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Four decades ago, it was identified that muramyl dipeptide (MDP),
a peptidoglycan-derived bacterial cell wall component, could dis-
play immunosuppressive functions in animals through mechanisms
that remain unexplored. We sought to revisit these pioneering ob-
servations because mutations in NOD2, the gene encoding the host
sensor of MDP, are associated with increased risk of developing the
inflammatory bowel disease Crohn’s disease, thus suggesting that
the loss of the immunomodulatory functions of NOD2 could contrib-
ute to the development of inflammatory disease. Here, we demon-
strate that intraperitoneal (i.p.) administration of MDP triggered
regulatory T cells and the accumulation of a population of tolero-
genic CD103+ dendritic cells (DCs) in the spleen. This was found to
occur not through direct sensing of MDP by DCs themselves, but
rather via the production of the cytokine GM-CSF, another factor
with an established regulatory role in Crohn’s disease pathogenesis.
Moreover, we demonstrate that populations of CD103-expressing
DCs in the gut lamina propria are enhanced by the activation of
NOD2, indicating that MDP sensing plays a critical role in shaping
the immune response to intestinal antigens by promoting a tolero-
genic environment via manipulation of DC populations.
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Crohn’s disease (CD) is an inflammatory bowel disease (IBD)
marked by severe, debilitating inflammation of the gastro-

intestinal tract. While the precise etiology of CD remains elusive,
single-nucleotide polymorphisms (SNPs) in more than 160 genes
have been identified as probable risk factors for the development
of the disease (1). Of these, mutations in NOD2 were the first
discovered and most strongly linked to the risk of development
of CD (2, 3). Three major coding variant SNPs—R702W,
G908R, and L1007fs—have been identified that together in-
crease the risk of an individual developing CD by 2–4× for
heterozygotes, and 20–40× for homozygotes and compound
heterozygotes (3), while other, less frequent risk-associated
variants of NOD2 with similar odds ratio values are continually
being discovered (4). NOD2 encodes an intracellular protein
expressed by a variety of cells of hematopoietic origin, as well as
a subset of nonhematopoietic cells such as intestinal epithelial
cells (5, 6). There, it serves as an intracellular bacterial sensor via
a leucine-rich repeat domain (LRR)-dependent detection of
muramyl dipeptide (MDP), a fragment of the peptidoglycan
polymer that is the primary component of the bacterial cell wall
(7). This leads to the formation of a multiprotein complex con-
taining a host of ubiquitin ligases and the essential scaffolding
protein Receptor-interacting Kinase 2 (RIPK2) (8), which in
many cell types is known to lead to the activation of downstream
proinflammatory pathways such as NF-κB and MAPK (9, 10).
Notably, this function is lost in cells harboring the major CD
susceptibility SNPs (11), as these SNPs are all found within the
MDP-sensing LRR domain of the protein (3).
While these functions play a vital role in the defense against a

number of pathogenic microorganisms (10, 12), it is counterintuitive

to link a loss of proinflammatory signaling to the development of
overt inflammation seen in patients with CD harboring NOD2
mutations. This raises the possibility that unexplored functions for
NOD2 activation exist that better explain its role in the develop-
ment of CD. Interestingly, long prior to its identification as the
activating ligand of NOD2, MDP was identified by a number of
groups as an in vivo immunomodulatory compound that was found
to be immunosuppressive when delivered at certain doses (13),
routes of administration (14), and later time-points following in-
jection (15). Moreover, this suppression appeared to be dependent
on T cells, suggesting that MDP may be involved in the generation
of a regulatory T cell response (16, 17).
In this study, we set out to reexplore these findings in order to

clarify whether NOD2 activation can indeed lead to immuno-
logical tolerance and to further explore the underlying mecha-
nisms behind this regulation. We demonstrate that activation of
NOD2 via systemic administration of MDP leads to an increase
in splenic regulatory T cells (Tregs) and a concomitant inhibition
of the immune response, but only after sufficient time has
elapsed to drive this response, as this phenotype is only apparent
at as many as 7 d postinjection. We provide evidence that this is
driven by the NOD2-dependent generation of immature classical
dendritic cells (cDC1) marked by the expression of the surface
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marker CD103, which have been widely associated with the
generation of a tolerogenic environment (18–20). Interestingly,
we show that this phenotype requires the NOD2-dependent
production of the cytokine GM-CSF, which has also been im-
plicated in CD pathogenesis in a number of ways, in particular
the emergence of its receptor as a CD genetic risk factor itself
(21, 22). This is a study that discovers a functional link between
NOD2 and GM-CSF, and these findings will open up further
avenues of exploration that could eventually lead to the cure of
this debilitating condition.

