Table 1.
Performance metrics of the models.
Model | Training data | Test data | ||||||||
|
Accuracy | Specificity | Sensitivity | MCCa | AUCb
(95% CI) |
Accuracy | Specificity | Sensitivity | MCC | AUC (95% CI) |
MLPc | 0.97 | 1.00 | 0.00 | 0.00 | 0.60 (0.59-0.61) |
0.97 | 1.00 | 0.00 | 0.00 | 0.57 (0.55-0.59) |
MLPd | 0.68 | 0.39 | 0.97 | 0.44 | 0.84 (0.83-0.85) |
0.84 | 0.82 | 0.23 | 0.02 | 0.54 (0.53-0.55) |
CNNe | 0.97 | 1.00 | 0.00 | 0.00 | 0.58 (0.56-0.60) |
0.97 | 1.00 | 0.00 | 0.00 | 0.55 (0.54-0.56) |
CNNd | 0.63 | 0.56 | 0.70 | 0.26 | 0.79 (0.78-0.80) |
0.95 | 0.97 | 0.06 | 0.03 | 0.57 (0.59-0.61) |
RNNf | 0.97 | 1.00 | 0.00 | 0.00 | 0.58 (0.57-0.59) |
0.97 | 1.00 | 0.00 | 0.00 | 0.56 (0.55-0.57) |
RNNd | 0.58 | 0.66 | 0.49 | 0.15 | 0.65 (0.64-0.66) |
0.91 | 0.93 | 0.14 | 0.05 | 0.55 (0.53-0.57) |
aMCC: Matthews correlation coefficient.
bAUC: area under curve.
cMLP: multilayer perceptron.
dTrained using synthetic minority oversampling technique data.
eCNN: convolutional neural network.
fRNN: recurrent neural network.