Skip to main content
. 2020 May 8;8(5):e15992. doi: 10.2196/15992

Table 1.

Performance metrics of the models.

Model Training data Test data

Accuracy Specificity Sensitivity MCCa AUCb
(95% CI)
Accuracy Specificity Sensitivity MCC AUC
(95% CI)
MLPc 0.97 1.00 0.00 0.00 0.60
(0.59-0.61)
0.97 1.00 0.00 0.00 0.57
(0.55-0.59)
MLPd 0.68 0.39 0.97 0.44 0.84
(0.83-0.85)
0.84 0.82 0.23 0.02 0.54
(0.53-0.55)
CNNe 0.97 1.00 0.00 0.00 0.58
(0.56-0.60)
0.97 1.00 0.00 0.00 0.55
(0.54-0.56)
CNNd 0.63 0.56 0.70 0.26 0.79
(0.78-0.80)
0.95 0.97 0.06 0.03 0.57
(0.59-0.61)
RNNf 0.97 1.00 0.00 0.00 0.58
(0.57-0.59)
0.97 1.00 0.00 0.00 0.56
(0.55-0.57)
RNNd 0.58 0.66 0.49 0.15 0.65
(0.64-0.66)
0.91 0.93 0.14 0.05 0.55
(0.53-0.57)

aMCC: Matthews correlation coefficient.

bAUC: area under curve.

cMLP: multilayer perceptron.

dTrained using synthetic minority oversampling technique data.

eCNN: convolutional neural network.

fRNN: recurrent neural network.