Results
Systemic Activation of NOD2 Leads to Subsequent Immunosuppression
via the Late Induction of Regulatory T Cells. To reexplore the pre-
viously described kinetics of NOD2-dependent immunosuppres-
sion, we chose to assess whether MDP can induce a time-
dependent appearance of regulatory T cells (Tregs). Notably, we
found no differences in splenic Treg proportions at early time
points postinjection of MDP (days 1 or 4, Fig. 1 A and B), but
observed a statistically significant increase in FOXP3-expressing
CD4 T cells in the spleens of mice 8 d postinjection with 50 μg of
MDP as compared to their vehicle-injected littermate controls
(Fig. 1C). Although this increase was marginal, these experiments
represented an assessment of the entire Treg repertoire, making
the contribution of an increase in a particular subset of Tregs
directed toward a specific antigen difficult to detect. We therefore

chose to determine the ability of MDP to affect antigen-specific
immune responses using the OT-1 and OT-2 transgenic mouse
systems. We adoptively transferred OT-1 (CD45.2/CD90.1) and
OT-2 (CD45.2) splenocytes expressing congenic surface markers
into CD45.1 WT recipients (Fig. 1D), vaccinated them with ul-
trapure ovalbumin in the presence or absence of MDP, and
assessed the proliferative T cell response to antigen reexposure 8 d
later. We found a significant dampening of the proliferation of
both transferred OT1 and OT2 cells, as measured by the absolute
number of OT1 and OT2 cells recovered from the spleen 3 d after
the secondary administration of ovalbumin (Fig. 1E). This differ-
ence was not likely due to an MDP-induced sequestration of
transferred cells in other tissues, as we found no accumulation of
OT1 or OT2 cells in the MLN, nor an accumulation of transferred
cells circulating in the bloodstream (SI Appendix, Fig. S1). Given
that we show here that MDP is capable of simultaneously stimu-
lating Treg populations while preventing the reexpansion of
antigen-specific T cells at later timepoints, these results support
the previously reported data that systemic administration of MDP
is capable of driving a time-dependent inhibition of T cell-
mediated immune responses.

Systemic Activation of NOD2 Up-Regulates CD103 Expression on
Splenic Dendritic Cells. The emergence of peripherally induced
Tregs in nonlymphoid tissues such as the intestine has been
widely attributed to signals derived from migratory dendritic cells
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(DCs) expressing the αE integrin CD103 (20, 23). Similarly,
lymphoid-resident DCs marked by CD8α and CD205, which are
developmentally related to peripheral CD103+ DCs (24), have
been shown to have similar properties with respect to their ability
to generate Tregs (19) and limit antigen-specific immune re-
sponses (25). Thus, we chose to examine the effects of in-
traperitoneal (i.p.) administration of MDP on the proportions
and surface phenotypes of DCs in various immunologic com-
partments to determine whether NOD2 activation promotes a
protolerant DC phenotype. Interestingly, we found that expres-
sion of CD103 was significantly up-regulated on DCs collected
from the spleen at 16 h after i.p. administration of 50 μg of MDP
(Fig. 2A). No such increases in CD103 expression were observed
in DCs collected from the thymus or MLN of the same mice (SI
Appendix, Fig. S2). Detailed analysis of the surface phenotype of
splenic DCs collected from mice injected with MDP revealed
that CD103 expression was up-regulated on DCs that coexpress
the surface molecules CD8α, CD205, CD24, XCR1, and
CLEC9a (a subset commonly referred to as cDC1), while ex-
pression of CD103 on DCs expressing CD11b and SIRPα
(cDC2) remained unchanged (Fig. 2B). Moreover, mice deficient
in the transcription factor Batf3, which is required for the dif-
ferentiation of the cDC1 lineage (26), were found to have
drastically lower levels of CD103 expression on splenic DCs at
baseline, and MDP injection failed to induce any changes in
CD103 status (SI Appendix, Fig. S3), indicating that MDP
modulated CD103 expression on true cDC1 cells. Importantly,
the CD103+ subset of cDC1 in particular has been found to be
specifically crucial for the development of peripheral self-

tolerance (18). As has previously been described by Yamazaki
et al. (19), we found that CD205+CD8α+ DCs purified by FACS
and loaded with ovalbumin spontaneously converted naïve OT2
T cells into Tregs in a TGF-β–dependent manner (SI Appendix,
Fig. S4). While this ability was not further augmented by MDP
treatment and the resulting up-regulation of CD103, these data
reveal a method by which MDP is capable of obviously modu-
lating the phenotype of a tolerance-inducing cell type, which
warranted our further exploration.

