represent hypotheses that were not confirmed in Study 2. Dots represent 

individual subjects; the black bar the mean beta estimate. T-tests: * P<0.05.
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Figure 6. Neural representation of emulation reliability as an arbitration signal.
Trial-by-trial emulation reliability values from the winning arbitration Model 10, were added 

as a parametric modulator of the BOLD signal during both observe and play trials. (A–B) 

Using our preregistered ROIs, we found in Study 1 (A) and Study 2 (B) that this signal was 

represented in bilateral TPJ and right vlPFC. T-tests: * P<0.05, † P=0.055. (C) Exploratory 

whole-brain conjunction analysis between the second-level T-maps of Study 1 and Study 2 

shows additional clusters, including the ACC and bilateral insula (Table S4). Threshold at 

Pconjunction<0.0001 uncorrected, followed by whole-brain cluster-level FWE correction at 

P<0.05.
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Figure 7. Emulation and imitation update signals during observation.
KL divergence over token values (emulation update) and changes in the partner’s action 

relative to the previous trial (imitation update) were added as parametric modulators of the 

BOLD signal at feedback, competing for variance within the same model. (A, B, E, F) In 

both studies, we found significant emulation update signals in the dmPFC, preSMA, right 

TPJ and dorsal striatum ROIs (A–B) and significant imitation update signals in the preSMA 

ROI (E–F). T-tests: * P<0.05, † P=0.054. (C, G) Exploratory whole-brain conjunction 

analysis between the second-level T-maps of Study 1 and Study 2 shows additional clusters 

tracking emulation (C) or imitation (G) update (Table S4). Threshold at Pconjunction<0.0001 

uncorrected, followed by whole-brain cluster-level FWE correction at P<0.05. (D, H) 

Overlap of emulation and imitation signals with Neurosynth mentalizing (D) and mirror (H) 

maps, respectively.
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Table 1.
Computational model comparison.

Out-of-sample (OOS) accuracy was calculated in a 5-fold cross-validation analysis by estimating mean 

parameters in 4 groups of 6 subjects and calculating the accuracy of predicted behavior in the remaining 

group. Group-level integrated Bayesian Information Criteria (iBIC) values were calculated following 

hierarchical model fitting. See Methods for details. Numbers in bold: winning model out of preregistered 

models (1–9). Numbers in bold and italics: winning model across all 10 models.

Class Model # Parameters
OOS accuracy (%) Group-level iBIC

Study 1 Study 2 Study 1 Study 2

Preregistered models

Emulation inference
1 β 67.8 66.1 2416 2458

2 β, λ 68.3 67.9 2384 2368

Imitation RL
3 β, α 71.3 71.6 2448 2455

4 β, η, α0 70.5 69.8 2493 2472

Emulation RL
5 β, α 67.1 67.4 2610 2537

6 β, η, α0 65.4 64.8 2724 2597

Arbitration
7 βem, βim, δ, α 76.5 74.9 2296 2321

8 βem, βim, δ, α, λ 73.9 72.1 2367 2291

Outcome RL 9 β, α 58.7 58.5 3046 3052

Exploratory model Arbitration with 1-step IM 10 βem, βim, δ 76.5 76.2 2236 2241
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Behavioral data This paper https://osf.io/49ws3/

fMRI data (2nd level T-maps) This paper https://neurovault.org/collections/UBXVWSMN/

Software and Algorithms

PsychoPy v.1.85 (Peirce, 2007) https://www.psychopy.org/

MatlabR2018a MathWorks https://www.mathworks.com/

FSLv.5.0 (Smith et al, 2004) https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Advanced Normalization Tools (Avants et al., 2009) http://stnava.github.io/ANTs/

(ANTs)

SPM12 (Penny et al, 2011) https://www.fil.ion.ucl.ac.uk/spm/software/spml2/

MACS (Soch and Allefeld, 2018) https://github.com/JoramSoch/MACS

Neurosynth (Yarkoni et al., 2011) http://neurosvnth.org/

R Studio (with Rv. 3.6.1) RStudio Team https://rstudio.com/

ggplot2 (Wickham, 2016) https://ggplot2.tidyverse.org/

Brainnetome Atlas (Fan etal, 2016) http://atlas.brainnetome.org/index.html

Custom code (to run experiment and analyses) This paper https://github.com/ccharpen/ObsLearnarbitration
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