The Induction of CD103 on the Surface of Splenic cDC1s Is Dependent
on Nod-Like Receptor Activation. Our next aim was to determine
whether this phenotype was a hallmark of DC activation by mi-
crobial products in general, or if it was specific to activation of
peptidoglycan-sensing NOD-like receptors (NLRs). We found
that i.p. injection with 50 μg of FK156, a synthetic agonist of
NOD1, induced a similar induction of CD103 expression on
CD205+/CD8α+ DCs (Fig. 3A, see SI Appendix, Fig. S5 for
gating strategy). Conversely, injection of the Toll-like receptor
(TLR) ligands LPS (TLR4, 1 μg) and Pam3Csk4 (TLR2/1, 20 μg)
induced a significant decrease in not only the proportions of
cDC1s expressing CD103, but also the absolute number of cDC1
that could be found in the spleen 16 h postinjection (Fig. 3A), a
phenomenon that has previously been noted by Qiu et al. (18). In
the case of LPS, the disappearance of cDC1s could be induced by
doses as low as 100 ng (SI Appendix, Fig. S6). Similarly, no sig-
nificant up-regulation in CD103 expression was seen following
injection with flagellin (TLR5, 20 μg) or zymozan (TLR2/6,
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10 μg), suggesting that this phenomenon is indeed specific to
NOD1/2, rather than TLR activation (SI Appendix, Fig. S7).
To verify the specific requirement of NLRs for this phenom-

enon, we injected Nod1−/− and Nod2−/− mice with either MDP or
FK156 and compared the resulting level of CD103 expression on
splenic cDC1s to that found in heterozygote littermates treated
in the same manner. We found that NOD1 and NOD2 activation
of cDC1s operates selectively and independently, as MDP fails to
induce CD103 expression on splenic cDC1s in Nod2−/− mice but
is active upon injection into Nod1−/− mice, while the inverse is
true for FK156 (SI Appendix, Fig. S8 A and B). Additionally,
mice that are deficient in RIP2—a serine-threonine kinase re-
quired for the downstream signaling of both NOD1 and NOD2
—failed to induce CD103 expression upon injection with MDP,
providing further support that this phenomenon occurs via ca-
nonical NLR signaling (SI Appendix, Fig. S8C).

The Up-Regulation of CD103 on Splenic cDC1s Is Dependent on
Activation of NOD2 in Nonhematopoietic Cells. To determine the
role that DCs themselves play in this phenomenon, we employed
the Cre-lox system to generate DC-specific Nod2 knockout mice
as described and characterized previously (27). To our surprise,
there was no difference in CD103 up-regulation on splenic
cDC1s in response to MDP injection between CD11ccreNod2fl/fl

(Nod2ΔDC) mice and their Nod2fl/fl littermate counterparts
(Fig. 4A), indicating that this phenotype is not a result of rec-
ognition of MDP by DCs themselves, but rather by an in-
termediary cell type that produced an additional factor in order
to signal to the DCs. We then modified our conditional knockout
model to include cells of the myeloid immune lineage by
employing the Lys2cre mouse, which has been shown to induce

genetic knockout in macrophages, neutrophils, and some
monocytes and DCs (28). Once again, Lyz2creNod2fl/fl

(Nod2Δmyeloid) mice displayed no difference from their Nod2fl/fl

littermates in the up-regulation of CD103 on cDC1s following
administration of MDP (Fig. 4B). We did, however, observe a
failure to recruit neutrophils to the peritoneal cavity following
MDP administration in the same cohorts of Nod2Δmyeloid mice
(SI Appendix, Fig. S9), verifying that the NOD2Δmyeloid mouse
was indeed functional. Neutrophil recruitment upon activation
by MDP is a hallmark of NOD2 signaling (29), and the loss of
this phenotype in the NOD2Δmyeloid mouse despite the persis-
tence of up-regulated cDC1 CD103 indicates that these phe-
nomena are occurring via divergent biological pathways. To
support this, and to clarify whether bone marrow-derived cells
are at all involved in the CD103 phenotype that we observed, we
performed bone marrow chimera studies in which bone marrow
from Nod2-sufficient mice was transferred into lethally irradi-
ated Nod2-knockout mice, and vice versa, before injection with
MDP or vehicle. This resulted in elevated and variable levels of
CD103 on cDC1s in all treatment groups, likely as a result of the
irradiation procedure itself. However, only Nod2-sufficient mice
receiving Nod2-knockout bone marrow responded to MDP in-
jection with a clear and statistically significant up-regulation of
CD103 on cDC1s (Fig. 4D), indicating that this phenotype was
largely dependent on NOD2 activity in nonhematopoietic,
radioresistant stromal cells.

The Up-Regulation of CD103 on cDC1s in Response to NOD2 Activation
Is Dependent on the Cytokine GM-CSF. Given that these effects of
MDP on DCs required the activation of NOD2 by a non-DC cell
type, we set out to identify an intermediate messenger that could
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transduce this signal from the detecting cell to DCs. The cyto-
kine GM-CSF represented an excellent candidate for this func-
tion, as it has been previously shown to affect the levels of
CD103 expression on splenic cDC1s (30), as well as to induce
CD103 on Batf3-dependent DCs generated in culture from bone
marrow (31). Accordingly, we found that i.p. injection with GM-
CSF produced a splenic cDC1 phenotype very similar to that
induced by activation of NOD2 (Fig. 5A). To determine if these
two factors are involved in the same biological pathway, we in-
jected Csf2−/− (GM-CSF knockout) mice with MDP and found
that these mice failed to up-regulate CD103 on splenic cDC1s
(Fig. 5B), indicating that NOD2 and GM-CSF are indeed acting
in concert to impact the activation status of splenic cDC1s.
Moreover, in agreement with previous reports (30), Csf2−/− mice
displayed a consistently diminished proportion of CD103-
expressing splenic cDC1s, indicating that this factor is vital for
cDC1 homeostasis in the spleen. While the precise cellular
source of GM-CSF remains to be determined, qPCR analysis
revealed an immediate and robust induction of Csf2 expression
within the parietal peritoneum, the membrane encapsulating the
peritoneal cavity, following injection with MDP into the peritoneal
cavity (Fig. 5C). This induction of gene expression was absent in
the spleen, suggesting that GM-CSF is produced at the site of
NOD2 activation and not in the vicinity of the affected cDC1s.
If GM-CSF–dependent induction of CD103+ DCs is indeed

required for the development of MDP-mediated tolerance to
antigen reexposure, then it would follow that Csf2−/− mice in-
jected with MDP would fail to suppress the secondary T cell
expansion as we had seen previously. We therefore subjected
these mice to the same treatment protocol outlined in Fig. 1 and
compared the results to Csf2+/− littermate controls. We found
that CD8 T cell expansion in response to a second exposure to

ovalbumin was highly augmented in the Csf2−/− mice, regardless
of treatment with MDP, suggesting that these mice are deficient
in mechanisms that negatively regulate T cell activation
(Fig. 5D). Moreover, the transplanted OT1 cells were more likely
to take on a KLRG1+CD127− surface phenotype (Fig. 5D),
which is typically associated with a short-lived effector cell
(SLEC), a cytotoxic T cell phenotype typically associated with
highly inflammatory environments such as acute viral or bacterial
infection (32). Thus, our data support the idea that NOD2 ac-
tivation can boost an immunosuppressive environment through
the induction of GM-CSF, thereby limiting the immune response
to self and innocuous foreign antigens.

cDC1s Activated by the NOD2/GM-CSF Axis Resemble Newly Differentiated
and Immature DCs. To better understand the precise function of
CD103-expressing cDC1s stimulated by NOD2 activation through
GM-CSF, we performed microarray transcriptome profiling analysis
on purified splenic cDC1s from PBS and MDP-treated mice. The
DCs were further subdivided into CD103-high and CD103-low
expressing populations by FACS in order to determine whether
the CD103-expressing DCs present at baseline were similar to those
induced by MDP injection (see Fig. 6A for gating scheme). In total,
we found 302 genes that varied significantly between any of the four
groups according to ANOVA followed by the Holm–Bonferroni
method to correct for multiple testing. These changes were only
modest, with only a small number of genes exhibiting changes of
greater than 1.6-fold when comparing MDPhi to the other groups (SI
Appendix, Fig. S10A). Gene ontology enrichment analysis suggested
that when omitting multiple testing correction, genes found to be up-
regulated in the MDPhi group tended to be involved in the regula-
tion of cell division and the cell cycle, while genes found to be de-
creased in the MDPhi group tended to be involved in immunity and
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inflammation (SI Appendix, Fig. S10B). With this in mind, we per-
formed a more thorough gene-set enrichment analysis using the
expression level of all transcripts assessed by the microarray and
found that a number of cell cycle-associated pathways were signifi-
cantly enriched (false discovery rate [FDR] < 0.05) in MDPhi DCs as
compared to DCs from the other three groups (Fig. 6B). Similarly, a
number of gene-set pathways typically associated with the immune

system and inflammatory signaling were significantly decreased in
the same cells (Fig. 6B). We then took the top 100 positively and
negatively ranked genes according to their enrichment score and
performed cell-type enrichment analysis to determine whether the
modifications in gene expression induced in MDPhi DCs resembled
the expression signature of a non-cDC1 cell type. We found that the
genes that tended to be up-regulated in MDPhi DCs were typically
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expressed in a number of immature, progenitor-type cells, while the
genes that tended to be down-regulated were those associated with
the classical cDC1 signature (Fig. 6C). Taken together, these two
analyses indicated that the CD103hi cDC1s induced by injection with
MDP were immature as compared to the cDC1s found at the steady
state and had likely recently differentiated from progenitor cells
under the control of GM-CSF. To test this, we administered the
nucleotide analog BrdU to PBS- and MDP-treated mice to assess
whether their splenic cDC1s had undergone cell division during the
period after treatment. We found that the splenic CD103+ cDC1s
that can be found under homeostatic conditions were largely BrdU-
negative, indicating that these cells are stably nonproliferative, while
CD103− cells exhibited moderate levels of proliferation (Fig. 6D).
After MDP injection, however, ∼50% of CD103+ cDC1s were
positive for BrdU, suggesting that MDP injection leads to the gen-
eration of new cDC1s. This is in line with our data suggesting that
MDP leads to the up-regulation of GM-CSF expression, as this cy-
tokine is known to induce the expansion of DCs in vivo (33)

NOD2 Activation Manipulates DC Populations in the Intestine. While
the spleen remains a useful model organ in which to characterize
this phenomenon, examining the effects of NOD2 activation on
DC populations in the intestine is of utmost importance given
the known contribution of NOD2 polymorphisms to the devel-
opment of CD. We therefore chose to determine how MDP and
GM-CSF could act in concert to manipulate cDC1 populations
in the gut, in particular due to the known role of CD103-
expressing cDC1s in intestinal tolerance (34). GM-CSF has
been shown to be required for optimal overall proportions of
CD103 DCs in both the small and large intestine (35), but the
specific contributions of cDC1s and cDC2s to this deficit in
Csf2−/− mice is unclear. We found that in the colonic lamina
propria (LP), CD103 expression was nearly entirely restricted to
XCR1+ cDCs1, and this expression was significantly diminished
on XCR1+ DCs in Csf2−/− mice (Fig. 7A), illustrating the im-
portance of this cytokine on cDC1 CD103 expression in pe-
ripheral tissues as well. Given the link we identified between
MDP and GM-CSF for splenic DCs, we next chose to see if
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boosting levels of available MDP was capable of modulating
proportions of colonic CD103-expressing DCs. Indeed, in-
stillation of 100 μg of MDP directly into the colon of WT mice
via rectal catheter led to a significant increase in the proportion
of CD103+CD11b− DCs (Fig. 7B) in the colonic LP. Notably,
this increase was largely explained by an increase in the pro-
portion of XCR1+ DCs expressing CD103, verifying that this was
indeed due to the effects of MDP exposure on cDC1s (Fig. 7B).
Accordingly, and similar to what was observed in the parietal
peritoneum following i.p. injection of MDP, we observed a
strong but not statistically significant trend toward increased Csf2
expression in whole-thickness colonic tissue sampled from the
site of exposure 2 h postadministration (SI Appendix, Fig. S11).
We saw similar effects in the MLN following rectal MDP ex-
posure, suggesting either that these cells can migrate to local
lymphoid organs or that the signal resulting in increased CD103
expression can be transduced from the colon to the MLN
(Fig. 7C). Additionally, when an intrarectal bolus of MDP was
delivered into mice in 50% ethanol, we observed a significant up-
regulation of surface CD103 expression on splenic cDC1s as well
(Fig. 7D). As this delivery method is likely to induce a breach of
natural barrier mechanisms of the intestine, thereby increasing
exposure of the body proper to MDP, these results suggest that

activation of the NOD2/GM-CSF axis can be limited to local
immune compartments or systemically widespread depending on
the route of exposure to MDP.
In addition to administering purified exogenous MDP to

modulate intestinal DC populations, we further examined this
event in a more physiologically relevant manner by inducing a
transient breach in the intestinal barrier via rectal administration
of 50% ethanol. This treatment has long been recognized to lead
to increased permeability of the intestine to macromolecules,
including microbes and their potentially immunomodulatory
products, such as peptidoglycan (36). Thus, we chose to assess
the effects of peptidoglycan sensing following barrier breach on
gut DC populations by administering ethanol to NOD1 and
NOD2 signaling-deficient Rip2−/−mice. We found that ethanol
administration resulted in a significant increase in the proportion
of total DCs in the colon 3 d posttreatment in both Rip2−/− mice
and their heterozygote littermate controls, although the increase
was less drastic in the Rip2−/− group (Fig. 8A). To examine if this
difference was due to differential changes in specific subtypes,
we subdivided these cells into CD103-expressing cDC1s
(CD103+CD11b−) and cDC2s (CD11b+) and found that Rip2+/−

mice exhibited a trend toward increased proportions of CD103+

cDC1s, while Rip2-deficient animals exhibited a significant
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preferential recruitment of cDC2s (Fig. 8B), leading to a sig-
nificant decrease in the ratio of CD103/CD11b DCs in the co-
lonic LP of these mice following a breach in the intestinal barrier
(Fig. 8C). We then chose to determine if these changes in in-
testinal DC populations were associated with any notable alter-
ations in the composition of the intestinal Treg milleu. Indeed,
we found that intrarectal ethanol administration led to a notable
increase in the proportion of colonic FoxP3+ CD4 T cells 3 d
postinjection in Rip2-sufficient animals, while this increase was
not apparent in Rip2-deficient mice (Fig. 8D). This phenotype
mirrors the changes that were observed for colonic cDC1s fol-
lowing exposure to ethanol, suggesting that these phenotypes
may be related. These data suggest that NOD1 and NOD2 sig-
naling are vital for the maintenance of cDC1 populations in the
gut following a period of increased permeability, and a loss of
this balance could potentially lead to the skewing of the immune
environment toward an aberrant inflammatory state.

Discussion
The generation of an appropriate immune response requires a
delicate balance of response and regulation in order to eliminate
threats while at the same time avoiding long-lasting and un-
necessary damage to the self. To manage this balance, a number
of regulatory mechanisms have evolved in living systems that
prevent perpetual responses to foreign material that is constantly
present, and also to assist in the return of the system to its ho-
meostatic state once the foreign material has been removed. In
many cases, these mechanisms are dependent on the products of
inflammation itself, which results in the production of signals
that act as a rheostat or brake, instructing the system to begin
contracting the inflammatory machinery (37). In this study, we
describe one such system where a stimulus that is generally
considered to be proinflammatory—the detection of invading

bacteria by the intracellular pattern receptor NOD2—leads to
the eventual generation of an immunosuppressive response in
the form of increased regulatory T cell activity.
NOD2 activity is closely associated with aberrant inflammation,

as mutations in NOD2 confer the strongest statistical association
with the development of CD of any known locus (38). This pre-
sents somewhat of a paradox, as these disease-associated alleles
are known to result in an inability of NOD2 to generate a response
to ligation by MDP and should therefore be antiinflammatory
themselves. However, it is important to note that the types of
immune responses generated by activation of NOD2 vary signifi-
cantly depending on the nature of the activation being observed
(39, 40). It is likely that different doses of MDP, time periods of
incubation, or experimental settings can result in seemingly highly
differential roles in the adaptive immune response for NOD2
activation in vivo. High doses of MDP at early time points are able
to drive proinflammatory responses driven by cytokine production
and antimicrobial effector responses. At later time points, once
the majority of the invading threat has been cleared from the
environment, the previous NOD2 activation sets the environment
up for resolution, potentially via the generation of tolerance-
mediating DCs.
Interestingly, the observations we present here are in agree-

ment with what has been previously reported for injection with
Complete Freund’s Adjuvant (CFA), which induces an early
Th1-type response that closely models autoimmunity but even-
tually leads to the generation of a late suppressor-cell response
(41). In fact, CFA injection has been shown to prevent the onset
of the T cell-dependent Non-Obese Diabetic model of diabetes
via the generation of a robust regulatory T cell response (42, 43)
and can do so with as little as a single administration (44). No-
tably, the primary bioactive component of CFA is heat-killed
Mycobacterium tuberculosis particles, and the minimal structure
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required to replicate the adjuvant activity of CFA has long been
recognized to be MDP (45), suggesting that NOD2 activation
may be the driving mechanism behind this phenomenon.
Similarly, GM-CSF signaling appears to be contextual with

respect to its effects on the immune response. On the proin-
flammatory side, GM-CSF is thought to play a critical, driving
role in the pathogenesis of multiple models of experimental
disease, including multiple sclerosis (46) and glomerulonephritis
(47). However, GM-CSF is also widely reported to be immu-
nosuppressive via the generation of tolerogenic DCs (48) and is
capable of significantly ameliorating experimental colitis (49).
Similarly, knockout models show that GM-CSF deficiency leads
to a significant exacerbation of intestinal disease (50). This can
potentially be explained by its role in the maintenance of the DC/
Treg axis in the gut, as Csf2−/− mice have been shown to display
decreased proportions of intestinal CD103+ DCs, leading to
decreased numbers of Tregs and a loss of tolerance to orally-
delivered antigens (35). Enticingly, much like what was seen with
CFA, injection with GM-CSF has been shown to be capable of
delaying the onset of diabetes in the Non-Obese Diabetic model
in a DC and Treg-dependent fashion (51), providing more evi-
dence that NOD2 and GM-CSF act in concert to promote
immunological tolerance.
Along those lines, we have shown here that the decreased

numbers of CD103-expressing DCs in the gut of Csf2−/− mice can
be explained by a decrease in the overall proportion of XCR1+

DCs expressing CD103. While we did not see a similar pheno-
type in Rip2−/− mice, it is likely that there are multiple pathways
that can lead to GM-CSF production in the gut, and it is possible
that the pathways required for homeostatic maintenance of GM-
CSF and, therefore, DC CD103 expression, are NOD2 signaling-
independent. In fact, our data does not necessarily indicate that
GM-CSF production is being directly induced by NOD2 activa-
tion, as we did not observe a definitive, NOD2-dependent
stimulation of GM-CSF production by a specific cell type in
our model, and it may be that stromal cell-based NOD2 activa-
tion leads to the production of an unidentified messenger that
stimulates GM-CSF production by an additional cell type. That
said, stromal cells isolated from the intestinal lamina propria
express both NOD1 and NOD2 (52), and similar cells produce
GM-CSF in a microbiota-dependent manner (53). Thus, GM-
CSF–mediated modulation of intestinal DCs likely occurs
through signal input from multiple cell types, depending on the
source and nature of the microbial challenge that is encountered.
We hypothesize that NOD2-mediated GM-CSF becomes of
greater importance in response to situations that require an
emergency restoration of intestinal DC populations, such as after
a breach in intestinal barrier. This is particularly true if strong
microbial signaling through TLRs leads to the deletion of cDC1s,
as it would be vital to replenish DCs in the affected tissue cells
once the primary threat has been cleared. Indeed, we have shown
here that a breach in the intestinal barrier leads to the re-
cruitment of all types of DCs into the colonic LP in RIP2-sufficient
mice, but a preferential recruitment of CD11b+CD103−DCs occurs
in RIP2-deficient mice, suggesting that NOD signaling drives the
recovery of the intestinal DC landscape back to a CD103+ DC
balanced permissive state. As the currently accepted paradigm
states that the DCs marked by CD103 are better suited for the
generation of Tregs (20), while DCs marked by CD11b are better
suited for the generation of a Th17 response (54), maintaining a
balance between DC subtypes is essential for gut homeostasis, and
restoration of this balance is critical following an inflammatory
episode.
With the maintenance of this balance in mind, it may be the

case that the GM-CSF signaling pathway is an outright hallmark
of CD, as multiple studies have reported that mutations in the
GM-CSF receptor genes CSF2RA and CSF2RB themselves
represent genetic risk factors for developing the disease (21, 22,

55). Moreover, autoantibodies capable of neutralizing free cir-
culating GM-CSF are increased 5- to 30-fold in CD patients,
resulting in an impairment of the GM-CSF signaling pathway
(56, 57). Interestingly, the NOD2 variants and GM-CSF auto-
antibodies are both associated with an ileal, stricturing pre-
sentation of CD (57, 58), suggestive of similar pathogenic
mechanisms between both factors.
Our results indicate that NOD2 feeds directly into this path-

way, which not only further supports the role of GM-CSF sig-
naling as an important player in the maintenance of intestinal
immune homeostasis but also has immediate implications in the
treatment of CD. Injection with sargramostim, a recombinant
form of GM-CSF, has been used as a treatment for CD in the
past, although a meta-analysis of three clinical trials showed that
sargramostim was not statistically more effective than placebo in
the induction of remission or clinically relevant responses (59). It
is important to note, however, that these studies were not
stratified by genotype, and it is possible that patients with NOD2
mutations specifically would benefit significantly from sar-
gramostim injections if they are incapable of generating the
appropriate GM-CSF–mediated response to a particular NOD2-
dependent peptidoglycan challenge. Notably, of these three
clinical trials described in the meta-analysis, two displayed sig-
nificant efficacy, while the one reporting the least clinical dif-
ference between sargramostim and placebo was conducted with
an international cohort of patients from centers around the globe
(60). This is potentially significant because while NOD2 muta-
tions are significantly associated with CD in Caucasian pop-
ulations, the same cannot be said for a number of international
cohorts, including those from Japan (61) and India (62). Thus,
the lesser prevalence of patients with nonfunctional NOD2 in the
third study could explain the lack of statistical efficacy in this
group, and our results indicate that for sargramostim may still be
a viable therapy option if the genotype of individual patients is
taken into consideration.
In summary, we have described here a mechanism by which

detection of peptidoglycan by NOD1 and NOD2 expressed in
nonhematopoietic cells leads to the production of GM-CSF,
which, in turn, leads to the generation of Treg-promoting DCs.
Depending on the route of stimulation, this phenomenon can
occur either systemically or locally within the intestinal LP. This
knowledge provides an insight into the biological function of
NOD proteins, and we are excited about the potential for
exploiting this pathway in the generation of immunosuppressive
adjuvants. Moreover, we hope that this research will provide a
better understanding of the pathophysiological mechanisms that
drive CD, and this understanding will eventually lead to a cure
for this debilitating condition.

Methods
Mice.All animals weremaintained under specific pathogen-free conditions at
the University of Toronto Department of Comparative Medicine, and ex-
periments were conducted as approved by the University of Toronto Animal
Care Committee in accordancewith the regulations set by the Canadian Council
of Animal Care. In some cases, age- and sex-matched C57BL/6J WT mice were
purchased from Jackson Laboratories and used at 6–10 wk of age. Otherwise,
mice were obtained from their respective suppliers and bred in-house to con-
trol for littermate effects. Mice were maintained on a +/− by −/− or Cre+ by Cre-
breeding system and littermate mice subjected to analysis at 6–10 wk of age.

Injections. Ligands were purchased from their respective suppliers and prepared
at the doses indicated in the text in sterile PBS prior to being administered to
mice via injection into the peritoneal cavity. Intrarectal administration of MDP
and 50% ethanol was performed by anesthetizing animals under gaseous
isofluorane before inserting a plastic catheter 3 cm into the anus and slowly
injecting 100 μL of fluid directly into the colon lumen.

Tissue Collection. Single-cell suspensions were obtained by enzymatic di-
gestion of harvested tissues followed by the mechanical disruption of
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remaining solid tissue through a 70 μM nylon filter with the plunger of a
30-mL syringe.

Detailed methods can be found in SI Appendix.

Data Availability Statement. Complete Microarray dataset (RMA Normalized,
Log2 transformed intensities) has been deposited in the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) under accession
no. GSE145280 (63). All other raw data from this study is available upon request
from D.P. or D.J.P.
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